xref: /netbsd/sbin/newfs/mkfs.c (revision bf9ec67e)
1 /*	$NetBSD: mkfs.c,v 1.64 2002/04/10 17:28:13 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1980, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.64 2002/04/10 17:28:13 mycroft Exp $");
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/param.h>
46 #include <sys/mman.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/ufs_bswap.h>
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 #include <sys/disklabel.h>
55 
56 #include <err.h>
57 #include <errno.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <stdlib.h>
61 
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #endif
65 
66 #include "extern.h"
67 
68 static void initcg(int, time_t);
69 static int fsinit(time_t, mode_t, uid_t, gid_t);
70 static int makedir(struct direct *, int);
71 static daddr_t alloc(int, int);
72 static void iput(struct dinode *, ino_t);
73 static void rdfs(daddr_t, int, void *);
74 static void wtfs(daddr_t, int, void *);
75 static int isblock(struct fs *, unsigned char *, int);
76 static void clrblock(struct fs *, unsigned char *, int);
77 static void setblock(struct fs *, unsigned char *, int);
78 static int32_t calcipg(int32_t, int32_t, off_t *);
79 static void swap_cg(struct cg *, struct cg *);
80 #ifdef MFS
81 static void calc_memfree(void);
82 static void *mkfs_malloc(size_t size);
83 #endif
84 
85 static int count_digits(int);
86 
87 /*
88  * make file system for cylinder-group style file systems
89  */
90 
91 /*
92  * We limit the size of the inode map to be no more than a
93  * third of the cylinder group space, since we must leave at
94  * least an equal amount of space for the block map.
95  *
96  * N.B.: MAXIPG must be a multiple of INOPB(fs).
97  */
98 #define	MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
99 
100 #define	UMASK		0755
101 #define	MAXINOPB	(MAXBSIZE / DINODE_SIZE)
102 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
103 
104 union {
105 	struct fs fs;
106 	char pad[SBSIZE];
107 } fsun;
108 #define	sblock	fsun.fs
109 struct	csum *fscs;
110 
111 union {
112 	struct cg cg;
113 	char pad[MAXBSIZE];
114 } cgun;
115 #define	acg	cgun.cg
116 
117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
118 
119 char writebuf[MAXBSIZE];
120 
121 int	fsi, fso;
122 
123 void
124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
125     mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
126 {
127 	int32_t i, mincpc, mincpg, inospercg;
128 	int32_t cylno, rpos, blk, j, warning = 0;
129 	int32_t used, mincpgcnt, bpcg;
130 	off_t usedb;
131 	int32_t mapcramped, inodecramped;
132 	int32_t postblsize, rotblsize, totalsbsize;
133 	time_t utime;
134 	long long sizepb;
135 	char *writebuf2;		/* dynamic buffer */
136 	int nprintcols, printcolwidth;
137 
138 #ifndef STANDALONE
139 	time(&utime);
140 #endif
141 #ifdef MFS
142 	if (mfs) {
143 		calc_memfree();
144 		if (fssize * sectorsize > memleft)
145 			fssize = memleft / sectorsize;
146 		if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
147 			exit(12);
148 	}
149 #endif
150 	fsi = fi;
151 	fso = fo;
152 	if (Oflag) {
153 		sblock.fs_inodefmt = FS_42INODEFMT;
154 		sblock.fs_maxsymlinklen = 0;
155 	} else {
156 		sblock.fs_inodefmt = FS_44INODEFMT;
157 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
158 	}
159 	/*
160 	 * Validate the given file system size.
161 	 * Verify that its last block can actually be accessed.
162 	 */
163 	if (fssize <= 0)
164 		printf("preposterous size %d\n", fssize), exit(13);
165 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
166 
167 	/*
168 	 * collect and verify the sector and track info
169 	 */
170 	sblock.fs_nsect = nsectors;
171 	sblock.fs_ntrak = ntracks;
172 	if (sblock.fs_ntrak <= 0)
173 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
174 	if (sblock.fs_nsect <= 0)
175 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
176 	/*
177 	 * collect and verify the filesystem density info
178 	 */
179 	sblock.fs_avgfilesize = avgfilesize;
180 	sblock.fs_avgfpdir = avgfpdir;
181 	if (sblock.fs_avgfilesize <= 0)
182 		printf("illegal expected average file size %d\n",
183 		    sblock.fs_avgfilesize), exit(14);
184 	if (sblock.fs_avgfpdir <= 0)
185 		printf("illegal expected number of files per directory %d\n",
186 		    sblock.fs_avgfpdir), exit(15);
187 	/*
188 	 * collect and verify the block and fragment sizes
189 	 */
190 	sblock.fs_bsize = bsize;
191 	sblock.fs_fsize = fsize;
192 	if (!POWEROF2(sblock.fs_bsize)) {
193 		printf("block size must be a power of 2, not %d\n",
194 		    sblock.fs_bsize);
195 		exit(16);
196 	}
197 	if (!POWEROF2(sblock.fs_fsize)) {
198 		printf("fragment size must be a power of 2, not %d\n",
199 		    sblock.fs_fsize);
200 		exit(17);
201 	}
202 	if (sblock.fs_fsize < sectorsize) {
203 		printf("fragment size %d is too small, minimum is %d\n",
204 		    sblock.fs_fsize, sectorsize);
205 		exit(18);
206 	}
207 	if (sblock.fs_bsize < MINBSIZE) {
208 		printf("block size %d is too small, minimum is %d\n",
209 		    sblock.fs_bsize, MINBSIZE);
210 		exit(19);
211 	}
212 	if (sblock.fs_bsize > MAXBSIZE) {
213 		printf("block size %d is too large, maximum is %d\n",
214 		    sblock.fs_bsize, MAXBSIZE);
215 		exit(19);
216 	}
217 	if (sblock.fs_bsize < sblock.fs_fsize) {
218 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
219 		    sblock.fs_bsize, sblock.fs_fsize);
220 		exit(20);
221 	}
222 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
223 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
224 	sblock.fs_qbmask = ~sblock.fs_bmask;
225 	sblock.fs_qfmask = ~sblock.fs_fmask;
226 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
227 		sblock.fs_bshift++;
228 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
229 		sblock.fs_fshift++;
230 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
231 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
232 		sblock.fs_fragshift++;
233 	if (sblock.fs_frag > MAXFRAG) {
234 		printf("fragment size %d is too small, "
235 			"minimum with block size %d is %d\n",
236 		    sblock.fs_fsize, sblock.fs_bsize,
237 		    sblock.fs_bsize / MAXFRAG);
238 		exit(21);
239 	}
240 	sblock.fs_nrpos = nrpos;
241 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
242 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
243 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
244 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
245 		sblock.fs_fsbtodb++;
246 	sblock.fs_sblkno =
247 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
248 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
249 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
250 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
251 	sblock.fs_cgoffset = roundup(
252 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
253 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
254 		sblock.fs_cgmask <<= 1;
255 	if (!POWEROF2(sblock.fs_ntrak))
256 		sblock.fs_cgmask <<= 1;
257 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
258 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
259 		sizepb *= NINDIR(&sblock);
260 		sblock.fs_maxfilesize += sizepb;
261 	}
262 	/*
263 	 * Validate specified/determined secpercyl
264 	 * and calculate minimum cylinders per group.
265 	 */
266 	sblock.fs_spc = secpercyl;
267 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
268 	     sblock.fs_cpc > 1 && (i & 1) == 0;
269 	     sblock.fs_cpc >>= 1, i >>= 1)
270 		/* void */;
271 	mincpc = sblock.fs_cpc;
272 	bpcg = sblock.fs_spc * sectorsize;
273 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
274 	if (inospercg > MAXIPG(&sblock))
275 		inospercg = MAXIPG(&sblock);
276 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
277 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
278 	    sblock.fs_spc);
279 	mincpg = roundup(mincpgcnt, mincpc);
280 	/*
281 	 * Ensure that cylinder group with mincpg has enough space
282 	 * for block maps.
283 	 */
284 	sblock.fs_cpg = mincpg;
285 	sblock.fs_ipg = inospercg;
286 	if (maxcontig > 1)
287 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
288 	mapcramped = 0;
289 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
290 		mapcramped = 1;
291 		if (sblock.fs_bsize < MAXBSIZE) {
292 			sblock.fs_bsize <<= 1;
293 			if ((i & 1) == 0) {
294 				i >>= 1;
295 			} else {
296 				sblock.fs_cpc <<= 1;
297 				mincpc <<= 1;
298 				mincpg = roundup(mincpgcnt, mincpc);
299 				sblock.fs_cpg = mincpg;
300 			}
301 			sblock.fs_frag <<= 1;
302 			sblock.fs_fragshift += 1;
303 			if (sblock.fs_frag <= MAXFRAG)
304 				continue;
305 		}
306 		if (sblock.fs_fsize == sblock.fs_bsize) {
307 			printf("There is no block size that");
308 			printf(" can support this disk\n");
309 			exit(22);
310 		}
311 		sblock.fs_frag >>= 1;
312 		sblock.fs_fragshift -= 1;
313 		sblock.fs_fsize <<= 1;
314 		sblock.fs_nspf <<= 1;
315 	}
316 	/*
317 	 * Ensure that cylinder group with mincpg has enough space for inodes.
318 	 */
319 	inodecramped = 0;
320 	inospercg = calcipg(mincpg, bpcg, &usedb);
321 	sblock.fs_ipg = inospercg;
322 	while (inospercg > MAXIPG(&sblock)) {
323 		inodecramped = 1;
324 		if (mincpc == 1 || sblock.fs_frag == 1 ||
325 		    sblock.fs_bsize == MINBSIZE)
326 			break;
327 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
328 		       "minimum bytes per inode is",
329 		       (int)((mincpg * (off_t)bpcg - usedb)
330 			     / MAXIPG(&sblock) + 1));
331 		sblock.fs_bsize >>= 1;
332 		sblock.fs_frag >>= 1;
333 		sblock.fs_fragshift -= 1;
334 		mincpc >>= 1;
335 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
336 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
337 			sblock.fs_bsize <<= 1;
338 			break;
339 		}
340 		mincpg = sblock.fs_cpg;
341 		inospercg = calcipg(mincpg, bpcg, &usedb);
342 		sblock.fs_ipg = inospercg;
343 	}
344 	if (inodecramped) {
345 		if (inospercg > MAXIPG(&sblock)) {
346 			printf("Minimum bytes per inode is %d\n",
347 			       (int)((mincpg * (off_t)bpcg - usedb)
348 				     / MAXIPG(&sblock) + 1));
349 		} else if (!mapcramped) {
350 			printf("With %d bytes per inode, ", density);
351 			printf("minimum cylinders per group is %d\n", mincpg);
352 		}
353 	}
354 	if (mapcramped) {
355 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
356 		printf("minimum cylinders per group is %d\n", mincpg);
357 	}
358 	if (inodecramped || mapcramped) {
359 		if (sblock.fs_bsize != bsize)
360 			printf("%s to be changed from %d to %d\n",
361 			    "This requires the block size",
362 			    bsize, sblock.fs_bsize);
363 		if (sblock.fs_fsize != fsize)
364 			printf("\t%s to be changed from %d to %d\n",
365 			    "and the fragment size",
366 			    fsize, sblock.fs_fsize);
367 		exit(23);
368 	}
369 	/*
370 	 * Calculate the number of cylinders per group
371 	 */
372 	sblock.fs_cpg = cpg;
373 	if (sblock.fs_cpg % mincpc != 0) {
374 		printf("%s groups must have a multiple of %d cylinders\n",
375 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
376 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
377 		if (!cpgflg)
378 			cpg = sblock.fs_cpg;
379 	}
380 	/*
381 	 * Must ensure there is enough space for inodes.
382 	 */
383 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
384 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
385 		inodecramped = 1;
386 		sblock.fs_cpg -= mincpc;
387 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
388 	}
389 	/*
390 	 * Must ensure there is enough space to hold block map.
391 	 */
392 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
393 		mapcramped = 1;
394 		sblock.fs_cpg -= mincpc;
395 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
396 	}
397 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
398 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
399 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
400 		exit(24);
401 	}
402 	if (sblock.fs_cpg < mincpg) {
403 		printf("cylinder groups must have at least %d cylinders\n",
404 			mincpg);
405 		exit(25);
406 	} else if (sblock.fs_cpg != cpg && cpgflg) {
407 		if (!mapcramped && !inodecramped)
408 			exit(26);
409 		if (mapcramped && inodecramped)
410 			printf("Block size and bytes per inode restrict");
411 		else if (mapcramped)
412 			printf("Block size restricts");
413 		else
414 			printf("Bytes per inode restrict");
415 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
416 		exit(27);
417 	}
418 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
419 	/*
420 	 * Now have size for file system and nsect and ntrak.
421 	 * Determine number of cylinders and blocks in the file system.
422 	 */
423 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
424 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
425 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
426 		sblock.fs_ncyl++;
427 		warning = 1;
428 	}
429 	if (sblock.fs_ncyl < 1) {
430 		printf("file systems must have at least one cylinder\n");
431 		exit(28);
432 	}
433 	/*
434 	 * Determine feasability/values of rotational layout tables.
435 	 *
436 	 * The size of the rotational layout tables is limited by the
437 	 * size of the superblock, SBSIZE. The amount of space available
438 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
439 	 * The size of these tables is inversely proportional to the block
440 	 * size of the file system. The size increases if sectors per track
441 	 * are not powers of two, because more cylinders must be described
442 	 * by the tables before the rotational pattern repeats (fs_cpc).
443 	 */
444 	sblock.fs_interleave = interleave;
445 	sblock.fs_trackskew = trackskew;
446 	sblock.fs_npsect = nphyssectors;
447 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
448 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
449 	if (sblock.fs_ntrak == 1) {
450 		sblock.fs_cpc = 0;
451 		goto next;
452 	}
453 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
454 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
455 	totalsbsize = sizeof(struct fs) + rotblsize;
456 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
457 		/* use old static table space */
458 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
459 		    (char *)(&sblock.fs_firstfield);
460 		sblock.fs_rotbloff = &sblock.fs_space[0] -
461 		    (u_char *)(&sblock.fs_firstfield);
462 	} else {
463 		/* use dynamic table space */
464 		sblock.fs_postbloff = &sblock.fs_space[0] -
465 		    (u_char *)(&sblock.fs_firstfield);
466 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
467 		totalsbsize += postblsize;
468 	}
469 	if (totalsbsize > SBSIZE ||
470 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
471 		printf("%s %s %d %s %d.%s",
472 		    "Warning: insufficient space in super block for\n",
473 		    "rotational layout tables with nsect", sblock.fs_nsect,
474 		    "and ntrak", sblock.fs_ntrak,
475 		    "\nFile system performance may be impaired.\n");
476 		sblock.fs_cpc = 0;
477 		goto next;
478 	}
479 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
480 	/*
481 	 * calculate the available blocks for each rotational position
482 	 */
483 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
484 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
485 			fs_postbl(&sblock, cylno)[rpos] = -1;
486 	for (i = (rotblsize - 1) << sblock.fs_fragshift;
487 	     i >= 0; i -= sblock.fs_frag) {
488 		cylno = cbtocylno(&sblock, i);
489 		rpos = cbtorpos(&sblock, i);
490 		blk = fragstoblks(&sblock, i);
491 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
492 			fs_rotbl(&sblock)[blk] = 0;
493 		else
494 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
495 		fs_postbl(&sblock, cylno)[rpos] = blk;
496 	}
497 next:
498 	/*
499 	 * Compute/validate number of cylinder groups.
500 	 */
501 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
502 	if (sblock.fs_ncyl % sblock.fs_cpg)
503 		sblock.fs_ncg++;
504 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
505 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
506 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
507 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
508 		    cgdmin(&sblock, i) -
509 		    (cgbase(&sblock, i) >> sblock.fs_fragshift),
510 		    sblock.fs_fpg >> sblock.fs_fragshift);
511 		printf("number of cylinders per cylinder group (%d) %s.\n",
512 		    sblock.fs_cpg, "must be increased");
513 		exit(29);
514 	}
515 	j = sblock.fs_ncg - 1;
516 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
517 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
518 		if (j == 0) {
519 			printf("File system must have at least %d sectors\n",
520 			    NSPF(&sblock) *
521 			    (cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift)));
522 			exit(30);
523 		}
524 		printf("Warning: inode blocks/cyl group (%d) >= "
525 			"data blocks (%d) in last\n",
526 		    (cgdmin(&sblock, j) -
527 		     cgbase(&sblock, j)) >> sblock.fs_fragshift,
528 		    i >> sblock.fs_fragshift);
529 		printf("    cylinder group. This implies %d sector(s) "
530 			"cannot be allocated.\n",
531 		    i * NSPF(&sblock));
532 		sblock.fs_ncg--;
533 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
534 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
535 		    NSPF(&sblock);
536 		warning = 0;
537 	}
538 	if (warning && !mfs) {
539 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
540 		    sblock.fs_spc -
541 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
542 		    * sblock.fs_spc));
543 	}
544 	/*
545 	 * fill in remaining fields of the super block
546 	 */
547 	sblock.fs_csaddr = cgdmin(&sblock, 0);
548 	sblock.fs_cssize =
549 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
550 	/*
551 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
552 	 * longer used. However, we still initialise them so that the
553 	 * filesystem remains compatible with old kernels.
554 	 */
555 	i = sblock.fs_bsize / sizeof(struct csum);
556 	sblock.fs_csmask = ~(i - 1);
557 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
558 		sblock.fs_csshift++;
559 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
560 	if (fscs == NULL)
561 		exit(39);
562 	sblock.fs_magic = FS_MAGIC;
563 	sblock.fs_rotdelay = rotdelay;
564 	sblock.fs_minfree = minfree;
565 	sblock.fs_maxcontig = maxcontig;
566 	sblock.fs_maxbpg = maxbpg;
567 	sblock.fs_rps = rpm / 60;
568 	sblock.fs_optim = opt;
569 	sblock.fs_cgrotor = 0;
570 	sblock.fs_cstotal.cs_ndir = 0;
571 	sblock.fs_cstotal.cs_nbfree = 0;
572 	sblock.fs_cstotal.cs_nifree = 0;
573 	sblock.fs_cstotal.cs_nffree = 0;
574 	sblock.fs_fmod = 0;
575 	sblock.fs_clean = FS_ISCLEAN;
576 	sblock.fs_ronly = 0;
577 	/*
578 	 * Dump out summary information about file system.
579 	 */
580 	if (!mfs) {
581 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
582 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
583 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
584 #define	B2MBFACTOR (1 / (1024.0 * 1024.0))
585 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
586 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
587 		    sblock.fs_ncg, sblock.fs_cpg,
588 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
589 		    sblock.fs_ipg);
590 #undef B2MBFACTOR
591 	}
592 	/*
593 	 * Now determine how wide each column will be, and calculate how
594 	 * many columns will fit in a 76 char line. 76 is the width of the
595 	 * subwindows in sysinst.
596 	 */
597 	printcolwidth = count_digits(
598 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
599 	nprintcols = 76 / (printcolwidth + 2);
600 	/*
601 	 * Now build the cylinders group blocks and
602 	 * then print out indices of cylinder groups.
603 	 */
604 	if (!mfs)
605 		printf("super-block backups (for fsck -b #) at:");
606 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
607 		initcg(cylno, utime);
608 		if (mfs)
609 			continue;
610 		if (cylno % nprintcols == 0)
611 			printf("\n");
612 		printf(" %*d,", printcolwidth,
613 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
614 		fflush(stdout);
615 	}
616 	if (!mfs)
617 		printf("\n");
618 	if (Nflag && !mfs)
619 		exit(0);
620 	/*
621 	 * Now construct the initial file system,
622 	 * then write out the super-block.
623 	 */
624 	if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
625 		errx(1, "Error making filesystem");
626 	sblock.fs_time = utime;
627 	memcpy(writebuf, &sblock, sbsize);
628 	if (needswap)
629 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
630 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
631 	/*
632 	 * Write out the duplicate super blocks
633 	 */
634 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
635 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
636 		    sbsize, writebuf);
637 
638 	/*
639 	 * if we need to swap, create a buffer for the cylinder summaries
640 	 * to get swapped to.
641 	 */
642 	if (needswap) {
643 		if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
644 			exit(12);
645 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
646 	} else
647 		writebuf2 = (char *)fscs;
648 
649 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
650 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
651 			sblock.fs_cssize - i < sblock.fs_bsize ?
652 			    sblock.fs_cssize - i : sblock.fs_bsize,
653 			((char *)writebuf2) + i);
654 	if (writebuf2 != (char *)fscs)
655 		free(writebuf2);
656 
657 	/*
658 	 * Update information about this partion in pack
659 	 * label, to that it may be updated on disk.
660 	 */
661 	pp->p_fstype = FS_BSDFFS;
662 	pp->p_fsize = sblock.fs_fsize;
663 	pp->p_frag = sblock.fs_frag;
664 	pp->p_cpg = sblock.fs_cpg;
665 }
666 
667 /*
668  * Initialize a cylinder group.
669  */
670 void
671 initcg(int cylno, time_t utime)
672 {
673 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
674 	int32_t i;
675 	struct csum *cs;
676 	int cn;
677 
678 	/*
679 	 * Determine block bounds for cylinder group.
680 	 * Allow space for super block summary information in first
681 	 * cylinder group.
682 	 */
683 	cbase = cgbase(&sblock, cylno);
684 	dmax = cbase + sblock.fs_fpg;
685 	if (dmax > sblock.fs_size)
686 		dmax = sblock.fs_size;
687 	dlower = cgsblock(&sblock, cylno) - cbase;
688 	dupper = cgdmin(&sblock, cylno) - cbase;
689 	if (cylno == 0)
690 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
691 	cs = fscs + cylno;
692 	memset(&acg, 0, sblock.fs_cgsize);
693 	acg.cg_time = utime;
694 	acg.cg_magic = CG_MAGIC;
695 	acg.cg_cgx = cylno;
696 	if (cylno == sblock.fs_ncg - 1)
697 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
698 	else
699 		acg.cg_ncyl = sblock.fs_cpg;
700 	acg.cg_niblk = sblock.fs_ipg;
701 	acg.cg_ndblk = dmax - cbase;
702 	if (sblock.fs_contigsumsize > 0)
703 		acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
704 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
705 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
706 	acg.cg_iusedoff = acg.cg_boff +
707 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
708 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
709 	if (sblock.fs_contigsumsize <= 0) {
710 		acg.cg_nextfreeoff = acg.cg_freeoff +
711 		   howmany(sblock.fs_fpg, NBBY);
712 	} else {
713 		acg.cg_clustersumoff = acg.cg_freeoff +
714 		    howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t);
715 		acg.cg_clustersumoff =
716 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
717 		acg.cg_clusteroff = acg.cg_clustersumoff +
718 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
719 		acg.cg_nextfreeoff = acg.cg_clusteroff +
720 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
721 	}
722 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
723 		printf("Panic: cylinder group too big\n");
724 		exit(37);
725 	}
726 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
727 	if (cylno == 0)
728 		for (i = 0; i < ROOTINO; i++) {
729 			setbit(cg_inosused(&acg, 0), i);
730 			acg.cg_cs.cs_nifree--;
731 		}
732 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
733 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
734 		    sblock.fs_bsize, (char *)zino);
735 	if (cylno > 0) {
736 		/*
737 		 * In cylno 0, beginning space is reserved
738 		 * for boot and super blocks.
739 		 */
740 		for (d = 0, blkno = 0; d < dlower; ) {
741 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
742 			if (sblock.fs_contigsumsize > 0)
743 				setbit(cg_clustersfree(&acg, 0), blkno);
744 			acg.cg_cs.cs_nbfree++;
745 			cn = cbtocylno(&sblock, d);
746 			cg_blktot(&acg, 0)[cn]++;
747 			cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
748 			d += sblock.fs_frag;
749 			blkno++;
750 		}
751 		sblock.fs_dsize += dlower;
752 	}
753 	sblock.fs_dsize += acg.cg_ndblk - dupper;
754 	if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
755 		acg.cg_frsum[sblock.fs_frag - i]++;
756 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
757 			setbit(cg_blksfree(&acg, 0), dupper);
758 			acg.cg_cs.cs_nffree++;
759 		}
760 	}
761 	for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
762 	     d + sblock.fs_frag <= dmax - cbase; ) {
763 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
764 		if (sblock.fs_contigsumsize > 0)
765 			setbit(cg_clustersfree(&acg, 0), blkno);
766 		acg.cg_cs.cs_nbfree++;
767 		cn = cbtocylno(&sblock, d);
768 		cg_blktot(&acg, 0)[cn]++;
769 		cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
770 		d += sblock.fs_frag;
771 		blkno++;
772 	}
773 	if (d < dmax - cbase) {
774 		acg.cg_frsum[dmax - cbase - d]++;
775 		for (; d < dmax - cbase; d++) {
776 			setbit(cg_blksfree(&acg, 0), d);
777 			acg.cg_cs.cs_nffree++;
778 		}
779 	}
780 	if (sblock.fs_contigsumsize > 0) {
781 		int32_t *sump = cg_clustersum(&acg, 0);
782 		u_char *mapp = cg_clustersfree(&acg, 0);
783 		int map = *mapp++;
784 		int bit = 1;
785 		int run = 0;
786 
787 		for (i = 0; i < acg.cg_nclusterblks; i++) {
788 			if ((map & bit) != 0) {
789 				run++;
790 			} else if (run != 0) {
791 				if (run > sblock.fs_contigsumsize)
792 					run = sblock.fs_contigsumsize;
793 				sump[run]++;
794 				run = 0;
795 			}
796 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
797 				bit <<= 1;
798 			} else {
799 				map = *mapp++;
800 				bit = 1;
801 			}
802 		}
803 		if (run != 0) {
804 			if (run > sblock.fs_contigsumsize)
805 				run = sblock.fs_contigsumsize;
806 			sump[run]++;
807 		}
808 	}
809 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
810 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
811 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
812 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
813 	*cs = acg.cg_cs;
814 	memcpy(writebuf, &acg, sblock.fs_bsize);
815 	if (needswap)
816 		swap_cg(&acg, (struct cg*)writebuf);
817 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
818 		sblock.fs_bsize, writebuf);
819 }
820 
821 /*
822  * initialize the file system
823  */
824 struct dinode node;
825 
826 #ifdef LOSTDIR
827 #define	PREDEFDIR 3
828 #else
829 #define	PREDEFDIR 2
830 #endif
831 
832 struct direct root_dir[] = {
833 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
834 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
835 #ifdef LOSTDIR
836 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
837 #endif
838 };
839 struct odirect {
840 	u_int32_t d_ino;
841 	u_int16_t d_reclen;
842 	u_int16_t d_namlen;
843 	u_char	d_name[MAXNAMLEN + 1];
844 } oroot_dir[] = {
845 	{ ROOTINO, sizeof(struct direct), 1, "." },
846 	{ ROOTINO, sizeof(struct direct), 2, ".." },
847 #ifdef LOSTDIR
848 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
849 #endif
850 };
851 #ifdef LOSTDIR
852 struct direct lost_found_dir[] = {
853 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
854 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
855 	{ 0, DIRBLKSIZ, 0, 0, 0 },
856 };
857 struct odirect olost_found_dir[] = {
858 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
859 	{ ROOTINO, sizeof(struct direct), 2, ".." },
860 	{ 0, DIRBLKSIZ, 0, 0 },
861 };
862 #endif
863 char buf[MAXBSIZE];
864 static void copy_dir(struct direct *, struct direct *);
865 
866 int
867 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
868 {
869 #ifdef LOSTDIR
870 	int i;
871 #endif
872 
873 	/*
874 	 * initialize the node
875 	 */
876 	memset(&node, 0, sizeof(node));
877 	node.di_atime = utime;
878 	node.di_mtime = utime;
879 	node.di_ctime = utime;
880 
881 #ifdef LOSTDIR
882 	/*
883 	 * create the lost+found directory
884 	 */
885 	if (Oflag) {
886 		(void)makedir((struct direct *)olost_found_dir, 2);
887 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
888 			copy_dir((struct direct*)&olost_found_dir[2],
889 				(struct direct*)&buf[i]);
890 	} else {
891 		(void)makedir(lost_found_dir, 2);
892 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
893 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
894 	}
895 	node.di_mode = IFDIR | UMASK;
896 	node.di_nlink = 2;
897 	node.di_size = sblock.fs_bsize;
898 	node.di_db[0] = alloc(node.di_size, node.di_mode);
899 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
900 	node.di_uid = geteuid();
901 	node.di_gid = getegid();
902 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
903 	iput(&node, LOSTFOUNDINO);
904 #endif
905 	/*
906 	 * create the root directory
907 	 */
908 	if (mfs) {
909 		node.di_mode = IFDIR | mfsmode;
910 		node.di_uid = mfsuid;
911 		node.di_gid = mfsgid;
912 	} else {
913 		node.di_mode = IFDIR | UMASK;
914 		node.di_uid = geteuid();
915 		node.di_gid = getegid();
916 	}
917 	node.di_nlink = PREDEFDIR;
918 	if (Oflag)
919 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
920 	else
921 		node.di_size = makedir(root_dir, PREDEFDIR);
922 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
923 	if (node.di_db[0] == 0)
924 		return (0);
925 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
926 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
927 	iput(&node, ROOTINO);
928 	return (1);
929 }
930 
931 /*
932  * construct a set of directory entries in "buf".
933  * return size of directory.
934  */
935 int
936 makedir(struct direct *protodir, int entries)
937 {
938 	char *cp;
939 	int i, spcleft;
940 
941 	spcleft = DIRBLKSIZ;
942 	for (cp = buf, i = 0; i < entries - 1; i++) {
943 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
944 		copy_dir(&protodir[i], (struct direct*)cp);
945 		cp += protodir[i].d_reclen;
946 		spcleft -= protodir[i].d_reclen;
947 	}
948 	protodir[i].d_reclen = spcleft;
949 	copy_dir(&protodir[i], (struct direct*)cp);
950 	return (DIRBLKSIZ);
951 }
952 
953 /*
954  * allocate a block or frag
955  */
956 daddr_t
957 alloc(int size, int mode)
958 {
959 	int i, frag;
960 	daddr_t d, blkno;
961 
962 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
963 	/* fs -> host byte order */
964 	if (needswap)
965 		swap_cg(&acg, &acg);
966 	if (acg.cg_magic != CG_MAGIC) {
967 		printf("cg 0: bad magic number\n");
968 		return (0);
969 	}
970 	if (acg.cg_cs.cs_nbfree == 0) {
971 		printf("first cylinder group ran out of space\n");
972 		return (0);
973 	}
974 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
975 		if (isblock(&sblock, cg_blksfree(&acg, 0),
976 		    d >> sblock.fs_fragshift))
977 			goto goth;
978 	printf("internal error: can't find block in cyl 0\n");
979 	return (0);
980 goth:
981 	blkno = fragstoblks(&sblock, d);
982 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
983 	if (sblock.fs_contigsumsize > 0)
984 		clrbit(cg_clustersfree(&acg, 0), blkno);
985 	acg.cg_cs.cs_nbfree--;
986 	sblock.fs_cstotal.cs_nbfree--;
987 	fscs[0].cs_nbfree--;
988 	if (mode & IFDIR) {
989 		acg.cg_cs.cs_ndir++;
990 		sblock.fs_cstotal.cs_ndir++;
991 		fscs[0].cs_ndir++;
992 	}
993 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
994 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
995 	if (size != sblock.fs_bsize) {
996 		frag = howmany(size, sblock.fs_fsize);
997 		fscs[0].cs_nffree += sblock.fs_frag - frag;
998 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
999 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1000 		acg.cg_frsum[sblock.fs_frag - frag]++;
1001 		for (i = frag; i < sblock.fs_frag; i++)
1002 			setbit(cg_blksfree(&acg, 0), d + i);
1003 	}
1004 	/* host -> fs byte order */
1005 	if (needswap)
1006 		swap_cg(&acg, &acg);
1007 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1008 	    (char *)&acg);
1009 	return (d);
1010 }
1011 
1012 /*
1013  * Calculate number of inodes per group.
1014  */
1015 int32_t
1016 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
1017 {
1018 	int i;
1019 	int32_t ipg, new_ipg, ncg, ncyl;
1020 	off_t usedb;
1021 
1022 	/*
1023 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1024 	 * Note that fssize is still in sectors, not file system blocks.
1025 	 */
1026 	ncyl = howmany(fssize, secpercyl);
1027 	ncg = howmany(ncyl, cylpg);
1028 	/*
1029 	 * Iterate a few times to allow for ipg depending on itself.
1030 	 */
1031 	ipg = 0;
1032 	for (i = 0; i < 10; i++) {
1033 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1034 			* NSPF(&sblock) * (off_t)sectorsize;
1035 		new_ipg = (cylpg * (long long)bpcg - usedb) /
1036 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
1037 		if (new_ipg <= 0)
1038 			new_ipg = 1;		/* ensure ipg > 0 */
1039 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1040 		if (new_ipg == ipg)
1041 			break;
1042 		ipg = new_ipg;
1043 	}
1044 	*usedbp = usedb;
1045 	return (ipg);
1046 }
1047 
1048 /*
1049  * Allocate an inode on the disk
1050  */
1051 static void
1052 iput(struct dinode *ip, ino_t ino)
1053 {
1054 	struct dinode ibuf[MAXINOPB];
1055 	daddr_t d;
1056 	int c, i;
1057 
1058 	c = ino_to_cg(&sblock, ino);
1059 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1060 	/* fs -> host byte order */
1061 	if (needswap)
1062 		swap_cg(&acg, &acg);
1063 	if (acg.cg_magic != CG_MAGIC) {
1064 		printf("cg 0: bad magic number\n");
1065 		exit(31);
1066 	}
1067 	acg.cg_cs.cs_nifree--;
1068 	setbit(cg_inosused(&acg, 0), ino);
1069 	/* host -> fs byte order */
1070 	if (needswap)
1071 		swap_cg(&acg, &acg);
1072 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1073 	    (char *)&acg);
1074 	sblock.fs_cstotal.cs_nifree--;
1075 	fscs[0].cs_nifree--;
1076 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1077 		printf("fsinit: inode value out of range (%d).\n", ino);
1078 		exit(32);
1079 	}
1080 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1081 	rdfs(d, sblock.fs_bsize, ibuf);
1082 	if (needswap) {
1083 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1084 		/* ffs_dinode_swap() doesn't swap blocks addrs */
1085 		for (i=0; i<NDADDR + NIADDR; i++)
1086 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1087 				bswap32(ip->di_db[i]);
1088 	} else
1089 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1090 	wtfs(d, sblock.fs_bsize, ibuf);
1091 }
1092 
1093 /*
1094  * read a block from the file system
1095  */
1096 void
1097 rdfs(daddr_t bno, int size, void *bf)
1098 {
1099 	int n;
1100 	off_t offset;
1101 
1102 #ifdef MFS
1103 	if (mfs) {
1104 		memmove(bf, membase + bno * sectorsize, size);
1105 		return;
1106 	}
1107 #endif
1108 	offset = bno;
1109 	offset *= sectorsize;
1110 	if (lseek(fsi, offset, SEEK_SET) < 0) {
1111 		printf("rdfs: seek error for sector %d: %s\n",
1112 		    bno, strerror(errno));
1113 		exit(33);
1114 	}
1115 	n = read(fsi, bf, size);
1116 	if (n != size) {
1117 		printf("rdfs: read error for sector %d: %s\n",
1118 		    bno, strerror(errno));
1119 		exit(34);
1120 	}
1121 }
1122 
1123 /*
1124  * write a block to the file system
1125  */
1126 void
1127 wtfs(daddr_t bno, int size, void *bf)
1128 {
1129 	int n;
1130 	off_t offset;
1131 
1132 #ifdef MFS
1133 	if (mfs) {
1134 		memmove(membase + bno * sectorsize, bf, size);
1135 		return;
1136 	}
1137 #endif
1138 	if (Nflag)
1139 		return;
1140 	offset = bno;
1141 	offset *= sectorsize;
1142 	if (lseek(fso, offset, SEEK_SET) < 0) {
1143 		printf("wtfs: seek error for sector %d: %s\n",
1144 		    bno, strerror(errno));
1145 		exit(35);
1146 	}
1147 	n = write(fso, bf, size);
1148 	if (n != size) {
1149 		printf("wtfs: write error for sector %d: %s\n",
1150 		    bno, strerror(errno));
1151 		exit(36);
1152 	}
1153 }
1154 
1155 /*
1156  * check if a block is available
1157  */
1158 int
1159 isblock(struct fs *fs, unsigned char *cp, int h)
1160 {
1161 	unsigned char mask;
1162 
1163 	switch (fs->fs_fragshift) {
1164 	case 3:
1165 		return (cp[h] == 0xff);
1166 	case 2:
1167 		mask = 0x0f << ((h & 0x1) << 2);
1168 		return ((cp[h >> 1] & mask) == mask);
1169 	case 1:
1170 		mask = 0x03 << ((h & 0x3) << 1);
1171 		return ((cp[h >> 2] & mask) == mask);
1172 	case 0:
1173 		mask = 0x01 << (h & 0x7);
1174 		return ((cp[h >> 3] & mask) == mask);
1175 	default:
1176 #ifdef STANDALONE
1177 		printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1178 #else
1179 		fprintf(stderr, "isblock bad fs_fragshift %d\n",
1180 		    fs->fs_fragshift);
1181 #endif
1182 		return (0);
1183 	}
1184 }
1185 
1186 /*
1187  * take a block out of the map
1188  */
1189 void
1190 clrblock(struct fs *fs, unsigned char *cp, int h)
1191 {
1192 	switch ((fs)->fs_fragshift) {
1193 	case 3:
1194 		cp[h] = 0;
1195 		return;
1196 	case 2:
1197 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1198 		return;
1199 	case 1:
1200 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1201 		return;
1202 	case 0:
1203 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1204 		return;
1205 	default:
1206 #ifdef STANDALONE
1207 		printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1208 #else
1209 		fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1210 		    fs->fs_fragshift);
1211 #endif
1212 		return;
1213 	}
1214 }
1215 
1216 /*
1217  * put a block into the map
1218  */
1219 void
1220 setblock(struct fs *fs, unsigned char *cp, int h)
1221 {
1222 	switch (fs->fs_fragshift) {
1223 	case 3:
1224 		cp[h] = 0xff;
1225 		return;
1226 	case 2:
1227 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1228 		return;
1229 	case 1:
1230 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1231 		return;
1232 	case 0:
1233 		cp[h >> 3] |= (0x01 << (h & 0x7));
1234 		return;
1235 	default:
1236 #ifdef STANDALONE
1237 		printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1238 #else
1239 		fprintf(stderr, "setblock bad fs_fragshift %d\n",
1240 		    fs->fs_fragshift);
1241 #endif
1242 		return;
1243 	}
1244 }
1245 
1246 /* swap byte order of cylinder group */
1247 static void
1248 swap_cg(struct cg *o, struct cg *n)
1249 {
1250 	int i, btotsize, fbsize;
1251 	u_int32_t *n32, *o32;
1252 	u_int16_t *n16, *o16;
1253 
1254 	n->cg_firstfield = bswap32(o->cg_firstfield);
1255 	n->cg_magic = bswap32(o->cg_magic);
1256 	n->cg_time = bswap32(o->cg_time);
1257 	n->cg_cgx = bswap32(o->cg_cgx);
1258 	n->cg_ncyl = bswap16(o->cg_ncyl);
1259 	n->cg_niblk = bswap16(o->cg_niblk);
1260 	n->cg_ndblk = bswap32(o->cg_ndblk);
1261 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1262 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1263 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1264 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1265 	n->cg_rotor = bswap32(o->cg_rotor);
1266 	n->cg_frotor = bswap32(o->cg_frotor);
1267 	n->cg_irotor = bswap32(o->cg_irotor);
1268 	n->cg_btotoff = bswap32(o->cg_btotoff);
1269 	n->cg_boff = bswap32(o->cg_boff);
1270 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
1271 	n->cg_freeoff = bswap32(o->cg_freeoff);
1272 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1273 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1274 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
1275 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1276 	for (i=0; i < MAXFRAG; i++)
1277 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1278 
1279 	/* alays new format */
1280 	if (n->cg_magic == CG_MAGIC) {
1281 		btotsize = n->cg_boff - n->cg_btotoff;
1282 		fbsize = n->cg_iusedoff - n->cg_boff;
1283 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1284 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1285 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1286 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1287 	} else {
1288 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1289 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1290 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1291 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1292 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1293 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1294 	}
1295 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1296 		n32[i] = bswap32(o32[i]);
1297 
1298 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1299 		n16[i] = bswap16(o16[i]);
1300 
1301 	if (n->cg_magic == CG_MAGIC) {
1302 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1303 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1304 	} else {
1305 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1306 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1307 	}
1308 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1309 		n32[i] = bswap32(o32[i]);
1310 }
1311 
1312 /* copy a direntry to a buffer, in fs byte order */
1313 static void
1314 copy_dir(struct direct *dir, struct direct *dbuf)
1315 {
1316 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1317 	if (needswap) {
1318 		dbuf->d_ino = bswap32(dir->d_ino);
1319 		dbuf->d_reclen = bswap16(dir->d_reclen);
1320 		if (Oflag)
1321 			((struct odirect*)dbuf)->d_namlen =
1322 				bswap16(((struct odirect*)dir)->d_namlen);
1323 	}
1324 }
1325 
1326 /* Determine how many digits are needed to print a given integer */
1327 static int
1328 count_digits(int num)
1329 {
1330 	int ndig;
1331 
1332 	for(ndig = 1; num > 9; num /=10, ndig++);
1333 
1334 	return (ndig);
1335 }
1336 
1337 #ifdef MFS
1338 /*
1339  * XXX!
1340  * Attempt to guess how much more space is available for process data.  The
1341  * heuristic we use is
1342  *
1343  *	max_data_limit - (sbrk(0) - etext) - 128kB
1344  *
1345  * etext approximates that start address of the data segment, and the 128kB
1346  * allows some slop for both segment gap between text and data, and for other
1347  * (libc) malloc usage.
1348  */
1349 static void
1350 calc_memfree(void)
1351 {
1352 	extern char etext;
1353 	struct rlimit rlp;
1354 	u_long base;
1355 
1356 	base = (u_long)sbrk(0) - (u_long)&etext;
1357 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1358 		perror("getrlimit");
1359 	rlp.rlim_cur = rlp.rlim_max;
1360 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1361 		perror("setrlimit");
1362 	memleft = rlp.rlim_max - base - (128 * 1024);
1363 }
1364 
1365 /*
1366  * Internal version of malloc that trims the requested size if not enough
1367  * memory is available.
1368  */
1369 static void *
1370 mkfs_malloc(size_t size)
1371 {
1372 	u_long pgsz;
1373 
1374 	if (size == 0)
1375 		return (NULL);
1376 	if (memleft == 0)
1377 		calc_memfree();
1378 
1379 	pgsz = getpagesize() - 1;
1380 	size = (size + pgsz) &~ pgsz;
1381 	if (size > memleft)
1382 		size = memleft;
1383 	memleft -= size;
1384 	return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1385 	    -1, 0));
1386 }
1387 #endif	/* MFS */
1388