xref: /netbsd/sbin/newfs/mkfs.c (revision c4a72b64)
1 /*	$NetBSD: mkfs.c,v 1.65 2002/09/28 20:11:07 dbj Exp $	*/
2 
3 /*
4  * Copyright (c) 1980, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.65 2002/09/28 20:11:07 dbj Exp $");
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/param.h>
46 #include <sys/mman.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/ufs_bswap.h>
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 #include <sys/disklabel.h>
55 
56 #include <err.h>
57 #include <errno.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <stdlib.h>
61 
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #endif
65 
66 #include "extern.h"
67 
68 static void initcg(int, time_t);
69 static int fsinit(time_t, mode_t, uid_t, gid_t);
70 static int makedir(struct direct *, int);
71 static daddr_t alloc(int, int);
72 static void iput(struct dinode *, ino_t);
73 static void rdfs(daddr_t, int, void *);
74 static void wtfs(daddr_t, int, void *);
75 static int isblock(struct fs *, unsigned char *, int);
76 static void clrblock(struct fs *, unsigned char *, int);
77 static void setblock(struct fs *, unsigned char *, int);
78 static int32_t calcipg(int32_t, int32_t, off_t *);
79 static void swap_cg(struct cg *, struct cg *);
80 #ifdef MFS
81 static void calc_memfree(void);
82 static void *mkfs_malloc(size_t size);
83 #endif
84 
85 static int count_digits(int);
86 
87 /*
88  * make file system for cylinder-group style file systems
89  */
90 
91 /*
92  * We limit the size of the inode map to be no more than a
93  * third of the cylinder group space, since we must leave at
94  * least an equal amount of space for the block map.
95  *
96  * N.B.: MAXIPG must be a multiple of INOPB(fs).
97  */
98 #define	MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
99 
100 #define	UMASK		0755
101 #define	MAXINOPB	(MAXBSIZE / DINODE_SIZE)
102 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
103 
104 union {
105 	struct fs fs;
106 	char pad[SBSIZE];
107 } fsun;
108 #define	sblock	fsun.fs
109 struct	csum *fscs;
110 
111 union {
112 	struct cg cg;
113 	char pad[MAXBSIZE];
114 } cgun;
115 #define	acg	cgun.cg
116 
117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
118 
119 char writebuf[MAXBSIZE];
120 
121 int	fsi, fso;
122 
123 void
124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
125     mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
126 {
127 	int32_t i, mincpc, mincpg, inospercg;
128 	int32_t cylno, rpos, blk, j, warning = 0;
129 	int32_t used, mincpgcnt, bpcg;
130 	off_t usedb;
131 	int32_t mapcramped, inodecramped;
132 	int32_t postblsize, rotblsize, totalsbsize;
133 	time_t utime;
134 	long long sizepb;
135 	char *writebuf2;		/* dynamic buffer */
136 	int nprintcols, printcolwidth;
137 
138 #ifndef STANDALONE
139 	time(&utime);
140 #endif
141 #ifdef MFS
142 	if (mfs) {
143 		calc_memfree();
144 		if (fssize * sectorsize > memleft)
145 			fssize = memleft / sectorsize;
146 		if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
147 			exit(12);
148 	}
149 #endif
150 	fsi = fi;
151 	fso = fo;
152 	if (Oflag) {
153 		sblock.fs_inodefmt = FS_42INODEFMT;
154 		sblock.fs_maxsymlinklen = 0;
155 	} else {
156 		sblock.fs_inodefmt = FS_44INODEFMT;
157 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
158 	}
159 	/*
160 	 * Validate the given file system size.
161 	 * Verify that its last block can actually be accessed.
162 	 */
163 	if (fssize <= 0)
164 		printf("preposterous size %d\n", fssize), exit(13);
165 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
166 
167 	if (isappleufs) {
168 		struct appleufslabel appleufs;
169 		ffs_appleufs_set(&appleufs,appleufs_volname,utime);
170 		wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,APPLEUFS_LABEL_SIZE,&appleufs);
171 	}
172 
173 	/*
174 	 * collect and verify the sector and track info
175 	 */
176 	sblock.fs_nsect = nsectors;
177 	sblock.fs_ntrak = ntracks;
178 	if (sblock.fs_ntrak <= 0)
179 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
180 	if (sblock.fs_nsect <= 0)
181 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
182 	/*
183 	 * collect and verify the filesystem density info
184 	 */
185 	sblock.fs_avgfilesize = avgfilesize;
186 	sblock.fs_avgfpdir = avgfpdir;
187 	if (sblock.fs_avgfilesize <= 0)
188 		printf("illegal expected average file size %d\n",
189 		    sblock.fs_avgfilesize), exit(14);
190 	if (sblock.fs_avgfpdir <= 0)
191 		printf("illegal expected number of files per directory %d\n",
192 		    sblock.fs_avgfpdir), exit(15);
193 	/*
194 	 * collect and verify the block and fragment sizes
195 	 */
196 	sblock.fs_bsize = bsize;
197 	sblock.fs_fsize = fsize;
198 	if (!POWEROF2(sblock.fs_bsize)) {
199 		printf("block size must be a power of 2, not %d\n",
200 		    sblock.fs_bsize);
201 		exit(16);
202 	}
203 	if (!POWEROF2(sblock.fs_fsize)) {
204 		printf("fragment size must be a power of 2, not %d\n",
205 		    sblock.fs_fsize);
206 		exit(17);
207 	}
208 	if (sblock.fs_fsize < sectorsize) {
209 		printf("fragment size %d is too small, minimum is %d\n",
210 		    sblock.fs_fsize, sectorsize);
211 		exit(18);
212 	}
213 	if (sblock.fs_bsize < MINBSIZE) {
214 		printf("block size %d is too small, minimum is %d\n",
215 		    sblock.fs_bsize, MINBSIZE);
216 		exit(19);
217 	}
218 	if (sblock.fs_bsize > MAXBSIZE) {
219 		printf("block size %d is too large, maximum is %d\n",
220 		    sblock.fs_bsize, MAXBSIZE);
221 		exit(19);
222 	}
223 	if (sblock.fs_bsize < sblock.fs_fsize) {
224 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
225 		    sblock.fs_bsize, sblock.fs_fsize);
226 		exit(20);
227 	}
228 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
229 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
230 	sblock.fs_qbmask = ~sblock.fs_bmask;
231 	sblock.fs_qfmask = ~sblock.fs_fmask;
232 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
233 		sblock.fs_bshift++;
234 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
235 		sblock.fs_fshift++;
236 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
237 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
238 		sblock.fs_fragshift++;
239 	if (sblock.fs_frag > MAXFRAG) {
240 		printf("fragment size %d is too small, "
241 			"minimum with block size %d is %d\n",
242 		    sblock.fs_fsize, sblock.fs_bsize,
243 		    sblock.fs_bsize / MAXFRAG);
244 		exit(21);
245 	}
246 	sblock.fs_nrpos = nrpos;
247 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
248 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
249 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
250 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
251 		sblock.fs_fsbtodb++;
252 	sblock.fs_sblkno =
253 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
254 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
255 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
256 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
257 	sblock.fs_cgoffset = roundup(
258 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
259 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
260 		sblock.fs_cgmask <<= 1;
261 	if (!POWEROF2(sblock.fs_ntrak))
262 		sblock.fs_cgmask <<= 1;
263 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
264 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
265 		sizepb *= NINDIR(&sblock);
266 		sblock.fs_maxfilesize += sizepb;
267 	}
268 	/*
269 	 * Validate specified/determined secpercyl
270 	 * and calculate minimum cylinders per group.
271 	 */
272 	sblock.fs_spc = secpercyl;
273 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
274 	     sblock.fs_cpc > 1 && (i & 1) == 0;
275 	     sblock.fs_cpc >>= 1, i >>= 1)
276 		/* void */;
277 	mincpc = sblock.fs_cpc;
278 	bpcg = sblock.fs_spc * sectorsize;
279 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
280 	if (inospercg > MAXIPG(&sblock))
281 		inospercg = MAXIPG(&sblock);
282 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
283 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
284 	    sblock.fs_spc);
285 	mincpg = roundup(mincpgcnt, mincpc);
286 	/*
287 	 * Ensure that cylinder group with mincpg has enough space
288 	 * for block maps.
289 	 */
290 	sblock.fs_cpg = mincpg;
291 	sblock.fs_ipg = inospercg;
292 	if (maxcontig > 1)
293 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
294 	mapcramped = 0;
295 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
296 		mapcramped = 1;
297 		if (sblock.fs_bsize < MAXBSIZE) {
298 			sblock.fs_bsize <<= 1;
299 			if ((i & 1) == 0) {
300 				i >>= 1;
301 			} else {
302 				sblock.fs_cpc <<= 1;
303 				mincpc <<= 1;
304 				mincpg = roundup(mincpgcnt, mincpc);
305 				sblock.fs_cpg = mincpg;
306 			}
307 			sblock.fs_frag <<= 1;
308 			sblock.fs_fragshift += 1;
309 			if (sblock.fs_frag <= MAXFRAG)
310 				continue;
311 		}
312 		if (sblock.fs_fsize == sblock.fs_bsize) {
313 			printf("There is no block size that");
314 			printf(" can support this disk\n");
315 			exit(22);
316 		}
317 		sblock.fs_frag >>= 1;
318 		sblock.fs_fragshift -= 1;
319 		sblock.fs_fsize <<= 1;
320 		sblock.fs_nspf <<= 1;
321 	}
322 	/*
323 	 * Ensure that cylinder group with mincpg has enough space for inodes.
324 	 */
325 	inodecramped = 0;
326 	inospercg = calcipg(mincpg, bpcg, &usedb);
327 	sblock.fs_ipg = inospercg;
328 	while (inospercg > MAXIPG(&sblock)) {
329 		inodecramped = 1;
330 		if (mincpc == 1 || sblock.fs_frag == 1 ||
331 		    sblock.fs_bsize == MINBSIZE)
332 			break;
333 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
334 		       "minimum bytes per inode is",
335 		       (int)((mincpg * (off_t)bpcg - usedb)
336 			     / MAXIPG(&sblock) + 1));
337 		sblock.fs_bsize >>= 1;
338 		sblock.fs_frag >>= 1;
339 		sblock.fs_fragshift -= 1;
340 		mincpc >>= 1;
341 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
342 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
343 			sblock.fs_bsize <<= 1;
344 			break;
345 		}
346 		mincpg = sblock.fs_cpg;
347 		inospercg = calcipg(mincpg, bpcg, &usedb);
348 		sblock.fs_ipg = inospercg;
349 	}
350 	if (inodecramped) {
351 		if (inospercg > MAXIPG(&sblock)) {
352 			printf("Minimum bytes per inode is %d\n",
353 			       (int)((mincpg * (off_t)bpcg - usedb)
354 				     / MAXIPG(&sblock) + 1));
355 		} else if (!mapcramped) {
356 			printf("With %d bytes per inode, ", density);
357 			printf("minimum cylinders per group is %d\n", mincpg);
358 		}
359 	}
360 	if (mapcramped) {
361 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
362 		printf("minimum cylinders per group is %d\n", mincpg);
363 	}
364 	if (inodecramped || mapcramped) {
365 		if (sblock.fs_bsize != bsize)
366 			printf("%s to be changed from %d to %d\n",
367 			    "This requires the block size",
368 			    bsize, sblock.fs_bsize);
369 		if (sblock.fs_fsize != fsize)
370 			printf("\t%s to be changed from %d to %d\n",
371 			    "and the fragment size",
372 			    fsize, sblock.fs_fsize);
373 		exit(23);
374 	}
375 	/*
376 	 * Calculate the number of cylinders per group
377 	 */
378 	sblock.fs_cpg = cpg;
379 	if (sblock.fs_cpg % mincpc != 0) {
380 		printf("%s groups must have a multiple of %d cylinders\n",
381 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
382 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
383 		if (!cpgflg)
384 			cpg = sblock.fs_cpg;
385 	}
386 	/*
387 	 * Must ensure there is enough space for inodes.
388 	 */
389 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
390 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
391 		inodecramped = 1;
392 		sblock.fs_cpg -= mincpc;
393 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
394 	}
395 	/*
396 	 * Must ensure there is enough space to hold block map.
397 	 */
398 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
399 		mapcramped = 1;
400 		sblock.fs_cpg -= mincpc;
401 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
402 	}
403 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
404 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
405 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
406 		exit(24);
407 	}
408 	if (sblock.fs_cpg < mincpg) {
409 		printf("cylinder groups must have at least %d cylinders\n",
410 			mincpg);
411 		exit(25);
412 	} else if (sblock.fs_cpg != cpg && cpgflg) {
413 		if (!mapcramped && !inodecramped)
414 			exit(26);
415 		if (mapcramped && inodecramped)
416 			printf("Block size and bytes per inode restrict");
417 		else if (mapcramped)
418 			printf("Block size restricts");
419 		else
420 			printf("Bytes per inode restrict");
421 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
422 		exit(27);
423 	}
424 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
425 	/*
426 	 * Now have size for file system and nsect and ntrak.
427 	 * Determine number of cylinders and blocks in the file system.
428 	 */
429 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
430 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
431 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
432 		sblock.fs_ncyl++;
433 		warning = 1;
434 	}
435 	if (sblock.fs_ncyl < 1) {
436 		printf("file systems must have at least one cylinder\n");
437 		exit(28);
438 	}
439 	/*
440 	 * Determine feasability/values of rotational layout tables.
441 	 *
442 	 * The size of the rotational layout tables is limited by the
443 	 * size of the superblock, SBSIZE. The amount of space available
444 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
445 	 * The size of these tables is inversely proportional to the block
446 	 * size of the file system. The size increases if sectors per track
447 	 * are not powers of two, because more cylinders must be described
448 	 * by the tables before the rotational pattern repeats (fs_cpc).
449 	 */
450 	sblock.fs_interleave = interleave;
451 	sblock.fs_trackskew = trackskew;
452 	sblock.fs_npsect = nphyssectors;
453 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
454 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
455 	if (sblock.fs_ntrak == 1) {
456 		sblock.fs_cpc = 0;
457 		goto next;
458 	}
459 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
460 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
461 	totalsbsize = sizeof(struct fs) + rotblsize;
462 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
463 		/* use old static table space */
464 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
465 		    (char *)(&sblock.fs_firstfield);
466 		sblock.fs_rotbloff = &sblock.fs_space[0] -
467 		    (u_char *)(&sblock.fs_firstfield);
468 	} else {
469 		/* use dynamic table space */
470 		sblock.fs_postbloff = &sblock.fs_space[0] -
471 		    (u_char *)(&sblock.fs_firstfield);
472 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
473 		totalsbsize += postblsize;
474 	}
475 	if (totalsbsize > SBSIZE ||
476 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
477 		printf("%s %s %d %s %d.%s",
478 		    "Warning: insufficient space in super block for\n",
479 		    "rotational layout tables with nsect", sblock.fs_nsect,
480 		    "and ntrak", sblock.fs_ntrak,
481 		    "\nFile system performance may be impaired.\n");
482 		sblock.fs_cpc = 0;
483 		goto next;
484 	}
485 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
486 	/*
487 	 * calculate the available blocks for each rotational position
488 	 */
489 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
490 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
491 			fs_postbl(&sblock, cylno)[rpos] = -1;
492 	for (i = (rotblsize - 1) << sblock.fs_fragshift;
493 	     i >= 0; i -= sblock.fs_frag) {
494 		cylno = cbtocylno(&sblock, i);
495 		rpos = cbtorpos(&sblock, i);
496 		blk = fragstoblks(&sblock, i);
497 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
498 			fs_rotbl(&sblock)[blk] = 0;
499 		else
500 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
501 		fs_postbl(&sblock, cylno)[rpos] = blk;
502 	}
503 next:
504 	/*
505 	 * Compute/validate number of cylinder groups.
506 	 */
507 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
508 	if (sblock.fs_ncyl % sblock.fs_cpg)
509 		sblock.fs_ncg++;
510 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
511 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
512 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
513 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
514 		    cgdmin(&sblock, i) -
515 		    (cgbase(&sblock, i) >> sblock.fs_fragshift),
516 		    sblock.fs_fpg >> sblock.fs_fragshift);
517 		printf("number of cylinders per cylinder group (%d) %s.\n",
518 		    sblock.fs_cpg, "must be increased");
519 		exit(29);
520 	}
521 	j = sblock.fs_ncg - 1;
522 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
523 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
524 		if (j == 0) {
525 			printf("File system must have at least %d sectors\n",
526 			    NSPF(&sblock) *
527 			    (cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift)));
528 			exit(30);
529 		}
530 		printf("Warning: inode blocks/cyl group (%d) >= "
531 			"data blocks (%d) in last\n",
532 		    (cgdmin(&sblock, j) -
533 		     cgbase(&sblock, j)) >> sblock.fs_fragshift,
534 		    i >> sblock.fs_fragshift);
535 		printf("    cylinder group. This implies %d sector(s) "
536 			"cannot be allocated.\n",
537 		    i * NSPF(&sblock));
538 		sblock.fs_ncg--;
539 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
540 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
541 		    NSPF(&sblock);
542 		warning = 0;
543 	}
544 	if (warning && !mfs) {
545 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
546 		    sblock.fs_spc -
547 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
548 		    * sblock.fs_spc));
549 	}
550 	/*
551 	 * fill in remaining fields of the super block
552 	 */
553 	sblock.fs_csaddr = cgdmin(&sblock, 0);
554 	sblock.fs_cssize =
555 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
556 	/*
557 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
558 	 * longer used. However, we still initialise them so that the
559 	 * filesystem remains compatible with old kernels.
560 	 */
561 	i = sblock.fs_bsize / sizeof(struct csum);
562 	sblock.fs_csmask = ~(i - 1);
563 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
564 		sblock.fs_csshift++;
565 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
566 	if (fscs == NULL)
567 		exit(39);
568 	sblock.fs_magic = FS_MAGIC;
569 	sblock.fs_rotdelay = rotdelay;
570 	sblock.fs_minfree = minfree;
571 	sblock.fs_maxcontig = maxcontig;
572 	sblock.fs_maxbpg = maxbpg;
573 	sblock.fs_rps = rpm / 60;
574 	sblock.fs_optim = opt;
575 	sblock.fs_cgrotor = 0;
576 	sblock.fs_cstotal.cs_ndir = 0;
577 	sblock.fs_cstotal.cs_nbfree = 0;
578 	sblock.fs_cstotal.cs_nifree = 0;
579 	sblock.fs_cstotal.cs_nffree = 0;
580 	sblock.fs_fmod = 0;
581 	sblock.fs_clean = FS_ISCLEAN;
582 	sblock.fs_ronly = 0;
583 	/*
584 	 * Dump out summary information about file system.
585 	 */
586 	if (!mfs) {
587 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
588 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
589 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
590 #define	B2MBFACTOR (1 / (1024.0 * 1024.0))
591 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
592 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
593 		    sblock.fs_ncg, sblock.fs_cpg,
594 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
595 		    sblock.fs_ipg);
596 #undef B2MBFACTOR
597 	}
598 	/*
599 	 * Now determine how wide each column will be, and calculate how
600 	 * many columns will fit in a 76 char line. 76 is the width of the
601 	 * subwindows in sysinst.
602 	 */
603 	printcolwidth = count_digits(
604 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
605 	nprintcols = 76 / (printcolwidth + 2);
606 	/*
607 	 * Now build the cylinders group blocks and
608 	 * then print out indices of cylinder groups.
609 	 */
610 	if (!mfs)
611 		printf("super-block backups (for fsck -b #) at:");
612 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
613 		initcg(cylno, utime);
614 		if (mfs)
615 			continue;
616 		if (cylno % nprintcols == 0)
617 			printf("\n");
618 		printf(" %*d,", printcolwidth,
619 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
620 		fflush(stdout);
621 	}
622 	if (!mfs)
623 		printf("\n");
624 	if (Nflag && !mfs)
625 		exit(0);
626 	/*
627 	 * Now construct the initial file system,
628 	 * then write out the super-block.
629 	 */
630 	if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
631 		errx(1, "Error making filesystem");
632 	sblock.fs_time = utime;
633 	memcpy(writebuf, &sblock, sbsize);
634 	if (needswap)
635 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
636 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
637 	/*
638 	 * Write out the duplicate super blocks
639 	 */
640 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
641 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
642 		    sbsize, writebuf);
643 
644 	/*
645 	 * if we need to swap, create a buffer for the cylinder summaries
646 	 * to get swapped to.
647 	 */
648 	if (needswap) {
649 		if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
650 			exit(12);
651 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
652 	} else
653 		writebuf2 = (char *)fscs;
654 
655 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
656 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
657 			sblock.fs_cssize - i < sblock.fs_bsize ?
658 			    sblock.fs_cssize - i : sblock.fs_bsize,
659 			((char *)writebuf2) + i);
660 	if (writebuf2 != (char *)fscs)
661 		free(writebuf2);
662 
663 	/*
664 	 * Update information about this partion in pack
665 	 * label, to that it may be updated on disk.
666 	 */
667 	if (isappleufs)
668 		pp->p_fstype = FS_APPLEUFS;
669 	else
670 		pp->p_fstype = FS_BSDFFS;
671 	pp->p_fsize = sblock.fs_fsize;
672 	pp->p_frag = sblock.fs_frag;
673 	pp->p_cpg = sblock.fs_cpg;
674 }
675 
676 /*
677  * Initialize a cylinder group.
678  */
679 void
680 initcg(int cylno, time_t utime)
681 {
682 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
683 	int32_t i;
684 	struct csum *cs;
685 	int cn;
686 
687 	/*
688 	 * Determine block bounds for cylinder group.
689 	 * Allow space for super block summary information in first
690 	 * cylinder group.
691 	 */
692 	cbase = cgbase(&sblock, cylno);
693 	dmax = cbase + sblock.fs_fpg;
694 	if (dmax > sblock.fs_size)
695 		dmax = sblock.fs_size;
696 	dlower = cgsblock(&sblock, cylno) - cbase;
697 	dupper = cgdmin(&sblock, cylno) - cbase;
698 	if (cylno == 0)
699 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
700 	cs = fscs + cylno;
701 	memset(&acg, 0, sblock.fs_cgsize);
702 	acg.cg_time = utime;
703 	acg.cg_magic = CG_MAGIC;
704 	acg.cg_cgx = cylno;
705 	if (cylno == sblock.fs_ncg - 1)
706 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
707 	else
708 		acg.cg_ncyl = sblock.fs_cpg;
709 	acg.cg_niblk = sblock.fs_ipg;
710 	acg.cg_ndblk = dmax - cbase;
711 	if (sblock.fs_contigsumsize > 0)
712 		acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
713 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
714 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
715 	acg.cg_iusedoff = acg.cg_boff +
716 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
717 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
718 	if (sblock.fs_contigsumsize <= 0) {
719 		acg.cg_nextfreeoff = acg.cg_freeoff +
720 		   howmany(sblock.fs_fpg, NBBY);
721 	} else {
722 		acg.cg_clustersumoff = acg.cg_freeoff +
723 		    howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t);
724 		if (isappleufs) {
725 			/* Apple PR2216969 gives rationale for this change.
726 			 * I believe they were mistaken, but we need to
727 			 * duplicate it for compatibility.  -- dbj@netbsd.org
728 			 */
729 			acg.cg_clustersumoff += sizeof(int32_t);
730 		}
731 		acg.cg_clustersumoff =
732 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
733 		acg.cg_clusteroff = acg.cg_clustersumoff +
734 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
735 		acg.cg_nextfreeoff = acg.cg_clusteroff +
736 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
737 	}
738 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
739 		printf("Panic: cylinder group too big\n");
740 		exit(37);
741 	}
742 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
743 	if (cylno == 0)
744 		for (i = 0; i < ROOTINO; i++) {
745 			setbit(cg_inosused(&acg, 0), i);
746 			acg.cg_cs.cs_nifree--;
747 		}
748 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
749 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
750 		    sblock.fs_bsize, (char *)zino);
751 	if (cylno > 0) {
752 		/*
753 		 * In cylno 0, beginning space is reserved
754 		 * for boot and super blocks.
755 		 */
756 		for (d = 0, blkno = 0; d < dlower; ) {
757 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
758 			if (sblock.fs_contigsumsize > 0)
759 				setbit(cg_clustersfree(&acg, 0), blkno);
760 			acg.cg_cs.cs_nbfree++;
761 			cn = cbtocylno(&sblock, d);
762 			cg_blktot(&acg, 0)[cn]++;
763 			cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
764 			d += sblock.fs_frag;
765 			blkno++;
766 		}
767 		sblock.fs_dsize += dlower;
768 	}
769 	sblock.fs_dsize += acg.cg_ndblk - dupper;
770 	if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
771 		acg.cg_frsum[sblock.fs_frag - i]++;
772 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
773 			setbit(cg_blksfree(&acg, 0), dupper);
774 			acg.cg_cs.cs_nffree++;
775 		}
776 	}
777 	for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
778 	     d + sblock.fs_frag <= dmax - cbase; ) {
779 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
780 		if (sblock.fs_contigsumsize > 0)
781 			setbit(cg_clustersfree(&acg, 0), blkno);
782 		acg.cg_cs.cs_nbfree++;
783 		cn = cbtocylno(&sblock, d);
784 		cg_blktot(&acg, 0)[cn]++;
785 		cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
786 		d += sblock.fs_frag;
787 		blkno++;
788 	}
789 	if (d < dmax - cbase) {
790 		acg.cg_frsum[dmax - cbase - d]++;
791 		for (; d < dmax - cbase; d++) {
792 			setbit(cg_blksfree(&acg, 0), d);
793 			acg.cg_cs.cs_nffree++;
794 		}
795 	}
796 	if (sblock.fs_contigsumsize > 0) {
797 		int32_t *sump = cg_clustersum(&acg, 0);
798 		u_char *mapp = cg_clustersfree(&acg, 0);
799 		int map = *mapp++;
800 		int bit = 1;
801 		int run = 0;
802 
803 		for (i = 0; i < acg.cg_nclusterblks; i++) {
804 			if ((map & bit) != 0) {
805 				run++;
806 			} else if (run != 0) {
807 				if (run > sblock.fs_contigsumsize)
808 					run = sblock.fs_contigsumsize;
809 				sump[run]++;
810 				run = 0;
811 			}
812 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
813 				bit <<= 1;
814 			} else {
815 				map = *mapp++;
816 				bit = 1;
817 			}
818 		}
819 		if (run != 0) {
820 			if (run > sblock.fs_contigsumsize)
821 				run = sblock.fs_contigsumsize;
822 			sump[run]++;
823 		}
824 	}
825 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
826 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
827 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
828 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
829 	*cs = acg.cg_cs;
830 	memcpy(writebuf, &acg, sblock.fs_bsize);
831 	if (needswap)
832 		swap_cg(&acg, (struct cg*)writebuf);
833 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
834 		sblock.fs_bsize, writebuf);
835 }
836 
837 /*
838  * initialize the file system
839  */
840 struct dinode node;
841 
842 #ifdef LOSTDIR
843 #define	PREDEFDIR 3
844 #else
845 #define	PREDEFDIR 2
846 #endif
847 
848 struct direct root_dir[] = {
849 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
850 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
851 #ifdef LOSTDIR
852 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
853 #endif
854 };
855 struct odirect {
856 	u_int32_t d_ino;
857 	u_int16_t d_reclen;
858 	u_int16_t d_namlen;
859 	u_char	d_name[MAXNAMLEN + 1];
860 } oroot_dir[] = {
861 	{ ROOTINO, sizeof(struct direct), 1, "." },
862 	{ ROOTINO, sizeof(struct direct), 2, ".." },
863 #ifdef LOSTDIR
864 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
865 #endif
866 };
867 #ifdef LOSTDIR
868 struct direct lost_found_dir[] = {
869 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
870 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
871 	{ 0, DIRBLKSIZ, 0, 0, 0 },
872 };
873 struct odirect olost_found_dir[] = {
874 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
875 	{ ROOTINO, sizeof(struct direct), 2, ".." },
876 	{ 0, DIRBLKSIZ, 0, 0 },
877 };
878 #endif
879 char buf[MAXBSIZE];
880 static void copy_dir(struct direct *, struct direct *);
881 
882 int
883 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
884 {
885 #ifdef LOSTDIR
886 	int i;
887 	int dirblksiz = DIRBLKSIZ;
888 	if (isappleufs)
889 		dirblksiz = APPLEUFS_DIRBLKSIZ;
890 #endif
891 
892 	/*
893 	 * initialize the node
894 	 */
895 	memset(&node, 0, sizeof(node));
896 	node.di_atime = utime;
897 	node.di_mtime = utime;
898 	node.di_ctime = utime;
899 
900 #ifdef LOSTDIR
901 	/*
902 	 * create the lost+found directory
903 	 */
904 	if (Oflag) {
905 		(void)makedir((struct direct *)olost_found_dir, 2);
906 		for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
907 			copy_dir((struct direct*)&olost_found_dir[2],
908 				(struct direct*)&buf[i]);
909 	} else {
910 		(void)makedir(lost_found_dir, 2);
911 		for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
912 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
913 	}
914 	node.di_mode = IFDIR | UMASK;
915 	node.di_nlink = 2;
916 	node.di_size = sblock.fs_bsize;
917 	node.di_db[0] = alloc(node.di_size, node.di_mode);
918 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
919 	node.di_uid = geteuid();
920 	node.di_gid = getegid();
921 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
922 	iput(&node, LOSTFOUNDINO);
923 #endif
924 	/*
925 	 * create the root directory
926 	 */
927 	if (mfs) {
928 		node.di_mode = IFDIR | mfsmode;
929 		node.di_uid = mfsuid;
930 		node.di_gid = mfsgid;
931 	} else {
932 		node.di_mode = IFDIR | UMASK;
933 		node.di_uid = geteuid();
934 		node.di_gid = getegid();
935 	}
936 	node.di_nlink = PREDEFDIR;
937 	if (Oflag)
938 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
939 	else
940 		node.di_size = makedir(root_dir, PREDEFDIR);
941 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
942 	if (node.di_db[0] == 0)
943 		return (0);
944 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
945 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
946 	iput(&node, ROOTINO);
947 	return (1);
948 }
949 
950 /*
951  * construct a set of directory entries in "buf".
952  * return size of directory.
953  */
954 int
955 makedir(struct direct *protodir, int entries)
956 {
957 	char *cp;
958 	int i, spcleft;
959 	int dirblksiz = DIRBLKSIZ;
960 	if (isappleufs)
961 		dirblksiz = APPLEUFS_DIRBLKSIZ;
962 
963 	spcleft = dirblksiz;
964 	for (cp = buf, i = 0; i < entries - 1; i++) {
965 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
966 		copy_dir(&protodir[i], (struct direct*)cp);
967 		cp += protodir[i].d_reclen;
968 		spcleft -= protodir[i].d_reclen;
969 	}
970 	protodir[i].d_reclen = spcleft;
971 	copy_dir(&protodir[i], (struct direct*)cp);
972 	return (dirblksiz);
973 }
974 
975 /*
976  * allocate a block or frag
977  */
978 daddr_t
979 alloc(int size, int mode)
980 {
981 	int i, frag;
982 	daddr_t d, blkno;
983 
984 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
985 	/* fs -> host byte order */
986 	if (needswap)
987 		swap_cg(&acg, &acg);
988 	if (acg.cg_magic != CG_MAGIC) {
989 		printf("cg 0: bad magic number\n");
990 		return (0);
991 	}
992 	if (acg.cg_cs.cs_nbfree == 0) {
993 		printf("first cylinder group ran out of space\n");
994 		return (0);
995 	}
996 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
997 		if (isblock(&sblock, cg_blksfree(&acg, 0),
998 		    d >> sblock.fs_fragshift))
999 			goto goth;
1000 	printf("internal error: can't find block in cyl 0\n");
1001 	return (0);
1002 goth:
1003 	blkno = fragstoblks(&sblock, d);
1004 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
1005 	if (sblock.fs_contigsumsize > 0)
1006 		clrbit(cg_clustersfree(&acg, 0), blkno);
1007 	acg.cg_cs.cs_nbfree--;
1008 	sblock.fs_cstotal.cs_nbfree--;
1009 	fscs[0].cs_nbfree--;
1010 	if (mode & IFDIR) {
1011 		acg.cg_cs.cs_ndir++;
1012 		sblock.fs_cstotal.cs_ndir++;
1013 		fscs[0].cs_ndir++;
1014 	}
1015 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
1016 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
1017 	if (size != sblock.fs_bsize) {
1018 		frag = howmany(size, sblock.fs_fsize);
1019 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1020 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1021 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1022 		acg.cg_frsum[sblock.fs_frag - frag]++;
1023 		for (i = frag; i < sblock.fs_frag; i++)
1024 			setbit(cg_blksfree(&acg, 0), d + i);
1025 	}
1026 	/* host -> fs byte order */
1027 	if (needswap)
1028 		swap_cg(&acg, &acg);
1029 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1030 	    (char *)&acg);
1031 	return (d);
1032 }
1033 
1034 /*
1035  * Calculate number of inodes per group.
1036  */
1037 int32_t
1038 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
1039 {
1040 	int i;
1041 	int32_t ipg, new_ipg, ncg, ncyl;
1042 	off_t usedb;
1043 
1044 	/*
1045 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1046 	 * Note that fssize is still in sectors, not file system blocks.
1047 	 */
1048 	ncyl = howmany(fssize, secpercyl);
1049 	ncg = howmany(ncyl, cylpg);
1050 	/*
1051 	 * Iterate a few times to allow for ipg depending on itself.
1052 	 */
1053 	ipg = 0;
1054 	for (i = 0; i < 10; i++) {
1055 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1056 			* NSPF(&sblock) * (off_t)sectorsize;
1057 		new_ipg = (cylpg * (long long)bpcg - usedb) /
1058 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
1059 		if (new_ipg <= 0)
1060 			new_ipg = 1;		/* ensure ipg > 0 */
1061 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1062 		if (new_ipg == ipg)
1063 			break;
1064 		ipg = new_ipg;
1065 	}
1066 	*usedbp = usedb;
1067 	return (ipg);
1068 }
1069 
1070 /*
1071  * Allocate an inode on the disk
1072  */
1073 static void
1074 iput(struct dinode *ip, ino_t ino)
1075 {
1076 	struct dinode ibuf[MAXINOPB];
1077 	daddr_t d;
1078 	int c, i;
1079 
1080 	c = ino_to_cg(&sblock, ino);
1081 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1082 	/* fs -> host byte order */
1083 	if (needswap)
1084 		swap_cg(&acg, &acg);
1085 	if (acg.cg_magic != CG_MAGIC) {
1086 		printf("cg 0: bad magic number\n");
1087 		exit(31);
1088 	}
1089 	acg.cg_cs.cs_nifree--;
1090 	setbit(cg_inosused(&acg, 0), ino);
1091 	/* host -> fs byte order */
1092 	if (needswap)
1093 		swap_cg(&acg, &acg);
1094 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1095 	    (char *)&acg);
1096 	sblock.fs_cstotal.cs_nifree--;
1097 	fscs[0].cs_nifree--;
1098 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1099 		printf("fsinit: inode value out of range (%d).\n", ino);
1100 		exit(32);
1101 	}
1102 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1103 	rdfs(d, sblock.fs_bsize, ibuf);
1104 	if (needswap) {
1105 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1106 		/* ffs_dinode_swap() doesn't swap blocks addrs */
1107 		for (i=0; i<NDADDR + NIADDR; i++)
1108 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1109 				bswap32(ip->di_db[i]);
1110 	} else
1111 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1112 	wtfs(d, sblock.fs_bsize, ibuf);
1113 }
1114 
1115 /*
1116  * read a block from the file system
1117  */
1118 void
1119 rdfs(daddr_t bno, int size, void *bf)
1120 {
1121 	int n;
1122 	off_t offset;
1123 
1124 #ifdef MFS
1125 	if (mfs) {
1126 		memmove(bf, membase + bno * sectorsize, size);
1127 		return;
1128 	}
1129 #endif
1130 	offset = bno;
1131 	offset *= sectorsize;
1132 	if (lseek(fsi, offset, SEEK_SET) < 0) {
1133 		printf("rdfs: seek error for sector %d: %s\n",
1134 		    bno, strerror(errno));
1135 		exit(33);
1136 	}
1137 	n = read(fsi, bf, size);
1138 	if (n != size) {
1139 		printf("rdfs: read error for sector %d: %s\n",
1140 		    bno, strerror(errno));
1141 		exit(34);
1142 	}
1143 }
1144 
1145 /*
1146  * write a block to the file system
1147  */
1148 void
1149 wtfs(daddr_t bno, int size, void *bf)
1150 {
1151 	int n;
1152 	off_t offset;
1153 
1154 #ifdef MFS
1155 	if (mfs) {
1156 		memmove(membase + bno * sectorsize, bf, size);
1157 		return;
1158 	}
1159 #endif
1160 	if (Nflag)
1161 		return;
1162 	offset = bno;
1163 	offset *= sectorsize;
1164 	if (lseek(fso, offset, SEEK_SET) < 0) {
1165 		printf("wtfs: seek error for sector %d: %s\n",
1166 		    bno, strerror(errno));
1167 		exit(35);
1168 	}
1169 	n = write(fso, bf, size);
1170 	if (n != size) {
1171 		printf("wtfs: write error for sector %d: %s\n",
1172 		    bno, strerror(errno));
1173 		exit(36);
1174 	}
1175 }
1176 
1177 /*
1178  * check if a block is available
1179  */
1180 int
1181 isblock(struct fs *fs, unsigned char *cp, int h)
1182 {
1183 	unsigned char mask;
1184 
1185 	switch (fs->fs_fragshift) {
1186 	case 3:
1187 		return (cp[h] == 0xff);
1188 	case 2:
1189 		mask = 0x0f << ((h & 0x1) << 2);
1190 		return ((cp[h >> 1] & mask) == mask);
1191 	case 1:
1192 		mask = 0x03 << ((h & 0x3) << 1);
1193 		return ((cp[h >> 2] & mask) == mask);
1194 	case 0:
1195 		mask = 0x01 << (h & 0x7);
1196 		return ((cp[h >> 3] & mask) == mask);
1197 	default:
1198 #ifdef STANDALONE
1199 		printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1200 #else
1201 		fprintf(stderr, "isblock bad fs_fragshift %d\n",
1202 		    fs->fs_fragshift);
1203 #endif
1204 		return (0);
1205 	}
1206 }
1207 
1208 /*
1209  * take a block out of the map
1210  */
1211 void
1212 clrblock(struct fs *fs, unsigned char *cp, int h)
1213 {
1214 	switch ((fs)->fs_fragshift) {
1215 	case 3:
1216 		cp[h] = 0;
1217 		return;
1218 	case 2:
1219 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1220 		return;
1221 	case 1:
1222 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1223 		return;
1224 	case 0:
1225 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1226 		return;
1227 	default:
1228 #ifdef STANDALONE
1229 		printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1230 #else
1231 		fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1232 		    fs->fs_fragshift);
1233 #endif
1234 		return;
1235 	}
1236 }
1237 
1238 /*
1239  * put a block into the map
1240  */
1241 void
1242 setblock(struct fs *fs, unsigned char *cp, int h)
1243 {
1244 	switch (fs->fs_fragshift) {
1245 	case 3:
1246 		cp[h] = 0xff;
1247 		return;
1248 	case 2:
1249 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1250 		return;
1251 	case 1:
1252 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1253 		return;
1254 	case 0:
1255 		cp[h >> 3] |= (0x01 << (h & 0x7));
1256 		return;
1257 	default:
1258 #ifdef STANDALONE
1259 		printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1260 #else
1261 		fprintf(stderr, "setblock bad fs_fragshift %d\n",
1262 		    fs->fs_fragshift);
1263 #endif
1264 		return;
1265 	}
1266 }
1267 
1268 /* swap byte order of cylinder group */
1269 static void
1270 swap_cg(struct cg *o, struct cg *n)
1271 {
1272 	int i, btotsize, fbsize;
1273 	u_int32_t *n32, *o32;
1274 	u_int16_t *n16, *o16;
1275 
1276 	n->cg_firstfield = bswap32(o->cg_firstfield);
1277 	n->cg_magic = bswap32(o->cg_magic);
1278 	n->cg_time = bswap32(o->cg_time);
1279 	n->cg_cgx = bswap32(o->cg_cgx);
1280 	n->cg_ncyl = bswap16(o->cg_ncyl);
1281 	n->cg_niblk = bswap16(o->cg_niblk);
1282 	n->cg_ndblk = bswap32(o->cg_ndblk);
1283 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1284 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1285 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1286 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1287 	n->cg_rotor = bswap32(o->cg_rotor);
1288 	n->cg_frotor = bswap32(o->cg_frotor);
1289 	n->cg_irotor = bswap32(o->cg_irotor);
1290 	n->cg_btotoff = bswap32(o->cg_btotoff);
1291 	n->cg_boff = bswap32(o->cg_boff);
1292 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
1293 	n->cg_freeoff = bswap32(o->cg_freeoff);
1294 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1295 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1296 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
1297 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1298 	for (i=0; i < MAXFRAG; i++)
1299 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1300 
1301 	/* alays new format */
1302 	if (n->cg_magic == CG_MAGIC) {
1303 		btotsize = n->cg_boff - n->cg_btotoff;
1304 		fbsize = n->cg_iusedoff - n->cg_boff;
1305 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1306 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1307 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1308 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1309 	} else {
1310 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1311 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1312 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1313 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1314 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1315 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1316 	}
1317 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1318 		n32[i] = bswap32(o32[i]);
1319 
1320 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1321 		n16[i] = bswap16(o16[i]);
1322 
1323 	if (n->cg_magic == CG_MAGIC) {
1324 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1325 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1326 	} else {
1327 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1328 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1329 	}
1330 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1331 		n32[i] = bswap32(o32[i]);
1332 }
1333 
1334 /* copy a direntry to a buffer, in fs byte order */
1335 static void
1336 copy_dir(struct direct *dir, struct direct *dbuf)
1337 {
1338 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1339 	if (needswap) {
1340 		dbuf->d_ino = bswap32(dir->d_ino);
1341 		dbuf->d_reclen = bswap16(dir->d_reclen);
1342 		if (Oflag)
1343 			((struct odirect*)dbuf)->d_namlen =
1344 				bswap16(((struct odirect*)dir)->d_namlen);
1345 	}
1346 }
1347 
1348 /* Determine how many digits are needed to print a given integer */
1349 static int
1350 count_digits(int num)
1351 {
1352 	int ndig;
1353 
1354 	for(ndig = 1; num > 9; num /=10, ndig++);
1355 
1356 	return (ndig);
1357 }
1358 
1359 #ifdef MFS
1360 /*
1361  * XXX!
1362  * Attempt to guess how much more space is available for process data.  The
1363  * heuristic we use is
1364  *
1365  *	max_data_limit - (sbrk(0) - etext) - 128kB
1366  *
1367  * etext approximates that start address of the data segment, and the 128kB
1368  * allows some slop for both segment gap between text and data, and for other
1369  * (libc) malloc usage.
1370  */
1371 static void
1372 calc_memfree(void)
1373 {
1374 	extern char etext;
1375 	struct rlimit rlp;
1376 	u_long base;
1377 
1378 	base = (u_long)sbrk(0) - (u_long)&etext;
1379 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1380 		perror("getrlimit");
1381 	rlp.rlim_cur = rlp.rlim_max;
1382 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1383 		perror("setrlimit");
1384 	memleft = rlp.rlim_max - base - (128 * 1024);
1385 }
1386 
1387 /*
1388  * Internal version of malloc that trims the requested size if not enough
1389  * memory is available.
1390  */
1391 static void *
1392 mkfs_malloc(size_t size)
1393 {
1394 	u_long pgsz;
1395 
1396 	if (size == 0)
1397 		return (NULL);
1398 	if (memleft == 0)
1399 		calc_memfree();
1400 
1401 	pgsz = getpagesize() - 1;
1402 	size = (size + pgsz) &~ pgsz;
1403 	if (size > memleft)
1404 		size = memleft;
1405 	memleft -= size;
1406 	return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1407 	    -1, 0));
1408 }
1409 #endif	/* MFS */
1410