1 /*	$NetBSD: mdreloc.c,v 1.32 2002/10/18 20:35:25 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Eduardo Horvath.
5  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg and by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46 
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50 
51 /*
52  * The following table holds for each relocation type:
53  *	- the width in bits of the memory location the relocation
54  *	  applies to (not currently used)
55  *	- the number of bits the relocation value must be shifted to the
56  *	  right (i.e. discard least significant bits) to fit into
57  *	  the appropriate field in the instruction word.
58  *	- flags indicating whether
59  *		* the relocation involves a symbol
60  *		* the relocation is relative to the current position
61  *		* the relocation is for a GOT entry
62  *		* the relocation is relative to the load address
63  *
64  */
65 #define _RF_S		0x80000000		/* Resolve symbol */
66 #define _RF_A		0x40000000		/* Use addend */
67 #define _RF_P		0x20000000		/* Location relative */
68 #define _RF_G		0x10000000		/* GOT offset */
69 #define _RF_B		0x08000000		/* Load address relative */
70 #define _RF_U		0x04000000		/* Unaligned */
71 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
72 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
73 static const int reloc_target_flags[] = {
74 	0,							/* NONE */
75 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
76 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
77 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
79 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
80 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
81 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
82 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
83 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
84 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
85 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
86 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
87 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
88 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
89 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
90 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
91 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
92 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
93 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
94 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
95 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
96 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
97 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
98 
99 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
100 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
101 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
102 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
103 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
104 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
105 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
106 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
107 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
108 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
109 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
110 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
111 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
112 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
113 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
114 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
115 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
116 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
117 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
118 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
119 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
120 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
121 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
122 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
123 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
124 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
125 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
126 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
127 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
128 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
129 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
130 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
131 };
132 
133 #ifdef RTLD_DEBUG_RELOC
134 static const char *reloc_names[] = {
135 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 	"22", "13", "LO10", "GOT10", "GOT13",
138 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 	"10", "11", "64", "OLO10", "HH22",
142 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 	"L44", "REGISTER", "UA64", "UA16"
146 };
147 #endif
148 
149 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
150 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
151 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
152 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
153 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
154 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
155 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
156 
157 static const long reloc_target_bitmask[] = {
158 #define _BM(x)	(~(-(1ULL << (x))))
159 	0,				/* NONE */
160 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
161 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
162 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
163 	_BM(22), _BM(22),		/* HI22, _22 */
164 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
165 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
166 	_BM(10), _BM(22),		/* _PC10, _PC22 */
167 	_BM(30), 0,			/* _WPLT30, _COPY */
168 	_BM(32), _BM(32), _BM(32),	/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 	_BM(32), _BM(32),		/* _UA32, PLT32 */
170 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
171 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
172 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
173 	_BM(10), _BM(22),		/* _OLO10, _HH22 */
174 	_BM(10), _BM(22),		/* _HM10, _LM22 */
175 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
176 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
177 	-1,				/* GLOB_JMP */
178 	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
179 	-1, -1,				/* DISP64, PLT64 */
180 	_BM(22), _BM(13),		/* HIX22, LOX10 */
181 	_BM(22), _BM(10), _BM(13),	/* H44, M44, L44 */
182 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
183 #undef _BM
184 };
185 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
186 
187 /*
188  * Instruction templates:
189  */
190 #define	BAA	0x10400000	/*	ba,a	%xcc, 0 */
191 #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
192 #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
193 #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
194 #define	OR	0x82806000	/*	or	%g1, 0, %g1 */
195 #define	XOR	0x82c06000	/*	xor	%g1, 0, %g1 */
196 #define	MOV71	0x8283a000	/*	or	%o7, 0, %g1 */
197 #define	MOV17	0x9c806000	/*	or	%g1, 0, %o7 */
198 #define	CALL	0x40000000	/*	call	0 */
199 #define	SLLX	0x8b407000	/*	sllx	%g1, 0, %g1 */
200 #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
201 #define	ORG5	0x82804005	/*	or	%g1, %g5, %g1 */
202 
203 
204 /* %hi(v)/%lo(v) with variable shift */
205 #define	HIVAL(v, s)	(((v) >> (s)) & 0x003fffff)
206 #define LOVAL(v, s)	(((v) >> (s)) & 0x000003ff)
207 
208 void _rtld_bind_start_0(long, long);
209 void _rtld_bind_start_1(long, long);
210 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
211 caddr_t _rtld_bind __P((const Obj_Entry *, Elf_Word));
212 
213 /*
214  * Install rtld function call into this PLT slot.
215  */
216 #define	SAVE		0x9de3bf50	/* i.e. `save %sp,-176,%sp' */
217 #define	SETHI_l0	0x21000000
218 #define	SETHI_l1	0x23000000
219 #define	OR_l0_l0	0xa0142000
220 #define	SLLX_l0_32_l0	0xa12c3020
221 #define	OR_l0_l1_l0	0xa0140011
222 #define	JMPL_l0_o0	0x91c42000
223 #define	MOV_g1_o1	0x92100001
224 
225 void _rtld_install_plt __P((Elf_Word *pltgot,	Elf_Addr proc));
226 
227 void
228 _rtld_install_plt(pltgot, proc)
229 	Elf_Word *pltgot;
230 	Elf_Addr proc;
231 {
232 	pltgot[0] = SAVE;
233 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
234 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
235 	pltgot[3] = OR_l0_l0  | LOVAL(proc, 32);
236 	pltgot[4] = SLLX_l0_32_l0;
237 	pltgot[5] = OR_l0_l1_l0;
238 	pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
239 	pltgot[7] = MOV_g1_o1;
240 }
241 
242 void
243 _rtld_setup_pltgot(const Obj_Entry *obj)
244 {
245 	/*
246 	 * On sparc64 we got troubles.
247 	 *
248 	 * Instructions are 4 bytes long.
249 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
250 	 * array entries.
251 	 * Each PLT entry jumps to PLT0 to enter the dynamic
252 	 * linker.
253 	 * Loading an arbitrary 64-bit pointer takes 6
254 	 * instructions and 2 registers.
255 	 *
256 	 * Somehow we need to issue a save to get a new stack
257 	 * frame, load the address of the dynamic linker, and
258 	 * jump there, in 8 instructions or less.
259 	 *
260 	 * Oh, we need to fill out both PLT0 and PLT1.
261 	 */
262 	{
263 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
264 
265 		/* Install in entries 0 and 1 */
266 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
267 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
268 
269 		/*
270 		 * Install the object reference in first slot
271 		 * of entry 2.
272 		 */
273 		obj->pltgot[8] = (Elf_Addr) obj;
274 	}
275 }
276 
277 void
278 _rtld_relocate_nonplt_self(dynp, relocbase)
279 	Elf_Dyn *dynp;
280 	Elf_Addr relocbase;
281 {
282 	const Elf_Rela *rela = 0, *relalim;
283 	Elf_Addr relasz = 0;
284 	Elf_Addr *where;
285 
286 	for (; dynp->d_tag != DT_NULL; dynp++) {
287 		switch (dynp->d_tag) {
288 		case DT_RELA:
289 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
290 			break;
291 		case DT_RELASZ:
292 			relasz = dynp->d_un.d_val;
293 			break;
294 		}
295 	}
296 	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
297 	for (; rela < relalim; rela++) {
298 		where = (Elf_Addr *)(relocbase + rela->r_offset);
299 		*where = (Elf_Addr)(relocbase + rela->r_addend);
300 	}
301 }
302 
303 int
304 _rtld_relocate_nonplt_objects(obj)
305 	const Obj_Entry *obj;
306 {
307 	const Elf_Rela *rela;
308 
309 	for (rela = obj->rela; rela < obj->relalim; rela++) {
310 		Elf_Addr *where;
311 		Elf_Word type;
312 		Elf_Addr value = 0, mask;
313 		const Elf_Sym *def = NULL;
314 		const Obj_Entry *defobj = NULL;
315 		unsigned long	 symnum;
316 
317 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
318 		symnum = ELF_R_SYM(rela->r_info);
319 
320 		type = ELF_R_TYPE(rela->r_info);
321 		if (type == R_TYPE(NONE))
322 			continue;
323 
324 		/* We do JMP_SLOTs in _rtld_bind() below */
325 		if (type == R_TYPE(JMP_SLOT))
326 			continue;
327 
328 		/* COPY relocs are also handled elsewhere */
329 		if (type == R_TYPE(COPY))
330 			continue;
331 
332 		/*
333 		 * We use the fact that relocation types are an `enum'
334 		 * Note: R_SPARC_UA16 is currently numerically largest.
335 		 */
336 		if (type > R_TYPE(UA16))
337 			return (-1);
338 
339 		value = rela->r_addend;
340 
341 		/*
342 		 * Handle relative relocs here, as an optimization.
343 		 */
344 		if (type == R_TYPE(RELATIVE)) {
345 			*where = (Elf_Addr)(obj->relocbase + value);
346 			rdbg(("RELATIVE in %s --> %p", obj->path,
347 			    (void *)*where));
348 			continue;
349 		}
350 
351 		if (RELOC_RESOLVE_SYMBOL(type)) {
352 
353 			/* Find the symbol */
354 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
355 			if (def == NULL)
356 				return (-1);
357 
358 			/* Add in the symbol's absolute address */
359 			value += (Elf_Addr)(defobj->relocbase + def->st_value);
360 		}
361 
362 		if (RELOC_PC_RELATIVE(type)) {
363 			value -= (Elf_Addr)where;
364 		}
365 
366 		if (RELOC_BASE_RELATIVE(type)) {
367 			/*
368 			 * Note that even though sparcs use `Elf_rela'
369 			 * exclusively we still need the implicit memory addend
370 			 * in relocations referring to GOT entries.
371 			 * Undoubtedly, someone f*cked this up in the distant
372 			 * past, and now we're stuck with it in the name of
373 			 * compatibility for all eternity..
374 			 *
375 			 * In any case, the implicit and explicit should be
376 			 * mutually exclusive. We provide a check for that
377 			 * here.
378 			 */
379 #ifdef DIAGNOSTIC
380 			if (value != 0 && *where != 0) {
381 				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
382 					"addend=0x%lx, base %p\n",
383 					obj->path, where, *where,
384 					rela->r_addend, obj->relocbase);
385 			}
386 #endif
387 			/* XXXX -- apparently we ignore the preexisting value */
388 			value += (Elf_Addr)(obj->relocbase);
389 		}
390 
391 		mask = RELOC_VALUE_BITMASK(type);
392 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
393 		value &= mask;
394 
395 		if (RELOC_UNALIGNED(type)) {
396 			/* Handle unaligned relocations. */
397 			Elf_Addr tmp = 0;
398 			char *ptr = (char *)where;
399 			int i, size = RELOC_TARGET_SIZE(type)/8;
400 
401 			/* Read it in one byte at a time. */
402 			for (i=0; i<size; i++)
403 				tmp = (tmp << 8) | ptr[i];
404 
405 			tmp &= ~mask;
406 			tmp |= value;
407 
408 			/* Write it back out. */
409 			for (i=0; i<size; i++)
410 				ptr[i] = ((tmp >> (8*i)) & 0xff);
411 #ifdef RTLD_DEBUG_RELOC
412 			value = (Elf_Addr)tmp;
413 #endif
414 
415 		} else if (RELOC_TARGET_SIZE(type) > 32) {
416 			*where &= ~mask;
417 			*where |= value;
418 #ifdef RTLD_DEBUG_RELOC
419 			value = (Elf_Addr)*where;
420 #endif
421 		} else {
422 			Elf32_Addr *where32 = (Elf32_Addr *)where;
423 
424 			*where32 &= ~mask;
425 			*where32 |= value;
426 #ifdef RTLD_DEBUG_RELOC
427 			value = (Elf_Addr)*where32;
428 #endif
429 		}
430 
431 #ifdef RTLD_DEBUG_RELOC
432 		if (RELOC_RESOLVE_SYMBOL(type)) {
433 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
434 			    obj->strtab + obj->symtab[symnum].st_name,
435 			    obj->path, (void *)*where, defobj->path));
436 		} else {
437 			rdbg(("%s in %s --> %p", reloc_names[type],
438 			    obj->path, (void *)*where));
439 		}
440 #endif
441 	}
442 	return (0);
443 }
444 
445 int
446 _rtld_relocate_plt_lazy(obj)
447 	const Obj_Entry *obj;
448 {
449 	return (0);
450 }
451 
452 caddr_t
453 _rtld_bind(obj, reloff)
454 	const Obj_Entry *obj;
455 	Elf_Word reloff;
456 {
457 	const Elf_Rela *rela = obj->pltrela + reloff;
458 	const Elf_Sym *def;
459 	const Obj_Entry *defobj;
460 	Elf_Word *where;
461 	Elf_Addr value, offset;
462 
463 	if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
464 		/*
465 		 * XXXX
466 		 *
467 		 * The first four PLT entries are reserved.  There is some
468 		 * disagreement whether they should have associated relocation
469 		 * entries.  Both the SPARC 32-bit and 64-bit ELF
470 		 * specifications say that they should have relocation entries,
471 		 * but the 32-bit SPARC binutils do not generate them, and now
472 		 * the 64-bit SPARC binutils have stopped generating them too.
473 		 *
474 		 * So, to provide binary compatibility, we will check the first
475 		 * entry, if it is reserved it should not be of the type
476 		 * JMP_SLOT.  If it is JMP_SLOT, then the 4 reserved entries
477 		 * were not generated and our index is 4 entries too far.
478 		 */
479 		rela -= 4;
480 	}
481 
482 	where = (Elf_Word *)(obj->relocbase + rela->r_offset);
483 
484 	/* Fully resolve procedure addresses now */
485 
486 	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
487 
488 	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
489 	if (def == NULL)
490 		_rtld_die();
491 
492 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
493 	rdbg(("bind now/fixup in %s --> new=%p",
494 	    defobj->strtab + def->st_name, (void *)value));
495 
496 	/*
497 	 * At the PLT entry pointed at by `where', we now construct
498 	 * a direct transfer to the now fully resolved function
499 	 * address.
500 	 *
501 	 * A PLT entry is supposed to start by looking like this:
502 	 *
503 	 *	sethi	%hi(. - .PLT0), %g1
504 	 *	ba,a	%xcc, .PLT1
505 	 *	nop
506 	 *	nop
507 	 *	nop
508 	 *	nop
509 	 *	nop
510 	 *	nop
511 	 *
512 	 * When we replace these entries we start from the second
513 	 * entry and do it in reverse order so the last thing we
514 	 * do is replace the branch.  That allows us to change this
515 	 * atomically.
516 	 *
517 	 * We now need to find out how far we need to jump.  We
518 	 * have a choice of several different relocation techniques
519 	 * which are increasingly expensive.
520 	 */
521 
522 	offset = ((Elf_Addr)where) - value;
523 	if (rela->r_addend) {
524 		Elf_Addr *ptr = (Elf_Addr *)where;
525 		/*
526 		 * This entry is >=32768.  The relocations points to a
527 		 * PC-relative pointer to the bind_0 stub at the top of the
528 		 * PLT section.  Update it to point to the target function.
529 		 */
530 		ptr[0] += value - (Elf_Addr)obj->pltgot;
531 
532 	} else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
533 		/*
534 		 * We're within 1MB -- we can use a direct branch insn.
535 		 *
536 		 * We can generate this pattern:
537 		 *
538 		 *	sethi	%hi(. - .PLT0), %g1
539 		 *	ba,a	%xcc, addr
540 		 *	nop
541 		 *	nop
542 		 *	nop
543 		 *	nop
544 		 *	nop
545 		 *	nop
546 		 *
547 		 */
548 		where[1] = BAA | ((offset >> 2) &0x3fffff);
549 		__asm __volatile("iflush %0+4" : : "r" (where));
550 	} else if (value >= 0 && value < (1L<<32)) {
551 		/*
552 		 * We're within 32-bits of address zero.
553 		 *
554 		 * The resulting code in the jump slot is:
555 		 *
556 		 *	sethi	%hi(. - .PLT0), %g1
557 		 *	sethi	%hi(addr), %g1
558 		 *	jmp	%g1+%lo(addr)
559 		 *	nop
560 		 *	nop
561 		 *	nop
562 		 *	nop
563 		 *	nop
564 		 *
565 		 */
566 		where[2] = JMP   | LOVAL(value, 0);
567 		where[1] = SETHI | HIVAL(value, 10);
568 		__asm __volatile("iflush %0+8" : : "r" (where));
569 		__asm __volatile("iflush %0+4" : : "r" (where));
570 
571 	} else if (value <= 0 && value > -(1L<<32)) {
572 		/*
573 		 * We're within 32-bits of address -1.
574 		 *
575 		 * The resulting code in the jump slot is:
576 		 *
577 		 *	sethi	%hi(. - .PLT0), %g1
578 		 *	sethi	%hix(addr), %g1
579 		 *	xor	%g1, %lox(addr), %g1
580 		 *	jmp	%g1
581 		 *	nop
582 		 *	nop
583 		 *	nop
584 		 *	nop
585 		 *
586 		 */
587 		where[3] = JMP;
588 		where[2] = XOR | ((~value) & 0x00001fff);
589 		where[1] = SETHI | HIVAL(~value, 10);
590 		__asm __volatile("iflush %0+12" : : "r" (where));
591 		__asm __volatile("iflush %0+8" : : "r" (where));
592 		__asm __volatile("iflush %0+4" : : "r" (where));
593 
594 	} else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
595 		/*
596 		 * We're within 32-bits -- we can use a direct call insn
597 		 *
598 		 * The resulting code in the jump slot is:
599 		 *
600 		 *	sethi	%hi(. - .PLT0), %g1
601 		 *	mov	%o7, %g1
602 		 *	call	(.+offset)
603 		 *	 mov	%g1, %o7
604 		 *	nop
605 		 *	nop
606 		 *	nop
607 		 *	nop
608 		 *
609 		 */
610 		where[3] = MOV17;
611 		where[2] = CALL	  | ((offset >> 4) & 0x3fffffff);
612 		where[1] = MOV71;
613 		__asm __volatile("iflush %0+12" : : "r" (where));
614 		__asm __volatile("iflush %0+8" : : "r" (where));
615 		__asm __volatile("iflush %0+4" : : "r" (where));
616 
617 	} else if (offset >= 0 && offset < (1L<<44)) {
618 		/*
619 		 * We're within 44 bits.  We can generate this pattern:
620 		 *
621 		 * The resulting code in the jump slot is:
622 		 *
623 		 *	sethi	%hi(. - .PLT0), %g1
624 		 *	sethi	%h44(addr), %g1
625 		 *	or	%g1, %m44(addr), %g1
626 		 *	sllx	%g1, 12, %g1
627 		 *	jmp	%g1+%l44(addr)
628 		 *	nop
629 		 *	nop
630 		 *	nop
631 		 *
632 		 */
633 		where[4] = JMP   | LOVAL(offset, 0);
634 		where[3] = SLLX  | 12;
635 		where[2] = OR    | (((offset) >> 12) & 0x00001fff);
636 		where[1] = SETHI | HIVAL(offset, 22);
637 		__asm __volatile("iflush %0+16" : : "r" (where));
638 		__asm __volatile("iflush %0+12" : : "r" (where));
639 		__asm __volatile("iflush %0+8" : : "r" (where));
640 		__asm __volatile("iflush %0+4" : : "r" (where));
641 
642 	} else if (offset < 0 && offset > -(1L<<44)) {
643 		/*
644 		 * We're within 44 bits.  We can generate this pattern:
645 		 *
646 		 * The resulting code in the jump slot is:
647 		 *
648 		 *	sethi	%hi(. - .PLT0), %g1
649 		 *	sethi	%h44(-addr), %g1
650 		 *	xor	%g1, %m44(-addr), %g1
651 		 *	sllx	%g1, 12, %g1
652 		 *	jmp	%g1+%l44(addr)
653 		 *	nop
654 		 *	nop
655 		 *	nop
656 		 *
657 		 */
658 		where[4] = JMP   | LOVAL(offset, 0);
659 		where[3] = SLLX  | 12;
660 		where[2] = XOR   | (((~offset) >> 12) & 0x00001fff);
661 		where[1] = SETHI | HIVAL(~offset, 22);
662 		__asm __volatile("iflush %0+16" : : "r" (where));
663 		__asm __volatile("iflush %0+12" : : "r" (where));
664 		__asm __volatile("iflush %0+8" : : "r" (where));
665 		__asm __volatile("iflush %0+4" : : "r" (where));
666 
667 	} else {
668 		/*
669 		 * We need to load all 64-bits
670 		 *
671 		 * The resulting code in the jump slot is:
672 		 *
673 		 *	sethi	%hi(. - .PLT0), %g1
674 		 *	sethi	%hh(addr), %g1
675 		 *	sethi	%lm(addr), %g5
676 		 *	or	%g1, %hm(addr), %g1
677 		 *	sllx	%g1, 32, %g1
678 		 *	or	%g1, %g5, %g1
679 		 *	jmp	%g1+%lo(addr)
680 		 *	nop
681 		 *
682 		 */
683 		where[6] = JMP     | LOVAL(value, 0);
684 		where[5] = ORG5;
685 		where[4] = SLLX    | 32;
686 		where[3] = OR      | LOVAL(value, 32);
687 		where[2] = SETHIG5 | HIVAL(value, 10);
688 		where[1] = SETHI   | HIVAL(value, 42);
689 		__asm __volatile("iflush %0+24" : : "r" (where));
690 		__asm __volatile("iflush %0+20" : : "r" (where));
691 		__asm __volatile("iflush %0+16" : : "r" (where));
692 		__asm __volatile("iflush %0+12" : : "r" (where));
693 		__asm __volatile("iflush %0+8" : : "r" (where));
694 		__asm __volatile("iflush %0+4" : : "r" (where));
695 
696 	}
697 
698 	return (caddr_t)value;
699 }
700