1 /*	$NetBSD: eb7500atx_machdep.c,v 1.19 2009/12/28 03:22:19 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 2000-2002 Reinoud Zandijk.
5  * Copyright (c) 1994-1998 Mark Brinicombe.
6  * Copyright (c) 1994 Brini.
7  * All rights reserved.
8  *
9  * This code is derived from software written for Brini by Mark Brinicombe
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by Brini.
22  * 4. The name of the company nor the name of the author may be used to
23  *    endorse or promote products derived from this software without specific
24  *    prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * RiscBSD kernel project
39  *
40  * machdep.c
41  *
42  * Machine dependant functions for kernel setup
43  *
44  * This file still needs a lot of work
45  *
46  * Created      : 17/09/94
47  * Updated for yet another new bootloader 28/12/02
48  */
49 
50 #include "opt_ddb.h"
51 #include "opt_modular.h"
52 #include "opt_pmap_debug.h"
53 #include "vidcvideo.h"
54 #include "pckbc.h"
55 
56 #include <sys/param.h>
57 
58 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.19 2009/12/28 03:22:19 uebayasi Exp $");
59 
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/reboot.h>
63 #include <sys/proc.h>
64 #include <sys/msgbuf.h>
65 #include <sys/exec.h>
66 #include <sys/exec_aout.h>
67 #include <sys/ksyms.h>
68 
69 #include <dev/cons.h>
70 
71 #include <machine/db_machdep.h>
72 #include <ddb/db_sym.h>
73 #include <ddb/db_extern.h>
74 
75 #include <uvm/uvm.h>
76 
77 #include <machine/signal.h>
78 #include <machine/frame.h>
79 #include <machine/bootconfig.h>
80 #include <machine/cpu.h>
81 #include <machine/io.h>
82 #include <machine/intr.h>
83 #include <arm/cpuconf.h>
84 #include <arm/arm32/katelib.h>
85 #include <arm/arm32/machdep.h>
86 #include <arm/undefined.h>
87 #include <machine/rtc.h>
88 #include <machine/bus.h>
89 
90 #include <arm/iomd/vidc.h>
91 #include <arm/iomd/iomdreg.h>
92 #include <arm/iomd/iomdvar.h>
93 
94 #include <arm/iomd/vidcvideo.h>
95 
96 #include <sys/device.h>
97 #include <dev/ic/pckbcvar.h>
98 
99 #include <dev/i2c/i2cvar.h>
100 #include <dev/i2c/pcf8583var.h>
101 #include <arm/iomd/iomdiicvar.h>
102 
103 /* static i2c_tag_t acorn32_i2c_tag;*/
104 
105 #include "ksyms.h"
106 
107 /* Kernel text starts at the base of the kernel address space. */
108 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00000000)
109 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
110 
111 /*
112  * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
113  * Fixed mappings exist from 0xf6000000 - 0xffffffff
114  */
115 #define	KERNEL_VM_SIZE		0x05000000
116 
117 /*
118  * Address to call from cpu_reset() to reset the machine.
119  * This is machine architecture dependant as it varies depending
120  * on where the ROM appears when you turn the MMU off.
121  */
122 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
123 
124 #define VERBOSE_INIT_ARM
125 
126 
127 /* Define various stack sizes in pages */
128 #define IRQ_STACK_SIZE	1
129 #define ABT_STACK_SIZE	1
130 #define UND_STACK_SIZE	1
131 
132 
133 struct bootconfig bootconfig;	/* Boot config storage */
134 videomemory_t videomemory;	/* Video memory descriptor */
135 
136 char *boot_args = NULL;		/* holds the pre-processed boot arguments */
137 extern char *booted_kernel;	/* used for ioctl to retrieve booted kernel */
138 
139 extern int       *vidc_base;
140 extern u_int32_t  iomd_base;
141 extern struct bus_space iomd_bs_tag;
142 
143 paddr_t physical_start;
144 paddr_t physical_freestart;
145 paddr_t physical_freeend;
146 paddr_t physical_end;
147 paddr_t dma_range_begin;
148 paddr_t dma_range_end;
149 
150 u_int free_pages;
151 paddr_t memoryblock_end;
152 
153 #ifndef PMAP_STATIC_L1S
154 int max_processes = 64;		/* Default number */
155 #endif	/* !PMAP_STATIC_L1S */
156 
157 u_int videodram_size = 0;	/* Amount of DRAM to reserve for video */
158 
159 /* Physical and virtual addresses for some global pages */
160 pv_addr_t systempage;
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
165 
166 paddr_t msgbufphys;
167 
168 extern u_int data_abort_handler_address;
169 extern u_int prefetch_abort_handler_address;
170 extern u_int undefined_handler_address;
171 
172 #ifdef PMAP_DEBUG
173 extern int pmap_debug_level;
174 #endif	/* PMAP_DEBUG */
175 
176 #define	KERNEL_PT_VMEM		0 /* Page table for mapping video memory */
177 #define	KERNEL_PT_SYS		1 /* Page table for mapping proc0 zero page */
178 #define	KERNEL_PT_KERNEL	2 /* Page table for mapping kernel */
179 #define	KERNEL_PT_VMDATA	3 /* Page tables for mapping kernel VM */
180 #define	KERNEL_PT_VMDATA_NUM	4 /* start with 16MB of KVM */
181 #define	NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
182 
183 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
184 
185 
186 #ifdef CPU_SA110
187 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
188 static vaddr_t sa110_cc_base;
189 #endif	/* CPU_SA110 */
190 
191 /* Prototypes */
192 void physcon_display_base(u_int);
193 extern void consinit(void);
194 
195 void data_abort_handler(trapframe_t *);
196 void prefetch_abort_handler(trapframe_t *);
197 void undefinedinstruction_bounce(trapframe_t *frame);
198 
199 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
200 static void process_kernel_args(void);
201 
202 extern void dump_spl_masks(void);
203 
204 void rpc_sa110_cc_setup(void);
205 
206 void parse_rpc_bootargs(char *args);
207 
208 extern void dumpsys(void);
209 
210 
211 #	define console_flush()		/* empty */
212 
213 
214 #define panic2(a) do {							\
215 	memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024);	\
216 	consinit();							\
217 	panic a;							\
218 } while (/* CONSTCOND */ 0)
219 
220 /*
221  * void cpu_reboot(int howto, char *bootstr)
222  *
223  * Reboots the system
224  *
225  * Deal with any syncing, unmounting, dumping and shutdown hooks,
226  * then reset the CPU.
227  */
228 
229 /* NOTE: These variables will be removed, well some of them */
230 
231 extern u_int current_mask;
232 
233 void
234 cpu_reboot(int howto, char *bootstr)
235 {
236 
237 #ifdef DIAGNOSTIC
238 	printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
239 
240 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
241 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
242 	    irqmasks[IPL_VM]);
243 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
244 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
245 
246 	/* dump_spl_masks(); */
247 #endif	/* DIAGNOSTIC */
248 
249 	/*
250 	 * If we are still cold then hit the air brakes
251 	 * and crash to earth fast
252 	 */
253 	if (cold) {
254 		doshutdownhooks();
255 		pmf_system_shutdown(boothowto);
256 		printf("Halted while still in the ICE age.\n");
257 		printf("The operating system has halted.\n");
258 		printf("Please press any key to reboot.\n\n");
259 		cngetc();
260 		printf("rebooting...\n");
261 		cpu_reset();
262 		/*NOTREACHED*/
263 	}
264 
265 	/* Disable console buffering */
266 	cnpollc(1);
267 
268 	/*
269 	 * If RB_NOSYNC was not specified sync the discs.
270 	 * Note: Unless cold is set to 1 here, syslogd will die during
271 	 * the unmount.  It looks like syslogd is getting woken up
272 	 * only to find that it cannot page part of the binary in as
273 	 * the filesystem has been unmounted.
274 	 */
275 	if (!(howto & RB_NOSYNC))
276 		bootsync();
277 
278 	/* Say NO to interrupts */
279 	splhigh();
280 
281 	/* Do a dump if requested. */
282 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
283 		dumpsys();
284 
285 	/*
286 	 * Auto reboot overload protection
287 	 *
288 	 * This code stops the kernel entering an endless loop of reboot
289 	 * - panic cycles. This will have the effect of stopping further
290 	 * reboots after it has rebooted 8 times after panics. A clean
291 	 * halt or reboot will reset the counter.
292 	 */
293 
294 	/* Run any shutdown hooks */
295 	doshutdownhooks();
296 
297 	pmf_system_shutdown(boothowto);
298 
299 	/* Make sure IRQ's are disabled */
300 	IRQdisable;
301 
302 	if (howto & RB_HALT) {
303 		printf("The operating system has halted.\n");
304 		printf("Please press any key to reboot.\n\n");
305 		cngetc();
306 	}
307 
308 	printf("rebooting...\n");
309 	cpu_reset();
310 	/*NOTREACHED*/
311 }
312 
313 
314 /*
315  * u_int initarm(BootConfig *bootconf)
316  *
317  * Initial entry point on startup. This gets called before main() is
318  * entered.
319  * It should be responsible for setting up everything that must be
320  * in place when main is called.
321  * This includes
322  *   Taking a copy of the boot configuration structure.
323  *   Initialising the physical console so characters can be printed.
324  *   Setting up page tables for the kernel
325  *   Relocating the kernel to the bottom of physical memory
326  */
327 
328 /*
329  * this part is completely rewritten for the new bootloader ... It features
330  * a flat memory map with a mapping comparable to the EBSA arm32 machine
331  * to boost the portability and likeness of the code
332  */
333 
334 /*
335  * Mapping table for core kernel memory. This memory is mapped at init
336  * time with section mappings.
337  *
338  * XXX One big assumption in the current architecture seems that the kernel is
339  * XXX supposed to be mapped into bootconfig.dram[0].
340  */
341 
342 #define ONE_MB	0x100000
343 
344 struct l1_sec_map {
345 	vaddr_t		va;
346 	paddr_t		pa;
347 	vsize_t		size;
348 	vm_prot_t	prot;
349 	int		cache;
350 } l1_sec_table[] = {
351 	/* Map 1Mb section for VIDC20 */
352 	{ VIDC_BASE,		VIDC_HW_BASE,
353 	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
354 	    PTE_NOCACHE },
355 
356 	/* Map 1Mb section from IOMD */
357 	{ IOMD_BASE,		IOMD_HW_BASE,
358 	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
359 	    PTE_NOCACHE },
360 
361 	/* Map 1Mb of COMBO (and module space) */
362 	{ IO_BASE,		IO_HW_BASE,
363 	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
364 	    PTE_NOCACHE },
365 	{ 0, 0, 0, 0, 0 }
366 };
367 
368 
369 static void
370 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
371 {
372 	/* check for bootconfig v2+ structure */
373 	if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
374 		/* v2+ cleaned up structure found */
375 		*bootconf = *raw_bootconf;
376 		return;
377 	} else {
378 		panic2(("Internal error: no valid bootconfig block found"));
379 	}
380 }
381 
382 
383 u_int
384 initarm(void *cookie)
385 {
386 	struct bootconfig *raw_bootconf = cookie;
387 	int loop;
388 	int loop1;
389 	u_int logical;
390 	u_int kerneldatasize;
391 	u_int l1pagetable;
392 	struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
393 
394 	/*
395 	 * Heads up ... Setup the CPU / MMU / TLB functions
396 	 */
397 	set_cpufuncs();
398 
399 	/* canonicalise the boot configuration structure to alow versioning */
400 	canonicalise_bootconfig(&bootconfig, raw_bootconf);
401 	booted_kernel = bootconfig.kernelname;
402 
403 	/* if the wscons interface is used, switch off VERBOSE booting :( */
404 #if NVIDCVIDEO>0
405 #	undef VERBOSE_INIT_ARM
406 #	undef PMAP_DEBUG
407 #endif
408 
409 	/*
410 	 * Initialise the video memory descriptor
411 	 *
412 	 * Note: all references to the video memory virtual/physical address
413 	 * should go via this structure.
414 	 */
415 
416 	/* Hardwire it on the place the bootloader tells us */
417 	videomemory.vidm_vbase = bootconfig.display_start;
418 	videomemory.vidm_pbase = bootconfig.display_phys;
419 	videomemory.vidm_size = bootconfig.display_size;
420 	if (bootconfig.vram[0].pages)
421 		videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
422 	else
423 		videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
424 	vidc_base = (int *) VIDC_HW_BASE;
425 	iomd_base =         IOMD_HW_BASE;
426 
427 	/*
428 	 * Initialise the physical console
429 	 * This is done in main() but for the moment we do it here so that
430 	 * we can use printf in initarm() before main() has been called.
431 	 * only for `vidcconsole!' ... not wscons
432 	 */
433 #if NVIDCVIDEO == 0
434 	consinit();
435 #endif
436 
437 	/*
438 	 * Initialise the diagnostic serial console
439 	 * This allows a means of generating output during initarm().
440 	 * Once all the memory map changes are complete we can call consinit()
441 	 * and not have to worry about things moving.
442 	 */
443 	/* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
444 	/* XXX snif .... i am still not able to this */
445 
446 	/*
447 	 * We have the following memory map (derived from EBSA)
448 	 *
449 	 * virtual address == physical address apart from the areas:
450 	 * 0x00000000 -> 0x000fffff which is mapped to
451 	 * top 1MB of physical memory
452 	 * 0xf0000000 -> 0xf0ffffff wich is mapped to
453 	 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
454 	 *
455 	 * This means that the kernel is mapped suitably for continuing
456 	 * execution, all I/O is mapped 1:1 virtual to physical and
457 	 * physical memory is accessible.
458 	 *
459 	 * The initarm() has the responsibility for creating the kernel
460 	 * page tables.
461 	 * It must also set up various memory pointers that are used
462 	 * by pmap etc.
463 	 */
464 
465 	/* START OF REAL NEW STUFF */
466 
467 	/* Check to make sure the page size is correct */
468 	if (PAGE_SIZE != bootconfig.pagesize)
469 		panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
470 			   bootconfig.pagesize, PAGE_SIZE));
471 
472 	/* process arguments */
473 	process_kernel_args();
474 
475 
476 	/*
477 	 * Now set up the page tables for the kernel ... this part is copied
478 	 * in a (modified?) way from the EBSA machine port....
479 	 */
480 
481 #ifdef VERBOSE_INIT_ARM
482 	printf("Allocating page tables\n");
483 #endif
484 	/*
485 	 * Set up the variables that define the availablilty of physical
486 	 * memory
487 	 */
488 	physical_start = 0xffffffff;
489 	physical_end = 0;
490 	for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
491 	    	if (bootconfig.dram[loop].address < physical_start)
492 			physical_start = bootconfig.dram[loop].address;
493 		memoryblock_end = bootconfig.dram[loop].address +
494 		    bootconfig.dram[loop].pages * PAGE_SIZE;
495 		if (memoryblock_end > physical_end)
496 			physical_end = memoryblock_end;
497 		physmem += bootconfig.dram[loop].pages;
498 	};
499 	/* constants for now, but might be changed/configured */
500 	dma_range_begin = (paddr_t) physical_start;
501 	dma_range_end   = (paddr_t) MIN(physical_end, 512*1024*1024);
502 	/* XXX HACK HACK XXX */
503 	/* dma_range_end   = 0x18000000; */
504 
505 	if (physical_start !=  bootconfig.dram[0].address) {
506 		int oldblocks = 0;
507 
508 		/*
509 		 * must be a kinetic, as it's the only thing to shuffle memory
510 		 * around
511 		 */
512 		/* hack hack - throw away the slow dram */
513 		for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
514 			if (bootconfig.dram[loop].address <
515 			    bootconfig.dram[0].address)	{
516 				/* non kinetic ram */
517 				bootconfig.dram[loop].address = 0;
518 				physmem -= bootconfig.dram[loop].pages;
519 				bootconfig.drampages -=
520 				    bootconfig.dram[loop].pages;
521 				bootconfig.dram[loop].pages = 0;
522 				oldblocks++;
523 			}
524 		}
525 		physical_start = bootconfig.dram[0].address;
526 		bootconfig.dramblocks -= oldblocks;
527 	}
528 
529 	physical_freestart = physical_start;
530 	free_pages = bootconfig.drampages;
531 	physical_freeend = physical_end;
532 
533 
534 	/*
535 	 * AHUM !! set this variable ... it was set up in the old 1st
536 	 * stage bootloader
537 	 */
538 	kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
539 
540 	/* Update the address of the first free page of physical memory */
541 	/* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
542 	physical_freestart +=
543 	    bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
544 	free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
545 
546 	/* Define a macro to simplify memory allocation */
547 #define	valloc_pages(var, np)						\
548 	alloc_pages((var).pv_pa, (np));					\
549 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
550 
551 #define alloc_pages(var, np)						\
552 	(var) = physical_freestart;					\
553 	physical_freestart += ((np) * PAGE_SIZE);			\
554 	free_pages -= (np);						\
555 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
556 
557 	loop1 = 0;
558 	kernel_l1pt.pv_pa = 0;
559 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
560 		/* Are we 16KB aligned for an L1 ? */
561 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
562 		    && kernel_l1pt.pv_pa == 0) {
563 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
564 		} else {
565 			valloc_pages(kernel_pt_table[loop1],
566 					L2_TABLE_SIZE / PAGE_SIZE);
567 			++loop1;
568 		}
569 	}
570 
571 
572 #ifdef DIAGNOSTIC
573 	/* This should never be able to happen but better confirm that. */
574 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
575 		panic2(("initarm: Failed to align the kernel page "
576 		    "directory\n"));
577 #endif
578 
579 	/*
580 	 * Allocate a page for the system page mapped to V0x00000000
581 	 * This page will just contain the system vectors and can be
582 	 * shared by all processes.
583 	 */
584 	alloc_pages(systempage.pv_pa, 1);
585 
586 	/* Allocate stacks for all modes */
587 	valloc_pages(irqstack, IRQ_STACK_SIZE);
588 	valloc_pages(abtstack, ABT_STACK_SIZE);
589 	valloc_pages(undstack, UND_STACK_SIZE);
590 	valloc_pages(kernelstack, UPAGES);
591 
592 #ifdef VERBOSE_INIT_ARM
593 	printf("Setting up stacks :\n");
594 	printf("IRQ stack: p0x%08lx v0x%08lx\n",
595 	    irqstack.pv_pa, irqstack.pv_va);
596 	printf("ABT stack: p0x%08lx v0x%08lx\n",
597 	    abtstack.pv_pa, abtstack.pv_va);
598 	printf("UND stack: p0x%08lx v0x%08lx\n",
599 	    undstack.pv_pa, undstack.pv_va);
600 	printf("SVC stack: p0x%08lx v0x%08lx\n",
601 	    kernelstack.pv_pa, kernelstack.pv_va);
602 	printf("\n");
603 #endif
604 
605 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
606 
607 #ifdef CPU_SA110
608 	/*
609 	 * XXX totally stuffed hack to work round problems introduced
610 	 * in recent versions of the pmap code. Due to the calls used there
611 	 * we cannot allocate virtual memory during bootstrap.
612 	 */
613 	sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
614 	    + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
615 	    & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
616 #endif	/* CPU_SA110 */
617 
618 	/*
619 	 * Ok we have allocated physical pages for the primary kernel
620 	 * page tables
621 	 */
622 
623 #ifdef VERBOSE_INIT_ARM
624 	printf("Creating L1 page table\n");
625 #endif
626 
627 	/*
628 	 * Now we start construction of the L1 page table
629 	 * We start by mapping the L2 page tables into the L1.
630 	 * This means that we can replace L1 mappings later on if necessary
631 	 */
632 	l1pagetable = kernel_l1pt.pv_pa;
633 
634 	/* Map the L2 pages tables in the L1 page table */
635 	pmap_link_l2pt(l1pagetable, 0x00000000,
636 	    &kernel_pt_table[KERNEL_PT_SYS]);
637 	pmap_link_l2pt(l1pagetable, KERNEL_BASE,
638 	    &kernel_pt_table[KERNEL_PT_KERNEL]);
639 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
640 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
641 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
642 	pmap_link_l2pt(l1pagetable, VMEM_VBASE,
643 	    &kernel_pt_table[KERNEL_PT_VMEM]);
644 
645 	/* update the top of the kernel VM */
646 	pmap_curmaxkvaddr =
647 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
648 
649 #ifdef VERBOSE_INIT_ARM
650 	printf("Mapping kernel\n");
651 #endif
652 
653 	/* Now we fill in the L2 pagetable for the kernel code/data */
654 	/* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
655 	/*
656 	 * The defines are a workaround for a recent problem that occurred
657 	 * with ARM 610 processors and some ARM 710 processors
658 	 * Other ARM 710 and StrongARM processors don't have a problem.
659 	 */
660 	if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
661 #if defined(CPU_ARM6) || defined(CPU_ARM7)
662 		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
663 		    physical_start, kernexec->a_text,
664 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
665 #else	/* CPU_ARM6 || CPU_ARM7 */
666 		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
667 		    physical_start, kernexec->a_text,
668 		    VM_PROT_READ, PTE_CACHE);
669 #endif	/* CPU_ARM6 || CPU_ARM7 */
670 		logical += pmap_map_chunk(l1pagetable,
671 		    KERNEL_TEXT_BASE + logical, physical_start + logical,
672 		    kerneldatasize - kernexec->a_text,
673 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
674 	} else {	/* !ZMAGIC */
675 		/*
676 		 * Most likely an ELF kernel ...
677 		 * XXX no distinction yet between read only and
678 		 * read/write area's ...
679 		 */
680 		pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
681 		    physical_start, kerneldatasize,
682 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
683 	};
684 
685 
686 #ifdef VERBOSE_INIT_ARM
687 	printf("Constructing L2 page tables\n");
688 #endif
689 
690 	/* Map the stack pages */
691 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
692 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
693 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
694 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
695 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
696 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
697 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
698 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699 
700 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
701 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
702 
703 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
704 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
705 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
706 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
707 	}
708 
709 	/* Now we fill in the L2 pagetable for the VRAM */
710 	/*
711 	 * Current architectures mean that the VRAM is always in 1
712 	 * continuous bank.  This means that we can just map the 2 meg
713 	 * that the VRAM would occupy.  In theory we don't need a page
714 	 * table for VRAM, we could section map it but we would need
715 	 * the page tables if DRAM was in use.
716 	 * XXX please map two adjacent virtual areas to ONE physical
717 	 * area
718 	 */
719 	pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
720 	    videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
721 	pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
722 	    videomemory.vidm_pbase, videomemory.vidm_size,
723 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
724 
725 	/* Map the vector page. */
726 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
727 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
728 
729 	/* Map the core memory needed before autoconfig */
730 	loop = 0;
731 	while (l1_sec_table[loop].size) {
732 		vm_size_t sz;
733 
734 #ifdef VERBOSE_INIT_ARM
735 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
736 			l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
737 			l1_sec_table[loop].va);
738 #endif
739 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
740 			pmap_map_section(l1pagetable,
741 			    l1_sec_table[loop].va + sz,
742 			    l1_sec_table[loop].pa + sz,
743 			    l1_sec_table[loop].prot,
744 			    l1_sec_table[loop].cache);
745 		++loop;
746 	}
747 
748 	/*
749 	 * Now we have the real page tables in place so we can switch
750 	 * to them.  Once this is done we will be running with the
751 	 * REAL kernel page tables.
752 	 */
753 
754 #ifdef VERBOSE_INIT_ARM
755 	printf("switching domains\n");
756 #endif
757 	/* be a client to all domains */
758 	cpu_domains(0x55555555);
759 
760 	/* Switch tables */
761 #ifdef VERBOSE_INIT_ARM
762 	printf("switching to new L1 page table\n");
763 #endif
764 	cpu_setttb(kernel_l1pt.pv_pa);
765 
766 	/*
767 	 * We must now clean the cache again....
768 	 * Cleaning may be done by reading new data to displace any
769 	 * dirty data in the cache. This will have happened in cpu_setttb()
770 	 * but since we are boot strapping the addresses used for the read
771 	 * may have just been remapped and thus the cache could be out
772 	 * of sync. A re-clean after the switch will cure this.
773 	 * After booting there are no gross reloations of the kernel thus
774 	 * this problem will not occur after initarm().
775 	 */
776 	cpu_idcache_wbinv_all();
777 	cpu_tlb_flushID();
778 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
779 
780 	/*
781 	 * Moved from cpu_startup() as data_abort_handler() references
782 	 * this during uvm init
783 	 */
784 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
785 
786 	/*
787 	 * if there is support for a serial console ...we should now
788 	 * reattach it
789 	 */
790 	/*      fcomcndetach();*/
791 
792 	/*
793 	 * Reflect videomemory relocation in the videomemory structure
794 	 * and reinit console
795 	 */
796 	if (bootconfig.vram[0].pages == 0) {
797 		videomemory.vidm_vbase   = VMEM_VBASE;
798 	} else {
799 		videomemory.vidm_vbase   = VMEM_VBASE;
800 		bootconfig.display_start = VMEM_VBASE;
801 	};
802 	vidc_base = (int *) VIDC_BASE;
803 	iomd_base =         IOMD_BASE;
804 
805 #ifdef VERBOSE_INIT_ARM
806 	printf("running on the new L1 page table!\n");
807 	printf("done.\n");
808 #endif
809 
810 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
811 
812 #ifdef VERBOSE_INIT_ARM
813 	printf("\n");
814 #endif
815 
816 	/*
817 	 * Pages were allocated during the secondary bootstrap for the
818 	 * stacks for different CPU modes.
819 	 * We must now set the r13 registers in the different CPU modes to
820 	 * point to these stacks.
821 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
822 	 * of the stack memory.
823 	 */
824 #ifdef VERBOSE_INIT_ARM
825 	printf("init subsystems: stacks ");
826 	console_flush();
827 #endif
828 
829 	set_stackptr(PSR_IRQ32_MODE,
830 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
831 	set_stackptr(PSR_ABT32_MODE,
832 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
833 	set_stackptr(PSR_UND32_MODE,
834 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
835 #ifdef PMAP_DEBUG
836 	if (pmap_debug_level >= 0)
837 		printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
838 		    kernelstack.pv_pa);
839 #endif	/* PMAP_DEBUG */
840 
841 	/*
842 	 * Well we should set a data abort handler.
843 	 * Once things get going this will change as we will need a proper
844 	 * handler. Until then we will use a handler that just panics but
845 	 * tells us why.
846 	 * Initialisation of the vectors will just panic on a data abort.
847 	 * This just fills in a slightly better one.
848 	 */
849 #ifdef VERBOSE_INIT_ARM
850 	printf("vectors ");
851 #endif
852 	data_abort_handler_address = (u_int)data_abort_handler;
853 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
854 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
855 	console_flush();
856 
857 
858 	/*
859 	 * At last !
860 	 * We now have the kernel in physical memory from the bottom upwards.
861 	 * Kernel page tables are physically above this.
862 	 * The kernel is mapped to 0xf0000000
863 	 * The kernel data PTs will handle the mapping of
864 	 *   0xf1000000-0xf5ffffff (80 Mb)
865 	 * 2Meg of VRAM is mapped to 0xf7000000
866 	 * The page tables are mapped to 0xefc00000
867 	 * The IOMD is mapped to 0xf6000000
868 	 * The VIDC is mapped to 0xf6100000
869 	 * The IOMD/VIDC could be pushed up higher but i havent got
870 	 * sufficient documentation to do so; the addresses are not
871 	 * parametized yet and hard to read... better fix this before;
872 	 * its pretty unforgiving.
873 	 */
874 
875 	/* Initialise the undefined instruction handlers */
876 #ifdef VERBOSE_INIT_ARM
877 	printf("undefined ");
878 #endif
879 	undefined_init();
880 	console_flush();
881 
882 	/* Load memory into UVM. */
883 #ifdef VERBOSE_INIT_ARM
884 	printf("page ");
885 #endif
886 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
887 	for (loop = 0; loop < bootconfig.dramblocks; loop++) {
888 		paddr_t start = (paddr_t)bootconfig.dram[loop].address;
889 		paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
890 
891 		if (start < physical_freestart)
892 			start = physical_freestart;
893 		if (end > physical_freeend)
894 			end = physical_freeend;
895 
896 		/* XXX Consider DMA range intersection checking. */
897 
898 		uvm_page_physload(atop(start), atop(end),
899 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
900 	}
901 
902 	/* Boot strap pmap telling it where the kernel page table is */
903 #ifdef VERBOSE_INIT_ARM
904 	printf("pmap ");
905 #endif
906 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
907 	console_flush();
908 
909 	/* Setup the IRQ system */
910 #ifdef VERBOSE_INIT_ARM
911 	printf("irq ");
912 #endif
913 	console_flush();
914 	irq_init();
915 #ifdef VERBOSE_INIT_ARM
916 	printf("done.\n\n");
917 #endif
918 
919 #if NVIDCVIDEO>0
920 	consinit();		/* necessary ? */
921 #endif
922 
923 	/* Talk to the user */
924 	printf("NetBSD/evbarm booting ... \n");
925 
926 	/* Tell the user if his boot loader is too old */
927 	if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
928 	    (bootconfig.version != BOOTCONFIG_VERSION)) {
929 		printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
930 		delay(5000000);
931 	}
932 
933 	printf("Kernel loaded from file %s\n", bootconfig.kernelname);
934 	printf("Kernel arg string (@%p) %s\n",
935 	    bootconfig.args, bootconfig.args);
936 	printf("\nBoot configuration structure reports the following "
937 	    "memory\n");
938 
939 	printf(" DRAM block 0a at %08x size %08x "
940 	    "DRAM block 0b at %08x size %08x\n\r",
941 	    bootconfig.dram[0].address,
942 	    bootconfig.dram[0].pages * bootconfig.pagesize,
943 	    bootconfig.dram[1].address,
944 	    bootconfig.dram[1].pages * bootconfig.pagesize);
945 	printf(" DRAM block 1a at %08x size %08x "
946 	    "DRAM block 1b at %08x size %08x\n\r",
947 	    bootconfig.dram[2].address,
948 	    bootconfig.dram[2].pages * bootconfig.pagesize,
949 	    bootconfig.dram[3].address,
950 	    bootconfig.dram[3].pages * bootconfig.pagesize);
951 	printf(" VRAM block 0  at %08x size %08x\n\r",
952 	    bootconfig.vram[0].address,
953 	    bootconfig.vram[0].pages * bootconfig.pagesize);
954 
955 #if NKSYMS || defined(DDB) || defined(MODULAR)
956 	ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
957 		(void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
958 #endif
959 
960 
961 #ifdef DDB
962 	db_machine_init();
963 	if (boothowto & RB_KDB)
964 		Debugger();
965 #endif	/* DDB */
966 
967 	/* We return the new stack pointer address */
968 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
969 }
970 
971 
972 static void
973 process_kernel_args(void)
974 {
975 	char *args;
976 
977 	/* Ok now we will check the arguments for interesting parameters. */
978 	args = bootconfig.args;
979 	boothowto = 0;
980 
981 	/* Only arguments itself are passed from the new bootloader */
982 	while (*args == ' ')
983 		++args;
984 
985 	boot_args = args;
986 	parse_mi_bootargs(boot_args);
987 	parse_rpc_bootargs(boot_args);
988 }
989 
990 
991 void
992 parse_rpc_bootargs(char *args)
993 {
994 	int integer;
995 
996 	if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
997 	    &integer)) {
998 		videodram_size = integer;
999 		/* Round to 4K page */
1000 		videodram_size *= 1024;
1001 		videodram_size = round_page(videodram_size);
1002 		if (videodram_size > 1024*1024)
1003 			videodram_size = 1024*1024;
1004 	}
1005 }
1006 /* End of machdep.c */
1007