xref: /netbsd/sys/altq/altq_subr.c (revision c4a72b64)
1 /*	$NetBSD: altq_subr.c,v 1.9 2002/10/09 07:28:57 jdolecek Exp $	*/
2 /*	$KAME: altq_subr.c,v 1.11 2002/01/11 08:11:49 kjc Exp $	*/
3 
4 /*
5  * Copyright (C) 1997-2002
6  *	Sony Computer Science Laboratories Inc.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.9 2002/10/09 07:28:57 jdolecek Exp $");
32 
33 #if defined(__FreeBSD__) || defined(__NetBSD__)
34 #include "opt_altq.h"
35 #if (__FreeBSD__ != 2)
36 #include "opt_inet.h"
37 #ifdef __FreeBSD__
38 #include "opt_inet6.h"
39 #endif
40 #endif
41 #endif /* __FreeBSD__ || __NetBSD__ */
42 
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/kernel.h>
51 #include <sys/errno.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/queue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #endif
66 #include <netinet/tcp.h>
67 #include <netinet/udp.h>
68 
69 #include <altq/altq.h>
70 #include <altq/altq_conf.h>
71 
72 /* machine dependent clock related includes */
73 #ifdef __FreeBSD__
74 #include "opt_cpu.h"	/* for FreeBSD-2.2.8 to get i586_ctr_freq */
75 #include <machine/clock.h>
76 #endif
77 #if defined(__i386__)
78 #include <machine/specialreg.h>		/* for CPUID_TSC */
79 #ifdef __FreeBSD__
80 #include <machine/md_var.h>		/* for cpu_feature */
81 #elif defined(__NetBSD__) || defined(__OpenBSD__)
82 #include <machine/cpu.h>		/* for cpu_feature */
83 #endif
84 #endif /* __i386__ */
85 
86 /*
87  * internal function prototypes
88  */
89 static void	tbr_timeout __P((void *));
90 static int 	extract_ports4 __P((struct mbuf *, struct ip *,
91 				    struct flowinfo_in *));
92 #ifdef INET6
93 static int 	extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
94 				    struct flowinfo_in6 *));
95 #endif
96 static int	apply_filter4 __P((u_int32_t, struct flow_filter *,
97 				   struct flowinfo_in *));
98 static int	apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
99 				     struct flowinfo_in *));
100 #ifdef INET6
101 static int	apply_filter6 __P((u_int32_t, struct flow_filter6 *,
102 					   struct flowinfo_in6 *));
103 #endif
104 static int	apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
105 					     struct flowinfo_in *));
106 static u_long	get_filt_handle __P((struct acc_classifier *, int));
107 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
108 					      u_long));
109 static u_int32_t filt2fibmask __P((struct flow_filter *));
110 
111 static void 	ip4f_cache __P((struct ip *, struct flowinfo_in *));
112 static int 	ip4f_lookup __P((struct ip *, struct flowinfo_in *));
113 static int 	ip4f_init __P((void));
114 static struct ip4_frag	*ip4f_alloc __P((void));
115 static void 	ip4f_free __P((struct ip4_frag *));
116 
117 int (*altq_input) __P((struct mbuf *, int)) = NULL;
118 static int tbr_timer = 0;	/* token bucket regulator timer */
119 static struct callout tbr_callout = CALLOUT_INITIALIZER;
120 
121 /*
122  * alternate queueing support routines
123  */
124 
125 /* look up the queue state by the interface name and the queuing type. */
126 void *
127 altq_lookup(name, type)
128 	char *name;
129 	int type;
130 {
131 	struct ifnet *ifp;
132 
133 	if ((ifp = ifunit(name)) != NULL) {
134 		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
135 			return (ifp->if_snd.altq_disc);
136 	}
137 
138 	return NULL;
139 }
140 
141 int
142 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
143 	struct ifaltq *ifq;
144 	int type;
145 	void *discipline;
146 	int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
147 	struct mbuf *(*dequeue)(struct ifaltq *, int);
148 	int (*request)(struct ifaltq *, int, void *);
149 	void *clfier;
150 	void *(*classify)(void *, struct mbuf *, int);
151 {
152 	if (!ALTQ_IS_READY(ifq))
153 		return ENXIO;
154 	if (ALTQ_IS_ENABLED(ifq))
155 		return EBUSY;
156 	if (ALTQ_IS_ATTACHED(ifq))
157 		return EEXIST;
158 	ifq->altq_type     = type;
159 	ifq->altq_disc     = discipline;
160 	ifq->altq_enqueue  = enqueue;
161 	ifq->altq_dequeue  = dequeue;
162 	ifq->altq_request  = request;
163 	ifq->altq_clfier   = clfier;
164 	ifq->altq_classify = classify;
165 	ifq->altq_flags &= ALTQF_CANTCHANGE;
166 #ifdef ALTQ_KLD
167 	altq_module_incref(type);
168 #endif
169 	return 0;
170 }
171 
172 int
173 altq_detach(ifq)
174 	struct ifaltq *ifq;
175 {
176 	if (!ALTQ_IS_READY(ifq))
177 		return ENXIO;
178 	if (ALTQ_IS_ENABLED(ifq))
179 		return EBUSY;
180 	if (!ALTQ_IS_ATTACHED(ifq))
181 		return (0);
182 
183 #ifdef ALTQ_KLD
184 	altq_module_declref(ifq->altq_type);
185 #endif
186 	ifq->altq_type     = ALTQT_NONE;
187 	ifq->altq_disc     = NULL;
188 	ifq->altq_enqueue  = NULL;
189 	ifq->altq_dequeue  = NULL;
190 	ifq->altq_request  = NULL;
191 	ifq->altq_clfier   = NULL;
192 	ifq->altq_classify = NULL;
193 	ifq->altq_flags &= ALTQF_CANTCHANGE;
194 	return 0;
195 }
196 
197 int
198 altq_enable(ifq)
199 	struct ifaltq *ifq;
200 {
201 	int s;
202 
203 	if (!ALTQ_IS_READY(ifq))
204 		return ENXIO;
205 	if (ALTQ_IS_ENABLED(ifq))
206 		return 0;
207 
208 	s = splnet();
209 	IFQ_PURGE(ifq);
210 	ASSERT(ifq->ifq_len == 0);
211 	ifq->altq_flags |= ALTQF_ENABLED;
212 	if (ifq->altq_clfier != NULL)
213 		ifq->altq_flags |= ALTQF_CLASSIFY;
214 	splx(s);
215 
216 	return 0;
217 }
218 
219 int
220 altq_disable(ifq)
221 	struct ifaltq *ifq;
222 {
223 	int s;
224 
225 	if (!ALTQ_IS_ENABLED(ifq))
226 		return 0;
227 
228 	s = splnet();
229 	IFQ_PURGE(ifq);
230 	ASSERT(ifq->ifq_len == 0);
231 	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
232 	splx(s);
233 	return 0;
234 }
235 
236 void
237 altq_assert(file, line, failedexpr)
238 	const char *file, *failedexpr;
239 	int line;
240 {
241 	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
242 		     failedexpr, file, line);
243 	panic("altq assertion");
244 	/* NOTREACHED */
245 }
246 
247 /*
248  * internal representation of token bucket parameters
249  *	rate: 	byte_per_unittime << 32
250  *		(((bits_per_sec) / 8) << 32) / machclk_freq
251  *	depth:	byte << 32
252  *
253  */
254 #define	TBR_SHIFT	32
255 #define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
256 #define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
257 
258 struct mbuf *
259 tbr_dequeue(ifq, op)
260 	struct ifaltq *ifq;
261 	int op;
262 {
263 	struct tb_regulator *tbr;
264 	struct mbuf *m;
265 	int64_t interval;
266 	u_int64_t now;
267 
268 	tbr = ifq->altq_tbr;
269 	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
270 		/* if this is a remove after poll, bypass tbr check */
271 	} else {
272 		/* update token only when it is negative */
273 		if (tbr->tbr_token <= 0) {
274 			now = read_machclk();
275 			interval = now - tbr->tbr_last;
276 			if (interval >= tbr->tbr_filluptime)
277 				tbr->tbr_token = tbr->tbr_depth;
278 			else {
279 				tbr->tbr_token += interval * tbr->tbr_rate;
280 				if (tbr->tbr_token > tbr->tbr_depth)
281 					tbr->tbr_token = tbr->tbr_depth;
282 			}
283 			tbr->tbr_last = now;
284 		}
285 		/* if token is still negative, don't allow dequeue */
286 		if (tbr->tbr_token <= 0)
287 			return (NULL);
288 	}
289 
290 	if (ALTQ_IS_ENABLED(ifq))
291 		m = (*ifq->altq_dequeue)(ifq, op);
292 	else {
293 		if (op == ALTDQ_POLL)
294 			IF_POLL(ifq, m);
295 		else
296 			IF_DEQUEUE(ifq, m);
297 	}
298 
299 	if (m != NULL && op == ALTDQ_REMOVE)
300 		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
301 	tbr->tbr_lastop = op;
302 	return (m);
303 }
304 
305 /*
306  * set a token bucket regulator.
307  * if the specified rate is zero, the token bucket regulator is deleted.
308  */
309 int
310 tbr_set(ifq, profile)
311 	struct ifaltq *ifq;
312 	struct tb_profile *profile;
313 {
314 	struct tb_regulator *tbr, *otbr;
315 
316 	if (machclk_freq == 0)
317 		init_machclk();
318 	if (machclk_freq == 0) {
319 		printf("tbr_set: no cpu clock available!\n");
320 		return (ENXIO);
321 	}
322 
323 	if (profile->rate == 0) {
324 		/* delete this tbr */
325 		if ((tbr = ifq->altq_tbr) == NULL)
326 			return (ENOENT);
327 		ifq->altq_tbr = NULL;
328 		FREE(tbr, M_DEVBUF);
329 		return (0);
330 	}
331 
332 	MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator),
333 	       M_DEVBUF, M_WAITOK);
334 	if (tbr == NULL)
335 		return (ENOMEM);
336 	bzero(tbr, sizeof(struct tb_regulator));
337 
338 	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
339 	tbr->tbr_depth = TBR_SCALE(profile->depth);
340 	if (tbr->tbr_rate > 0)
341 		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
342 	else
343 		tbr->tbr_filluptime = 0xffffffffffffffffLL;
344 	tbr->tbr_token = tbr->tbr_depth;
345 	tbr->tbr_last = read_machclk();
346 	tbr->tbr_lastop = ALTDQ_REMOVE;
347 
348 	otbr = ifq->altq_tbr;
349 	ifq->altq_tbr = tbr;	/* set the new tbr */
350 
351 	if (otbr != NULL)
352 		FREE(otbr, M_DEVBUF);
353 	else {
354 		if (tbr_timer == 0) {
355 			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
356 			tbr_timer = 1;
357 		}
358 	}
359 	return (0);
360 }
361 
362 /*
363  * tbr_timeout goes through the interface list, and kicks the drivers
364  * if necessary.
365  */
366 static void
367 tbr_timeout(arg)
368 	void *arg;
369 {
370 	struct ifnet *ifp;
371 	int active, s;
372 
373 	active = 0;
374 	s = splnet();
375 #ifdef __FreeBSD__
376 #if (__FreeBSD_version < 300000)
377 	for (ifp = ifnet; ifp; ifp = ifp->if_next)
378 #else
379 	for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
380 #endif
381 #else /* !FreeBSD */
382 	for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
383 #endif
384 	{
385 		if (!TBR_IS_ENABLED(&ifp->if_snd))
386 			continue;
387 		active++;
388 		if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
389 			(*ifp->if_start)(ifp);
390 	}
391 	splx(s);
392 	if (active > 0)
393 		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
394 	else
395 		tbr_timer = 0;	/* don't need tbr_timer anymore */
396 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
397 	{
398 		/*
399 		 * XXX read out the machine dependent clock once a second
400 		 * to detect counter wrap-around.
401 		 */
402 		static u_int cnt;
403 
404 		if (++cnt >= hz) {
405 			(void)read_machclk();
406 			cnt = 0;
407 		}
408 	}
409 #endif /* __alpha__ && !ALTQ_NOPCC */
410 }
411 
412 /*
413  * get token bucket regulator profile
414  */
415 int
416 tbr_get(ifq, profile)
417 	struct ifaltq *ifq;
418 	struct tb_profile *profile;
419 {
420 	struct tb_regulator *tbr;
421 
422 	if ((tbr = ifq->altq_tbr) == NULL) {
423 		profile->rate = 0;
424 		profile->depth = 0;
425 	} else {
426 		profile->rate =
427 		    (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
428 		profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
429 	}
430 	return (0);
431 }
432 
433 
434 #ifndef IPPROTO_ESP
435 #define	IPPROTO_ESP	50		/* encapsulating security payload */
436 #endif
437 #ifndef IPPROTO_AH
438 #define	IPPROTO_AH	51		/* authentication header */
439 #endif
440 
441 /*
442  * extract flow information from a given packet.
443  * filt_mask shows flowinfo fields required.
444  * we assume the ip header is in one mbuf, and addresses and ports are
445  * in network byte order.
446  */
447 int
448 altq_extractflow(m, af, flow, filt_bmask)
449 	struct mbuf *m;
450 	int af;
451 	struct flowinfo *flow;
452 	u_int32_t	filt_bmask;
453 {
454 
455 	switch (af) {
456 	case PF_INET: {
457 		struct flowinfo_in *fin;
458 		struct ip *ip;
459 
460 		ip = mtod(m, struct ip *);
461 
462 		if (ip->ip_v != 4)
463 			break;
464 
465 		fin = (struct flowinfo_in *)flow;
466 		fin->fi_len = sizeof(struct flowinfo_in);
467 		fin->fi_family = AF_INET;
468 
469 		fin->fi_proto = ip->ip_p;
470 		fin->fi_tos = ip->ip_tos;
471 
472 		fin->fi_src.s_addr = ip->ip_src.s_addr;
473 		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
474 
475 		if (filt_bmask & FIMB4_PORTS)
476 			/* if port info is required, extract port numbers */
477 			extract_ports4(m, ip, fin);
478 		else {
479 			fin->fi_sport = 0;
480 			fin->fi_dport = 0;
481 			fin->fi_gpi = 0;
482 		}
483 		return (1);
484 	}
485 
486 #ifdef INET6
487 	case PF_INET6: {
488 		struct flowinfo_in6 *fin6;
489 		struct ip6_hdr *ip6;
490 
491 		ip6 = mtod(m, struct ip6_hdr *);
492 		/* should we check the ip version? */
493 
494 		fin6 = (struct flowinfo_in6 *)flow;
495 		fin6->fi6_len = sizeof(struct flowinfo_in6);
496 		fin6->fi6_family = AF_INET6;
497 
498 		fin6->fi6_proto = ip6->ip6_nxt;
499 		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
500 
501 		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
502 		fin6->fi6_src = ip6->ip6_src;
503 		fin6->fi6_dst = ip6->ip6_dst;
504 
505 		if ((filt_bmask & FIMB6_PORTS) ||
506 		    ((filt_bmask & FIMB6_PROTO)
507 		     && ip6->ip6_nxt > IPPROTO_IPV6))
508 			/*
509 			 * if port info is required, or proto is required
510 			 * but there are option headers, extract port
511 			 * and protocol numbers.
512 			 */
513 			extract_ports6(m, ip6, fin6);
514 		else {
515 			fin6->fi6_sport = 0;
516 			fin6->fi6_dport = 0;
517 			fin6->fi6_gpi = 0;
518 		}
519 		return (1);
520 	}
521 #endif /* INET6 */
522 
523 	default:
524 		break;
525 	}
526 
527 	/* failed */
528 	flow->fi_len = sizeof(struct flowinfo);
529 	flow->fi_family = AF_UNSPEC;
530 	return (0);
531 }
532 
533 /*
534  * helper routine to extract port numbers
535  */
536 /* structure for ipsec and ipv6 option header template */
537 struct _opt6 {
538 	u_int8_t	opt6_nxt;	/* next header */
539 	u_int8_t	opt6_hlen;	/* header extension length */
540 	u_int16_t	_pad;
541 	u_int32_t	ah_spi;		/* security parameter index
542 					   for authentication header */
543 };
544 
545 /*
546  * extract port numbers from a ipv4 packet.
547  */
548 static int
549 extract_ports4(m, ip, fin)
550 	struct mbuf *m;
551 	struct ip *ip;
552 	struct flowinfo_in *fin;
553 {
554 	struct mbuf *m0;
555 	u_short ip_off;
556 	u_int8_t proto;
557 	int 	off;
558 
559 	fin->fi_sport = 0;
560 	fin->fi_dport = 0;
561 	fin->fi_gpi = 0;
562 
563 	ip_off = ntohs(ip->ip_off);
564 	/* if it is a fragment, try cached fragment info */
565 	if (ip_off & IP_OFFMASK) {
566 		ip4f_lookup(ip, fin);
567 		return (1);
568 	}
569 
570 	/* locate the mbuf containing the protocol header */
571 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
572 		if (((caddr_t)ip >= m0->m_data) &&
573 		    ((caddr_t)ip < m0->m_data + m0->m_len))
574 			break;
575 	if (m0 == NULL) {
576 #ifdef ALTQ_DEBUG
577 		printf("extract_ports4: can't locate header! ip=%p\n", ip);
578 #endif
579 		return (0);
580 	}
581 	off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
582 	proto = ip->ip_p;
583 
584 #ifdef ALTQ_IPSEC
585  again:
586 #endif
587 	while (off >= m0->m_len) {
588 		off -= m0->m_len;
589 		m0 = m0->m_next;
590 		if (m0 == NULL)
591 			return (0);  /* bogus ip_hl! */
592 	}
593 	if (m0->m_len < off + 4)
594 		return (0);
595 
596 	switch (proto) {
597 	case IPPROTO_TCP:
598 	case IPPROTO_UDP: {
599 		struct udphdr *udp;
600 
601 		udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
602 		fin->fi_sport = udp->uh_sport;
603 		fin->fi_dport = udp->uh_dport;
604 		fin->fi_proto = proto;
605 		}
606 		break;
607 
608 #ifdef ALTQ_IPSEC
609 	case IPPROTO_ESP:
610 		if (fin->fi_gpi == 0){
611 			u_int32_t *gpi;
612 
613 			gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
614 			fin->fi_gpi   = *gpi;
615 		}
616 		fin->fi_proto = proto;
617 		break;
618 
619 	case IPPROTO_AH: {
620 			/* get next header and header length */
621 			struct _opt6 *opt6;
622 
623 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
624 			proto = opt6->opt6_nxt;
625 			off += 8 + (opt6->opt6_hlen * 4);
626 			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
627 				fin->fi_gpi = opt6->ah_spi;
628 		}
629 		/* goto the next header */
630 		goto again;
631 #endif  /* ALTQ_IPSEC */
632 
633 	default:
634 		fin->fi_proto = proto;
635 		return (0);
636 	}
637 
638 	/* if this is a first fragment, cache it. */
639 	if (ip_off & IP_MF)
640 		ip4f_cache(ip, fin);
641 
642 	return (1);
643 }
644 
645 #ifdef INET6
646 static int
647 extract_ports6(m, ip6, fin6)
648 	struct mbuf *m;
649 	struct ip6_hdr *ip6;
650 	struct flowinfo_in6 *fin6;
651 {
652 	struct mbuf *m0;
653 	int	off;
654 	u_int8_t proto;
655 
656 	fin6->fi6_gpi   = 0;
657 	fin6->fi6_sport = 0;
658 	fin6->fi6_dport = 0;
659 
660 	/* locate the mbuf containing the protocol header */
661 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
662 		if (((caddr_t)ip6 >= m0->m_data) &&
663 		    ((caddr_t)ip6 < m0->m_data + m0->m_len))
664 			break;
665 	if (m0 == NULL) {
666 #ifdef ALTQ_DEBUG
667 		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
668 #endif
669 		return (0);
670 	}
671 	off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
672 
673 	proto = ip6->ip6_nxt;
674 	do {
675 		while (off >= m0->m_len) {
676 			off -= m0->m_len;
677 			m0 = m0->m_next;
678 			if (m0 == NULL)
679 				return (0);
680 		}
681 		if (m0->m_len < off + 4)
682 			return (0);
683 
684 		switch (proto) {
685 		case IPPROTO_TCP:
686 		case IPPROTO_UDP: {
687 			struct udphdr *udp;
688 
689 			udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
690 			fin6->fi6_sport = udp->uh_sport;
691 			fin6->fi6_dport = udp->uh_dport;
692 			fin6->fi6_proto = proto;
693 			}
694 			return (1);
695 
696 		case IPPROTO_ESP:
697 			if (fin6->fi6_gpi == 0) {
698 				u_int32_t *gpi;
699 
700 				gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
701 				fin6->fi6_gpi   = *gpi;
702 			}
703 			fin6->fi6_proto = proto;
704 			return (1);
705 
706 		case IPPROTO_AH: {
707 			/* get next header and header length */
708 			struct _opt6 *opt6;
709 
710 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
711 			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
712 				fin6->fi6_gpi = opt6->ah_spi;
713 			proto = opt6->opt6_nxt;
714 			off += 8 + (opt6->opt6_hlen * 4);
715 			/* goto the next header */
716 			break;
717 			}
718 
719 		case IPPROTO_HOPOPTS:
720 		case IPPROTO_ROUTING:
721 		case IPPROTO_DSTOPTS: {
722 			/* get next header and header length */
723 			struct _opt6 *opt6;
724 
725 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
726 			proto = opt6->opt6_nxt;
727 			off += (opt6->opt6_hlen + 1) * 8;
728 			/* goto the next header */
729 			break;
730 			}
731 
732 		case IPPROTO_FRAGMENT:
733 			/* ipv6 fragmentations are not supported yet */
734 		default:
735 			fin6->fi6_proto = proto;
736 			return (0);
737 		}
738 	} while (1);
739 	/*NOTREACHED*/
740 }
741 #endif /* INET6 */
742 
743 /*
744  * altq common classifier
745  */
746 int
747 acc_add_filter(classifier, filter, class, phandle)
748 	struct acc_classifier *classifier;
749 	struct flow_filter *filter;
750 	void	*class;
751 	u_long	*phandle;
752 {
753 	struct acc_filter *afp, *prev, *tmp;
754 	int	i, s;
755 
756 #ifdef INET6
757 	if (filter->ff_flow.fi_family != AF_INET &&
758 	    filter->ff_flow.fi_family != AF_INET6)
759 		return (EINVAL);
760 #else
761 	if (filter->ff_flow.fi_family != AF_INET)
762 		return (EINVAL);
763 #endif
764 
765 	MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter),
766 	       M_DEVBUF, M_WAITOK);
767 	if (afp == NULL)
768 		return (ENOMEM);
769 	bzero(afp, sizeof(struct acc_filter));
770 
771 	afp->f_filter = *filter;
772 	afp->f_class = class;
773 
774 	i = ACC_WILDCARD_INDEX;
775 	if (filter->ff_flow.fi_family == AF_INET) {
776 		struct flow_filter *filter4 = &afp->f_filter;
777 
778 		/*
779 		 * if address is 0, it's a wildcard.  if address mask
780 		 * isn't set, use full mask.
781 		 */
782 		if (filter4->ff_flow.fi_dst.s_addr == 0)
783 			filter4->ff_mask.mask_dst.s_addr = 0;
784 		else if (filter4->ff_mask.mask_dst.s_addr == 0)
785 			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
786 		if (filter4->ff_flow.fi_src.s_addr == 0)
787 			filter4->ff_mask.mask_src.s_addr = 0;
788 		else if (filter4->ff_mask.mask_src.s_addr == 0)
789 			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
790 
791 		/* clear extra bits in addresses  */
792 		   filter4->ff_flow.fi_dst.s_addr &=
793 		       filter4->ff_mask.mask_dst.s_addr;
794 		   filter4->ff_flow.fi_src.s_addr &=
795 		       filter4->ff_mask.mask_src.s_addr;
796 
797 		/*
798 		 * if dst address is a wildcard, use hash-entry
799 		 * ACC_WILDCARD_INDEX.
800 		 */
801 		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
802 			i = ACC_WILDCARD_INDEX;
803 		else
804 			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
805 	}
806 #ifdef INET6
807 	else if (filter->ff_flow.fi_family == AF_INET6) {
808 		struct flow_filter6 *filter6 =
809 			(struct flow_filter6 *)&afp->f_filter;
810 #ifndef IN6MASK0 /* taken from kame ipv6 */
811 #define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
812 #define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
813 		const struct in6_addr in6mask0 = IN6MASK0;
814 		const struct in6_addr in6mask128 = IN6MASK128;
815 #endif
816 
817 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
818 			filter6->ff_mask6.mask6_dst = in6mask0;
819 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
820 			filter6->ff_mask6.mask6_dst = in6mask128;
821 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
822 			filter6->ff_mask6.mask6_src = in6mask0;
823 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
824 			filter6->ff_mask6.mask6_src = in6mask128;
825 
826 		/* clear extra bits in addresses  */
827 		for (i = 0; i < 16; i++)
828 			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
829 			    filter6->ff_mask6.mask6_dst.s6_addr[i];
830 		for (i = 0; i < 16; i++)
831 			filter6->ff_flow6.fi6_src.s6_addr[i] &=
832 			    filter6->ff_mask6.mask6_src.s6_addr[i];
833 
834 		if (filter6->ff_flow6.fi6_flowlabel == 0)
835 			i = ACC_WILDCARD_INDEX;
836 		else
837 			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
838 	}
839 #endif /* INET6 */
840 
841 	afp->f_handle = get_filt_handle(classifier, i);
842 
843 	/* update filter bitmask */
844 	afp->f_fbmask = filt2fibmask(filter);
845 	classifier->acc_fbmask |= afp->f_fbmask;
846 
847 	/*
848 	 * add this filter to the filter list.
849 	 * filters are ordered from the highest rule number.
850 	 */
851 	s = splnet();
852 	prev = NULL;
853 	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
854 		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
855 			prev = tmp;
856 		else
857 			break;
858 	}
859 	if (prev == NULL)
860 		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
861 	else
862 		LIST_INSERT_AFTER(prev, afp, f_chain);
863 	splx(s);
864 
865 	*phandle = afp->f_handle;
866 	return (0);
867 }
868 
869 int
870 acc_delete_filter(classifier, handle)
871 	struct acc_classifier *classifier;
872 	u_long handle;
873 {
874 	struct acc_filter *afp;
875 	int	s;
876 
877 	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
878 		return (EINVAL);
879 
880 	s = splnet();
881 	LIST_REMOVE(afp, f_chain);
882 	splx(s);
883 
884 	FREE(afp, M_DEVBUF);
885 
886 	/* todo: update filt_bmask */
887 
888 	return (0);
889 }
890 
891 /*
892  * delete filters referencing to the specified class.
893  * if the all flag is not 0, delete all the filters.
894  */
895 int
896 acc_discard_filters(classifier, class, all)
897 	struct acc_classifier *classifier;
898 	void	*class;
899 	int	all;
900 {
901 	struct acc_filter *afp;
902 	int	i, s;
903 
904 	s = splnet();
905 	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
906 		do {
907 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
908 				if (all || afp->f_class == class) {
909 					LIST_REMOVE(afp, f_chain);
910 					FREE(afp, M_DEVBUF);
911 					/* start again from the head */
912 					break;
913 				}
914 		} while (afp != NULL);
915 	}
916 	splx(s);
917 
918 	if (all)
919 		classifier->acc_fbmask = 0;
920 
921 	return (0);
922 }
923 
924 void *
925 acc_classify(clfier, m, af)
926 	void *clfier;
927 	struct mbuf *m;
928 	int af;
929 {
930 	struct acc_classifier *classifier;
931 	struct flowinfo flow;
932 	struct acc_filter *afp;
933 	int	i;
934 
935 	classifier = (struct acc_classifier *)clfier;
936 	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
937 
938 	if (flow.fi_family == AF_INET) {
939 		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
940 
941 		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
942 			/* only tos is used */
943 			LIST_FOREACH(afp,
944 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
945 				 f_chain)
946 				if (apply_tosfilter4(afp->f_fbmask,
947 						     &afp->f_filter, fp))
948 					/* filter matched */
949 					return (afp->f_class);
950 		} else if ((classifier->acc_fbmask &
951 			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
952 		    == 0) {
953 			/* only proto and ports are used */
954 			LIST_FOREACH(afp,
955 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
956 				 f_chain)
957 				if (apply_ppfilter4(afp->f_fbmask,
958 						    &afp->f_filter, fp))
959 					/* filter matched */
960 					return (afp->f_class);
961 		} else {
962 			/* get the filter hash entry from its dest address */
963 			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
964 			do {
965 				/*
966 				 * go through this loop twice.  first for dst
967 				 * hash, second for wildcards.
968 				 */
969 				LIST_FOREACH(afp, &classifier->acc_filters[i],
970 					     f_chain)
971 					if (apply_filter4(afp->f_fbmask,
972 							  &afp->f_filter, fp))
973 						/* filter matched */
974 						return (afp->f_class);
975 
976 				/*
977 				 * check again for filters with a dst addr
978 				 * wildcard.
979 				 * (daddr == 0 || dmask != 0xffffffff).
980 				 */
981 				if (i != ACC_WILDCARD_INDEX)
982 					i = ACC_WILDCARD_INDEX;
983 				else
984 					break;
985 			} while (1);
986 		}
987 	}
988 #ifdef INET6
989 	else if (flow.fi_family == AF_INET6) {
990 		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
991 
992 		/* get the filter hash entry from its flow ID */
993 		if (fp6->fi6_flowlabel != 0)
994 			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
995 		else
996 			/* flowlable can be zero */
997 			i = ACC_WILDCARD_INDEX;
998 
999 		/* go through this loop twice.  first for flow hash, second
1000 		   for wildcards. */
1001 		do {
1002 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1003 				if (apply_filter6(afp->f_fbmask,
1004 					(struct flow_filter6 *)&afp->f_filter,
1005 					fp6))
1006 					/* filter matched */
1007 					return (afp->f_class);
1008 
1009 			/*
1010 			 * check again for filters with a wildcard.
1011 			 */
1012 			if (i != ACC_WILDCARD_INDEX)
1013 				i = ACC_WILDCARD_INDEX;
1014 			else
1015 				break;
1016 		} while (1);
1017 	}
1018 #endif /* INET6 */
1019 
1020 	/* no filter matched */
1021 	return (NULL);
1022 }
1023 
1024 static int
1025 apply_filter4(fbmask, filt, pkt)
1026 	u_int32_t	fbmask;
1027 	struct flow_filter *filt;
1028 	struct flowinfo_in *pkt;
1029 {
1030 	if (filt->ff_flow.fi_family != AF_INET)
1031 		return (0);
1032 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1033 		return (0);
1034 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1035 		return (0);
1036 	if ((fbmask & FIMB4_DADDR) &&
1037 	    filt->ff_flow.fi_dst.s_addr !=
1038 	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1039 		return (0);
1040 	if ((fbmask & FIMB4_SADDR) &&
1041 	    filt->ff_flow.fi_src.s_addr !=
1042 	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1043 		return (0);
1044 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1045 		return (0);
1046 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1047 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1048 		return (0);
1049 	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1050 		return (0);
1051 	/* match */
1052 	return (1);
1053 }
1054 
1055 /*
1056  * filter matching function optimized for a common case that checks
1057  * only protocol and port numbers
1058  */
1059 static int
1060 apply_ppfilter4(fbmask, filt, pkt)
1061 	u_int32_t	fbmask;
1062 	struct flow_filter *filt;
1063 	struct flowinfo_in *pkt;
1064 {
1065 	if (filt->ff_flow.fi_family != AF_INET)
1066 		return (0);
1067 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1068 		return (0);
1069 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1070 		return (0);
1071 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1072 		return (0);
1073 	/* match */
1074 	return (1);
1075 }
1076 
1077 /*
1078  * filter matching function only for tos field.
1079  */
1080 static int
1081 apply_tosfilter4(fbmask, filt, pkt)
1082 	u_int32_t	fbmask;
1083 	struct flow_filter *filt;
1084 	struct flowinfo_in *pkt;
1085 {
1086 	if (filt->ff_flow.fi_family != AF_INET)
1087 		return (0);
1088 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1089 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1090 		return (0);
1091 	/* match */
1092 	return (1);
1093 }
1094 
1095 #ifdef INET6
1096 static int
1097 apply_filter6(fbmask, filt, pkt)
1098 	u_int32_t	fbmask;
1099 	struct flow_filter6 *filt;
1100 	struct flowinfo_in6 *pkt;
1101 {
1102 	int i;
1103 
1104 	if (filt->ff_flow6.fi6_family != AF_INET6)
1105 		return (0);
1106 	if ((fbmask & FIMB6_FLABEL) &&
1107 	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1108 		return (0);
1109 	if ((fbmask & FIMB6_PROTO) &&
1110 	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1111 		return (0);
1112 	if ((fbmask & FIMB6_SPORT) &&
1113 	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1114 		return (0);
1115 	if ((fbmask & FIMB6_DPORT) &&
1116 	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1117 		return (0);
1118 	if (fbmask & FIMB6_SADDR) {
1119 		for (i = 0; i < 4; i++)
1120 			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1121 			    (pkt->fi6_src.s6_addr32[i] &
1122 			     filt->ff_mask6.mask6_src.s6_addr32[i]))
1123 				return (0);
1124 	}
1125 	if (fbmask & FIMB6_DADDR) {
1126 		for (i = 0; i < 4; i++)
1127 			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1128 			    (pkt->fi6_dst.s6_addr32[i] &
1129 			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
1130 				return (0);
1131 	}
1132 	if ((fbmask & FIMB6_TCLASS) &&
1133 	    filt->ff_flow6.fi6_tclass !=
1134 	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1135 		return (0);
1136 	if ((fbmask & FIMB6_GPI) &&
1137 	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1138 		return (0);
1139 	/* match */
1140 	return (1);
1141 }
1142 #endif /* INET6 */
1143 
1144 /*
1145  *  filter handle:
1146  *	bit 20-28: index to the filter hash table
1147  *	bit  0-19: unique id in the hash bucket.
1148  */
1149 static u_long
1150 get_filt_handle(classifier, i)
1151 	struct acc_classifier *classifier;
1152 	int	i;
1153 {
1154 	static u_long handle_number = 1;
1155 	u_long 	handle;
1156 	struct acc_filter *afp;
1157 
1158 	while (1) {
1159 		handle = handle_number++ & 0x000fffff;
1160 
1161 		if (LIST_EMPTY(&classifier->acc_filters[i]))
1162 			break;
1163 
1164 		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1165 			if ((afp->f_handle & 0x000fffff) == handle)
1166 				break;
1167 		if (afp == NULL)
1168 			break;
1169 		/* this handle is already used, try again */
1170 	}
1171 
1172 	return ((i << 20) | handle);
1173 }
1174 
1175 /* convert filter handle to filter pointer */
1176 static struct acc_filter *
1177 filth_to_filtp(classifier, handle)
1178 	struct acc_classifier *classifier;
1179 	u_long handle;
1180 {
1181 	struct acc_filter *afp;
1182 	int	i;
1183 
1184 	i = ACC_GET_HINDEX(handle);
1185 
1186 	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1187 		if (afp->f_handle == handle)
1188 			return (afp);
1189 
1190 	return (NULL);
1191 }
1192 
1193 /* create flowinfo bitmask */
1194 static u_int32_t
1195 filt2fibmask(filt)
1196 	struct flow_filter *filt;
1197 {
1198 	u_int32_t mask = 0;
1199 #ifdef INET6
1200 	struct flow_filter6 *filt6;
1201 #endif
1202 
1203 	switch (filt->ff_flow.fi_family) {
1204 	case AF_INET:
1205 		if (filt->ff_flow.fi_proto != 0)
1206 			mask |= FIMB4_PROTO;
1207 		if (filt->ff_flow.fi_tos != 0)
1208 			mask |= FIMB4_TOS;
1209 		if (filt->ff_flow.fi_dst.s_addr != 0)
1210 			mask |= FIMB4_DADDR;
1211 		if (filt->ff_flow.fi_src.s_addr != 0)
1212 			mask |= FIMB4_SADDR;
1213 		if (filt->ff_flow.fi_sport != 0)
1214 			mask |= FIMB4_SPORT;
1215 		if (filt->ff_flow.fi_dport != 0)
1216 			mask |= FIMB4_DPORT;
1217 		if (filt->ff_flow.fi_gpi != 0)
1218 			mask |= FIMB4_GPI;
1219 		break;
1220 #ifdef INET6
1221 	case AF_INET6:
1222 		filt6 = (struct flow_filter6 *)filt;
1223 
1224 		if (filt6->ff_flow6.fi6_proto != 0)
1225 			mask |= FIMB6_PROTO;
1226 		if (filt6->ff_flow6.fi6_tclass != 0)
1227 			mask |= FIMB6_TCLASS;
1228 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1229 			mask |= FIMB6_DADDR;
1230 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1231 			mask |= FIMB6_SADDR;
1232 		if (filt6->ff_flow6.fi6_sport != 0)
1233 			mask |= FIMB6_SPORT;
1234 		if (filt6->ff_flow6.fi6_dport != 0)
1235 			mask |= FIMB6_DPORT;
1236 		if (filt6->ff_flow6.fi6_gpi != 0)
1237 			mask |= FIMB6_GPI;
1238 		if (filt6->ff_flow6.fi6_flowlabel != 0)
1239 			mask |= FIMB6_FLABEL;
1240 		break;
1241 #endif /* INET6 */
1242 	}
1243 	return (mask);
1244 }
1245 
1246 
1247 /*
1248  * helper functions to handle IPv4 fragments.
1249  * currently only in-sequence fragments are handled.
1250  *	- fragment info is cached in a LRU list.
1251  *	- when a first fragment is found, cache its flow info.
1252  *	- when a non-first fragment is found, lookup the cache.
1253  */
1254 
1255 struct ip4_frag {
1256     TAILQ_ENTRY(ip4_frag) ip4f_chain;
1257     char    ip4f_valid;
1258     u_short ip4f_id;
1259     struct flowinfo_in ip4f_info;
1260 };
1261 
1262 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1263 
1264 #define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
1265 
1266 
1267 static void
1268 ip4f_cache(ip, fin)
1269 	struct ip *ip;
1270 	struct flowinfo_in *fin;
1271 {
1272 	struct ip4_frag *fp;
1273 
1274 	if (TAILQ_EMPTY(&ip4f_list)) {
1275 		/* first time call, allocate fragment cache entries. */
1276 		if (ip4f_init() < 0)
1277 			/* allocation failed! */
1278 			return;
1279 	}
1280 
1281 	fp = ip4f_alloc();
1282 	fp->ip4f_id = ip->ip_id;
1283 	fp->ip4f_info.fi_proto = ip->ip_p;
1284 	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1285 	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1286 
1287 	/* save port numbers */
1288 	fp->ip4f_info.fi_sport = fin->fi_sport;
1289 	fp->ip4f_info.fi_dport = fin->fi_dport;
1290 	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
1291 }
1292 
1293 static int
1294 ip4f_lookup(ip, fin)
1295 	struct ip *ip;
1296 	struct flowinfo_in *fin;
1297 {
1298 	struct ip4_frag *fp;
1299 
1300 	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1301 	     fp = TAILQ_NEXT(fp, ip4f_chain))
1302 		if (ip->ip_id == fp->ip4f_id &&
1303 		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1304 		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1305 		    ip->ip_p == fp->ip4f_info.fi_proto) {
1306 
1307 			/* found the matching entry */
1308 			fin->fi_sport = fp->ip4f_info.fi_sport;
1309 			fin->fi_dport = fp->ip4f_info.fi_dport;
1310 			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
1311 
1312 			if ((ntohs(ip->ip_off) & IP_MF) == 0)
1313 				/* this is the last fragment,
1314 				   release the entry. */
1315 				ip4f_free(fp);
1316 
1317 			return (1);
1318 		}
1319 
1320 	/* no matching entry found */
1321 	return (0);
1322 }
1323 
1324 static int
1325 ip4f_init(void)
1326 {
1327 	struct ip4_frag *fp;
1328 	int i;
1329 
1330 	TAILQ_INIT(&ip4f_list);
1331 	for (i=0; i<IP4F_TABSIZE; i++) {
1332 		MALLOC(fp, struct ip4_frag *, sizeof(struct ip4_frag),
1333 		       M_DEVBUF, M_NOWAIT);
1334 		if (fp == NULL) {
1335 			printf("ip4f_init: can't alloc %dth entry!\n", i);
1336 			if (i == 0)
1337 				return (-1);
1338 			return (0);
1339 		}
1340 		fp->ip4f_valid = 0;
1341 		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1342 	}
1343 	return (0);
1344 }
1345 
1346 static struct ip4_frag *
1347 ip4f_alloc(void)
1348 {
1349 	struct ip4_frag *fp;
1350 
1351 	/* reclaim an entry at the tail, put it at the head */
1352 	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1353 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1354 	fp->ip4f_valid = 1;
1355 	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1356 	return (fp);
1357 }
1358 
1359 static void
1360 ip4f_free(fp)
1361 	struct ip4_frag *fp;
1362 {
1363 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1364 	fp->ip4f_valid = 0;
1365 	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1366 }
1367 
1368 /*
1369  * read and write diffserv field in IPv4 or IPv6 header
1370  */
1371 u_int8_t
1372 read_dsfield(m, pktattr)
1373 	struct mbuf *m;
1374 	struct altq_pktattr *pktattr;
1375 {
1376 	struct mbuf *m0;
1377 	u_int8_t ds_field = 0;
1378 
1379 	if (pktattr == NULL ||
1380 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1381 		return ((u_int8_t)0);
1382 
1383 	/* verify that pattr_hdr is within the mbuf data */
1384 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1385 		if ((pktattr->pattr_hdr >= m0->m_data) &&
1386 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1387 			break;
1388 	if (m0 == NULL) {
1389 		/* ick, pattr_hdr is stale */
1390 		pktattr->pattr_af = AF_UNSPEC;
1391 #ifdef ALTQ_DEBUG
1392 		printf("read_dsfield: can't locate header!\n");
1393 #endif
1394 		return ((u_int8_t)0);
1395 	}
1396 
1397 	if (pktattr->pattr_af == AF_INET) {
1398 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1399 
1400 		if (ip->ip_v != 4)
1401 			return ((u_int8_t)0);	/* version mismatch! */
1402 		ds_field = ip->ip_tos;
1403 	}
1404 #ifdef INET6
1405 	else if (pktattr->pattr_af == AF_INET6) {
1406 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1407 		u_int32_t flowlabel;
1408 
1409 		flowlabel = ntohl(ip6->ip6_flow);
1410 		if ((flowlabel >> 28) != 6)
1411 			return ((u_int8_t)0);	/* version mismatch! */
1412 		ds_field = (flowlabel >> 20) & 0xff;
1413 	}
1414 #endif
1415 	return (ds_field);
1416 }
1417 
1418 void
1419 write_dsfield(m, pktattr, dsfield)
1420 	struct mbuf *m;
1421 	struct altq_pktattr *pktattr;
1422 	u_int8_t dsfield;
1423 {
1424 	struct mbuf *m0;
1425 
1426 	if (pktattr == NULL ||
1427 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1428 		return;
1429 
1430 	/* verify that pattr_hdr is within the mbuf data */
1431 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1432 		if ((pktattr->pattr_hdr >= m0->m_data) &&
1433 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1434 			break;
1435 	if (m0 == NULL) {
1436 		/* ick, pattr_hdr is stale */
1437 		pktattr->pattr_af = AF_UNSPEC;
1438 #ifdef ALTQ_DEBUG
1439 		printf("write_dsfield: can't locate header!\n");
1440 #endif
1441 		return;
1442 	}
1443 
1444 	if (pktattr->pattr_af == AF_INET) {
1445 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1446 		u_int8_t old;
1447 		int32_t sum;
1448 
1449 		if (ip->ip_v != 4)
1450 			return;		/* version mismatch! */
1451 		old = ip->ip_tos;
1452 		dsfield |= old & 3;	/* leave CU bits */
1453 		if (old == dsfield)
1454 			return;
1455 		ip->ip_tos = dsfield;
1456 		/*
1457 		 * update checksum (from RFC1624)
1458 		 *	   HC' = ~(~HC + ~m + m')
1459 		 */
1460 		sum = ~ntohs(ip->ip_sum) & 0xffff;
1461 		sum += 0xff00 + (~old & 0xff) + dsfield;
1462 		sum = (sum >> 16) + (sum & 0xffff);
1463 		sum += (sum >> 16);  /* add carry */
1464 
1465 		ip->ip_sum = htons(~sum & 0xffff);
1466 	}
1467 #ifdef INET6
1468 	else if (pktattr->pattr_af == AF_INET6) {
1469 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1470 		u_int32_t flowlabel;
1471 
1472 		flowlabel = ntohl(ip6->ip6_flow);
1473 		if ((flowlabel >> 28) != 6)
1474 			return;		/* version mismatch! */
1475 		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
1476 		ip6->ip6_flow = htonl(flowlabel);
1477 	}
1478 #endif
1479 	return;
1480 }
1481 
1482 
1483 /*
1484  * high resolution clock support taking advantage of a machine dependent
1485  * high resolution time counter (e.g., timestamp counter of intel pentium).
1486  * we assume
1487  *  - 64-bit-long monotonically-increasing counter
1488  *  - frequency range is 100M-4GHz (CPU speed)
1489  */
1490 u_int32_t machclk_freq = 0;
1491 u_int32_t machclk_per_tick = 0;
1492 
1493 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
1494 
1495 #if defined(__FreeBSD__) && defined(SMP)
1496 #error SMP system!  use ALTQ_NOPCC option.
1497 #endif
1498 
1499 #ifdef __alpha__
1500 #ifdef __FreeBSD__
1501 extern u_int32_t cycles_per_sec;	/* alpha cpu clock frequency */
1502 #elif defined(__NetBSD__) || defined(__OpenBSD__)
1503 extern u_int64_t cycles_per_usec;	/* alpha cpu clock frequency */
1504 #endif
1505 #endif /* __alpha__ */
1506 
1507 void
1508 init_machclk(void)
1509 {
1510 	/* sanity check */
1511 #ifdef __i386__
1512 	/* check if TSC is available */
1513 	if ((cpu_feature & CPUID_TSC) == 0) {
1514 		printf("altq: TSC isn't available! use ALTQ_NOPCC option.\n");
1515 		return;
1516 	}
1517 #endif
1518 
1519 	/*
1520 	 * if the clock frequency (of Pentium TSC or Alpha PCC) is
1521 	 * accessible, just use it.
1522 	 */
1523 #ifdef __i386__
1524 #ifdef __FreeBSD__
1525 #if (__FreeBSD_version > 300000)
1526 	machclk_freq = tsc_freq;
1527 #else
1528 	machclk_freq = i586_ctr_freq;
1529 #endif
1530 #elif defined(__NetBSD__)
1531 	machclk_freq = (u_int32_t)curcpu()->ci_tsc_freq;
1532 #elif defined(__OpenBSD__)
1533 	machclk_freq = pentium_mhz * 1000000;
1534 #endif
1535 #elif defined(__alpha__)
1536 #ifdef __FreeBSD__
1537 	machclk_freq = cycles_per_sec;
1538 #elif defined(__NetBSD__) || defined(__OpenBSD__)
1539 	machclk_freq = (u_int32_t)(cycles_per_usec * 1000000);
1540 #endif
1541 #endif /* __alpha__ */
1542 
1543 	/*
1544 	 * if we don't know the clock frequency, measure it.
1545 	 */
1546 	if (machclk_freq == 0) {
1547 		static int	wait;
1548 		struct timeval	tv_start, tv_end;
1549 		u_int64_t	start, end, diff;
1550 		int		timo;
1551 
1552 		microtime(&tv_start);
1553 		start = read_machclk();
1554 		timo = hz;	/* 1 sec */
1555 		(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
1556 		microtime(&tv_end);
1557 		end = read_machclk();
1558 		diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
1559 		    + tv_end.tv_usec - tv_start.tv_usec;
1560 		if (diff != 0)
1561 			machclk_freq = (u_int)((end - start) * 1000000 / diff);
1562 	}
1563 
1564 	machclk_per_tick = machclk_freq / hz;
1565 
1566 #ifdef ALTQ_DEBUG
1567 	printf("altq: CPU clock: %uHz\n", machclk_freq);
1568 #endif
1569 }
1570 
1571 #ifdef __alpha__
1572 /*
1573  * make a 64bit counter value out of the 32bit alpha processor cycle counter.
1574  * read_machclk must be called within a half of its wrap-around cycle
1575  * (about 5 sec for 400MHz cpu) to properly detect a counter wrap-around.
1576  * tbr_timeout calls read_machclk once a second.
1577  */
1578 u_int64_t
1579 read_machclk(void)
1580 {
1581 	static u_int32_t last_pcc, upper;
1582 	u_int32_t pcc;
1583 
1584 	pcc = (u_int32_t)alpha_rpcc();
1585 	if (pcc <= last_pcc)
1586 		upper++;
1587 	last_pcc = pcc;
1588 	return (((u_int64_t)upper << 32) + pcc);
1589 }
1590 #endif /* __alpha__ */
1591 #else /* !i386  && !alpha */
1592 /* use microtime() for now */
1593 void
1594 init_machclk(void)
1595 {
1596 	machclk_freq = 1000000 << MACHCLK_SHIFT;
1597 	machclk_per_tick = machclk_freq / hz;
1598 	printf("altq: emulate %uHz cpu clock\n", machclk_freq);
1599 }
1600 #endif /* !i386 && !alpha */
1601