xref: /netbsd/sys/arch/alpha/alpha/machdep.c (revision 6550d01e)
1 /* $NetBSD: machdep.c,v 1.328 2010/11/10 09:27:21 uebayasi Exp $ */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center and by Chris G. Demetriou.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35  * All rights reserved.
36  *
37  * Author: Chris G. Demetriou
38  *
39  * Permission to use, copy, modify and distribute this software and
40  * its documentation is hereby granted, provided that both the copyright
41  * notice and this permission notice appear in all copies of the
42  * software, derivative works or modified versions, and any portions
43  * thereof, and that both notices appear in supporting documentation.
44  *
45  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48  *
49  * Carnegie Mellon requests users of this software to return to
50  *
51  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
52  *  School of Computer Science
53  *  Carnegie Mellon University
54  *  Pittsburgh PA 15213-3890
55  *
56  * any improvements or extensions that they make and grant Carnegie the
57  * rights to redistribute these changes.
58  */
59 
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_compat_osf1.h"
67 #include "opt_execfmt.h"
68 
69 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
70 
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.328 2010/11/10 09:27:21 uebayasi Exp $");
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/exec.h>
91 #include <sys/exec_aout.h>		/* for MID_* */
92 #include <sys/exec_ecoff.h>
93 #include <sys/core.h>
94 #include <sys/kcore.h>
95 #include <sys/ucontext.h>
96 #include <sys/conf.h>
97 #include <sys/ksyms.h>
98 #include <sys/kauth.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104 
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107 
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110 
111 #include <dev/cons.h>
112 
113 #include <machine/autoconf.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/cpuconf.h>
118 #include <machine/ieeefp.h>
119 
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127 
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131 
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135 
136 #include <machine/alpha.h>
137 
138 #include "ksyms.h"
139 
140 struct vm_map *phys_map = NULL;
141 
142 void *msgbufaddr;
143 
144 int	maxmem;			/* max memory per process */
145 
146 int	totalphysmem;		/* total amount of physical memory in system */
147 int	physmem;		/* physical memory used by NetBSD + some rsvd */
148 int	resvmem;		/* amount of memory reserved for PROM */
149 int	unusedmem;		/* amount of memory for OS that we don't use */
150 int	unknownmem;		/* amount of memory with an unknown use */
151 
152 int	cputype;		/* system type, from the RPB */
153 
154 int	bootdev_debug = 0;	/* patchable, or from DDB */
155 
156 /*
157  * XXX We need an address to which we can assign things so that they
158  * won't be optimized away because we didn't use the value.
159  */
160 u_int32_t no_optimize;
161 
162 /* the following is used externally (sysctl_hw) */
163 char	machine[] = MACHINE;		/* from <machine/param.h> */
164 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
165 char	cpu_model[128];
166 
167 /* Number of machine cycles per microsecond */
168 u_int64_t	cycles_per_usec;
169 
170 /* number of CPUs in the box.  really! */
171 int		ncpus;
172 
173 struct bootinfo_kernel bootinfo;
174 
175 /* For built-in TCDS */
176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
178 #endif
179 
180 struct platform platform;
181 
182 #if NKSYMS || defined(DDB) || defined(MODULAR)
183 /* start and end of kernel symbol table */
184 void	*ksym_start, *ksym_end;
185 #endif
186 
187 /* for cpu_sysctl() */
188 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
189 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
190 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
191 int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
192 
193 /*
194  * XXX This should be dynamically sized, but we have the chicken-egg problem!
195  * XXX it should also be larger than it is, because not all of the mddt
196  * XXX clusters end up being used for VM.
197  */
198 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
199 int	mem_cluster_cnt;
200 
201 int	cpu_dump(void);
202 int	cpu_dumpsize(void);
203 u_long	cpu_dump_mempagecnt(void);
204 void	dumpsys(void);
205 void	identifycpu(void);
206 void	printregs(struct reg *);
207 
208 void
209 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
210 	/* pfn:		 first free PFN number */
211 	/* ptb:		 PFN of current level 1 page table */
212 	/* bim:		 bootinfo magic */
213 	/* bip:		 bootinfo pointer */
214 	/* biv:		 bootinfo version */
215 {
216 	extern char kernel_text[], _end[];
217 	struct mddt *mddtp;
218 	struct mddt_cluster *memc;
219 	int i, mddtweird;
220 	struct vm_physseg *vps;
221 	struct pcb *pcb0;
222 	vaddr_t kernstart, kernend, v;
223 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
224 	cpuid_t cpu_id;
225 	struct cpu_info *ci;
226 	char *p;
227 	const char *bootinfo_msg;
228 	const struct cpuinit *c;
229 
230 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
231 
232 	/*
233 	 * Turn off interrupts (not mchecks) and floating point.
234 	 * Make sure the instruction and data streams are consistent.
235 	 */
236 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
237 	alpha_pal_wrfen(0);
238 	ALPHA_TBIA();
239 	alpha_pal_imb();
240 
241 	/* Initialize the SCB. */
242 	scb_init();
243 
244 	cpu_id = cpu_number();
245 
246 #if defined(MULTIPROCESSOR)
247 	/*
248 	 * Set our SysValue to the address of our cpu_info structure.
249 	 * Secondary processors do this in their spinup trampoline.
250 	 */
251 	alpha_pal_wrval((u_long)&cpu_info_primary);
252 	cpu_info[cpu_id] = &cpu_info_primary;
253 #endif
254 
255 	ci = curcpu();
256 	ci->ci_cpuid = cpu_id;
257 
258 	/*
259 	 * Get critical system information (if possible, from the
260 	 * information provided by the boot program).
261 	 */
262 	bootinfo_msg = NULL;
263 	if (bim == BOOTINFO_MAGIC) {
264 		if (biv == 0) {		/* backward compat */
265 			biv = *(u_long *)bip;
266 			bip += 8;
267 		}
268 		switch (biv) {
269 		case 1: {
270 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
271 
272 			bootinfo.ssym = v1p->ssym;
273 			bootinfo.esym = v1p->esym;
274 			/* hwrpb may not be provided by boot block in v1 */
275 			if (v1p->hwrpb != NULL) {
276 				bootinfo.hwrpb_phys =
277 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
278 				bootinfo.hwrpb_size = v1p->hwrpbsize;
279 			} else {
280 				bootinfo.hwrpb_phys =
281 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 				bootinfo.hwrpb_size =
283 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
284 			}
285 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
286 			    min(sizeof v1p->boot_flags,
287 			      sizeof bootinfo.boot_flags));
288 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
289 			    min(sizeof v1p->booted_kernel,
290 			      sizeof bootinfo.booted_kernel));
291 			/* booted dev not provided in bootinfo */
292 			init_prom_interface((struct rpb *)
293 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
294                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
295 			    sizeof bootinfo.booted_dev);
296 			break;
297 		}
298 		default:
299 			bootinfo_msg = "unknown bootinfo version";
300 			goto nobootinfo;
301 		}
302 	} else {
303 		bootinfo_msg = "boot program did not pass bootinfo";
304 nobootinfo:
305 		bootinfo.ssym = (u_long)_end;
306 		bootinfo.esym = (u_long)_end;
307 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
308 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
309 		init_prom_interface((struct rpb *)HWRPB_ADDR);
310 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
311 		    sizeof bootinfo.boot_flags);
312 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
313 		    sizeof bootinfo.booted_kernel);
314 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
315 		    sizeof bootinfo.booted_dev);
316 	}
317 
318 	/*
319 	 * Initialize the kernel's mapping of the RPB.  It's needed for
320 	 * lots of things.
321 	 */
322 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
323 
324 #if defined(DEC_3000_300) || defined(DEC_3000_500)
325 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
326 	    hwrpb->rpb_type == ST_DEC_3000_500) {
327 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
328 		    sizeof(dec_3000_scsiid));
329 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
330 		    sizeof(dec_3000_scsifast));
331 	}
332 #endif
333 
334 	/*
335 	 * Remember how many cycles there are per microsecond,
336 	 * so that we can use delay().  Round up, for safety.
337 	 */
338 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
339 
340 	/*
341 	 * Initialize the (temporary) bootstrap console interface, so
342 	 * we can use printf until the VM system starts being setup.
343 	 * The real console is initialized before then.
344 	 */
345 	init_bootstrap_console();
346 
347 	/* OUTPUT NOW ALLOWED */
348 
349 	/* delayed from above */
350 	if (bootinfo_msg)
351 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
352 		    bootinfo_msg, bim, bip, biv);
353 
354 	/* Initialize the trap vectors on the primary processor. */
355 	trap_init();
356 
357 	/*
358 	 * Find out this system's page size, and initialize
359 	 * PAGE_SIZE-dependent variables.
360 	 */
361 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
362 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
363 		    ALPHA_PGBYTES);
364 	uvmexp.pagesize = hwrpb->rpb_page_size;
365 	uvm_setpagesize();
366 
367 	/*
368 	 * Find out what hardware we're on, and do basic initialization.
369 	 */
370 	cputype = hwrpb->rpb_type;
371 	if (cputype < 0) {
372 		/*
373 		 * At least some white-box systems have SRM which
374 		 * reports a systype that's the negative of their
375 		 * blue-box counterpart.
376 		 */
377 		cputype = -cputype;
378 	}
379 	c = platform_lookup(cputype);
380 	if (c == NULL) {
381 		platform_not_supported();
382 		/* NOTREACHED */
383 	}
384 	(*c->init)();
385 	strcpy(cpu_model, platform.model);
386 
387 	/*
388 	 * Initialize the real console, so that the bootstrap console is
389 	 * no longer necessary.
390 	 */
391 	(*platform.cons_init)();
392 
393 #ifdef DIAGNOSTIC
394 	/* Paranoid sanity checking */
395 
396 	/* We should always be running on the primary. */
397 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
398 
399 	/*
400 	 * On single-CPU systypes, the primary should always be CPU 0,
401 	 * except on Alpha 8200 systems where the CPU id is related
402 	 * to the VID, which is related to the Turbo Laser node id.
403 	 */
404 	if (cputype != ST_DEC_21000)
405 		assert(hwrpb->rpb_primary_cpu_id == 0);
406 #endif
407 
408 	/* NO MORE FIRMWARE ACCESS ALLOWED */
409 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
410 	/*
411 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
412 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
413 	 */
414 #endif
415 
416 	/*
417 	 * Find the beginning and end of the kernel (and leave a
418 	 * bit of space before the beginning for the bootstrap
419 	 * stack).
420 	 */
421 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
422 #if NKSYMS || defined(DDB) || defined(MODULAR)
423 	ksym_start = (void *)bootinfo.ssym;
424 	ksym_end   = (void *)bootinfo.esym;
425 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
426 #else
427 	kernend = (vaddr_t)round_page((vaddr_t)_end);
428 #endif
429 
430 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
431 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
432 
433 	/*
434 	 * Find out how much memory is available, by looking at
435 	 * the memory cluster descriptors.  This also tries to do
436 	 * its best to detect things things that have never been seen
437 	 * before...
438 	 */
439 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
440 
441 	/* MDDT SANITY CHECKING */
442 	mddtweird = 0;
443 	if (mddtp->mddt_cluster_cnt < 2) {
444 		mddtweird = 1;
445 		printf("WARNING: weird number of mem clusters: %lu\n",
446 		    mddtp->mddt_cluster_cnt);
447 	}
448 
449 #if 0
450 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
451 #endif
452 
453 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
454 		memc = &mddtp->mddt_clusters[i];
455 #if 0
456 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
457 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
458 #endif
459 		totalphysmem += memc->mddt_pg_cnt;
460 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
461 			mem_clusters[mem_cluster_cnt].start =
462 			    ptoa(memc->mddt_pfn);
463 			mem_clusters[mem_cluster_cnt].size =
464 			    ptoa(memc->mddt_pg_cnt);
465 			if (memc->mddt_usage & MDDT_mbz ||
466 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
467 			    memc->mddt_usage & MDDT_PALCODE)
468 				mem_clusters[mem_cluster_cnt].size |=
469 				    PROT_READ;
470 			else
471 				mem_clusters[mem_cluster_cnt].size |=
472 				    PROT_READ | PROT_WRITE | PROT_EXEC;
473 			mem_cluster_cnt++;
474 		}
475 
476 		if (memc->mddt_usage & MDDT_mbz) {
477 			mddtweird = 1;
478 			printf("WARNING: mem cluster %d has weird "
479 			    "usage 0x%lx\n", i, memc->mddt_usage);
480 			unknownmem += memc->mddt_pg_cnt;
481 			continue;
482 		}
483 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
484 			/* XXX should handle these... */
485 			printf("WARNING: skipping non-volatile mem "
486 			    "cluster %d\n", i);
487 			unusedmem += memc->mddt_pg_cnt;
488 			continue;
489 		}
490 		if (memc->mddt_usage & MDDT_PALCODE) {
491 			resvmem += memc->mddt_pg_cnt;
492 			continue;
493 		}
494 
495 		/*
496 		 * We have a memory cluster available for system
497 		 * software use.  We must determine if this cluster
498 		 * holds the kernel.
499 		 */
500 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
501 		/*
502 		 * XXX If the kernel uses the PROM console, we only use the
503 		 * XXX memory after the kernel in the first system segment,
504 		 * XXX to avoid clobbering prom mapping, data, etc.
505 		 */
506 	    if (!pmap_uses_prom_console() || physmem == 0) {
507 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
508 		physmem += memc->mddt_pg_cnt;
509 		pfn0 = memc->mddt_pfn;
510 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
511 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
512 			/*
513 			 * Must compute the location of the kernel
514 			 * within the segment.
515 			 */
516 #if 0
517 			printf("Cluster %d contains kernel\n", i);
518 #endif
519 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
520 		    if (!pmap_uses_prom_console()) {
521 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
522 			if (pfn0 < kernstartpfn) {
523 				/*
524 				 * There is a chunk before the kernel.
525 				 */
526 #if 0
527 				printf("Loading chunk before kernel: "
528 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
529 #endif
530 				uvm_page_physload(pfn0, kernstartpfn,
531 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
532 			}
533 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
534 		    }
535 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
536 			if (kernendpfn < pfn1) {
537 				/*
538 				 * There is a chunk after the kernel.
539 				 */
540 #if 0
541 				printf("Loading chunk after kernel: "
542 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
543 #endif
544 				uvm_page_physload(kernendpfn, pfn1,
545 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
546 			}
547 		} else {
548 			/*
549 			 * Just load this cluster as one chunk.
550 			 */
551 #if 0
552 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
553 			    pfn0, pfn1);
554 #endif
555 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
556 			    VM_FREELIST_DEFAULT);
557 		}
558 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
559 	    }
560 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
561 	}
562 
563 	/*
564 	 * Dump out the MDDT if it looks odd...
565 	 */
566 	if (mddtweird) {
567 		printf("\n");
568 		printf("complete memory cluster information:\n");
569 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
570 			printf("mddt %d:\n", i);
571 			printf("\tpfn %lx\n",
572 			    mddtp->mddt_clusters[i].mddt_pfn);
573 			printf("\tcnt %lx\n",
574 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
575 			printf("\ttest %lx\n",
576 			    mddtp->mddt_clusters[i].mddt_pg_test);
577 			printf("\tbva %lx\n",
578 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
579 			printf("\tbpa %lx\n",
580 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
581 			printf("\tbcksum %lx\n",
582 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
583 			printf("\tusage %lx\n",
584 			    mddtp->mddt_clusters[i].mddt_usage);
585 		}
586 		printf("\n");
587 	}
588 
589 	if (totalphysmem == 0)
590 		panic("can't happen: system seems to have no memory!");
591 	maxmem = physmem;
592 #if 0
593 	printf("totalphysmem = %d\n", totalphysmem);
594 	printf("physmem = %d\n", physmem);
595 	printf("resvmem = %d\n", resvmem);
596 	printf("unusedmem = %d\n", unusedmem);
597 	printf("unknownmem = %d\n", unknownmem);
598 #endif
599 
600 	/*
601 	 * Initialize error message buffer (at end of core).
602 	 */
603 	{
604 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
605 		vsize_t reqsz = sz;
606 
607 		vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
608 
609 		/* shrink so that it'll fit in the last segment */
610 		if ((vps->avail_end - vps->avail_start) < atop(sz))
611 			sz = ptoa(vps->avail_end - vps->avail_start);
612 
613 		vps->end -= atop(sz);
614 		vps->avail_end -= atop(sz);
615 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
616 		initmsgbuf(msgbufaddr, sz);
617 
618 		/* Remove the last segment if it now has no pages. */
619 		if (vps->start == vps->end)
620 			vm_nphysseg--;
621 
622 		/* warn if the message buffer had to be shrunk */
623 		if (sz != reqsz)
624 			printf("WARNING: %ld bytes not available for msgbuf "
625 			    "in last cluster (%ld used)\n", reqsz, sz);
626 
627 	}
628 
629 	/*
630 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
631 	 * pmap_bootstrap() because our pmap_virtual_space()
632 	 * returns compile-time constants.
633 	 */
634 
635 	/*
636 	 * Allocate uarea page for lwp0 and set it.
637 	 */
638 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
639 	uvm_lwp_setuarea(&lwp0, v);
640 
641 	/*
642 	 * Initialize the virtual memory system, and set the
643 	 * page table base register in proc 0's PCB.
644 	 */
645 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
646 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
647 
648 	/*
649 	 * Initialize the rest of lwp0's PCB and cache its physical address.
650 	 */
651 	pcb0 = lwp_getpcb(&lwp0);
652 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
653 
654 	/*
655 	 * Set the kernel sp, reserving space for an (empty) trapframe,
656 	 * and make lwp0's trapframe pointer point to it for sanity.
657 	 */
658 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
659 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
660 	simple_lock_init(&pcb0->pcb_fpcpu_slock);
661 
662 	/* Indicate that lwp0 has a CPU. */
663 	lwp0.l_cpu = ci;
664 
665 	/*
666 	 * Look at arguments passed to us and compute boothowto.
667 	 */
668 
669 	boothowto = RB_SINGLE;
670 #ifdef KADB
671 	boothowto |= RB_KDB;
672 #endif
673 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
674 		/*
675 		 * Note that we'd really like to differentiate case here,
676 		 * but the Alpha AXP Architecture Reference Manual
677 		 * says that we shouldn't.
678 		 */
679 		switch (*p) {
680 		case 'a': /* autoboot */
681 		case 'A':
682 			boothowto &= ~RB_SINGLE;
683 			break;
684 
685 #ifdef DEBUG
686 		case 'c': /* crash dump immediately after autoconfig */
687 		case 'C':
688 			boothowto |= RB_DUMP;
689 			break;
690 #endif
691 
692 #if defined(KGDB) || defined(DDB)
693 		case 'd': /* break into the kernel debugger ASAP */
694 		case 'D':
695 			boothowto |= RB_KDB;
696 			break;
697 #endif
698 
699 		case 'h': /* always halt, never reboot */
700 		case 'H':
701 			boothowto |= RB_HALT;
702 			break;
703 
704 #if 0
705 		case 'm': /* mini root present in memory */
706 		case 'M':
707 			boothowto |= RB_MINIROOT;
708 			break;
709 #endif
710 
711 		case 'n': /* askname */
712 		case 'N':
713 			boothowto |= RB_ASKNAME;
714 			break;
715 
716 		case 's': /* single-user (default, supported for sanity) */
717 		case 'S':
718 			boothowto |= RB_SINGLE;
719 			break;
720 
721 		case 'q': /* quiet boot */
722 		case 'Q':
723 			boothowto |= AB_QUIET;
724 			break;
725 
726 		case 'v': /* verbose boot */
727 		case 'V':
728 			boothowto |= AB_VERBOSE;
729 			break;
730 
731 		case '-':
732 			/*
733 			 * Just ignore this.  It's not required, but it's
734 			 * common for it to be passed regardless.
735 			 */
736 			break;
737 
738 		default:
739 			printf("Unrecognized boot flag '%c'.\n", *p);
740 			break;
741 		}
742 	}
743 
744 	/*
745 	 * Perform any initial kernel patches based on the running system.
746 	 * We may perform more later if we attach additional CPUs.
747 	 */
748 	alpha_patch(false);
749 
750 	/*
751 	 * Figure out the number of CPUs in the box, from RPB fields.
752 	 * Really.  We mean it.
753 	 */
754 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
755 		struct pcs *pcsp;
756 
757 		pcsp = LOCATE_PCS(hwrpb, i);
758 		if ((pcsp->pcs_flags & PCS_PP) != 0)
759 			ncpus++;
760 	}
761 
762 	/*
763 	 * Initialize debuggers, and break into them if appropriate.
764 	 */
765 #if NKSYMS || defined(DDB) || defined(MODULAR)
766 	ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
767 	    ksym_start, ksym_end);
768 #endif
769 
770 	if (boothowto & RB_KDB) {
771 #if defined(KGDB)
772 		kgdb_debug_init = 1;
773 		kgdb_connect(1);
774 #elif defined(DDB)
775 		Debugger();
776 #endif
777 	}
778 
779 #ifdef DIAGNOSTIC
780 	/*
781 	 * Check our clock frequency, from RPB fields.
782 	 */
783 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
784 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
785 			hwrpb->rpb_intr_freq, hz);
786 #endif
787 }
788 
789 void
790 consinit(void)
791 {
792 
793 	/*
794 	 * Everything related to console initialization is done
795 	 * in alpha_init().
796 	 */
797 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
798 	printf("consinit: %susing prom console\n",
799 	    pmap_uses_prom_console() ? "" : "not ");
800 #endif
801 }
802 
803 void
804 cpu_startup(void)
805 {
806 	vaddr_t minaddr, maxaddr;
807 	char pbuf[9];
808 #if defined(DEBUG)
809 	extern int pmapdebug;
810 	int opmapdebug = pmapdebug;
811 
812 	pmapdebug = 0;
813 #endif
814 
815 	/*
816 	 * Good {morning,afternoon,evening,night}.
817 	 */
818 	printf("%s%s", copyright, version);
819 	identifycpu();
820 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
821 	printf("total memory = %s\n", pbuf);
822 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
823 	printf("(%s reserved for PROM, ", pbuf);
824 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
825 	printf("%s used by NetBSD)\n", pbuf);
826 	if (unusedmem) {
827 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
828 		printf("WARNING: unused memory = %s\n", pbuf);
829 	}
830 	if (unknownmem) {
831 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
832 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
833 	}
834 
835 	minaddr = 0;
836 
837 	/*
838 	 * Allocate a submap for physio
839 	 */
840 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
841 				   VM_PHYS_SIZE, 0, false, NULL);
842 
843 	/*
844 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
845 	 * are allocated via the pool allocator, and we use K0SEG to
846 	 * map those pages.
847 	 */
848 
849 #if defined(DEBUG)
850 	pmapdebug = opmapdebug;
851 #endif
852 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
853 	printf("avail memory = %s\n", pbuf);
854 #if 0
855 	{
856 		extern u_long pmap_pages_stolen;
857 
858 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
859 		printf("stolen memory for VM structures = %s\n", pbuf);
860 	}
861 #endif
862 
863 	/*
864 	 * Set up the HWPCB so that it's safe to configure secondary
865 	 * CPUs.
866 	 */
867 	hwrpb_primary_init();
868 }
869 
870 /*
871  * Retrieve the platform name from the DSR.
872  */
873 const char *
874 alpha_dsr_sysname(void)
875 {
876 	struct dsrdb *dsr;
877 	const char *sysname;
878 
879 	/*
880 	 * DSR does not exist on early HWRPB versions.
881 	 */
882 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
883 		return (NULL);
884 
885 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
886 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
887 	    sizeof(u_int64_t)));
888 	return (sysname);
889 }
890 
891 /*
892  * Lookup the system specified system variation in the provided table,
893  * returning the model string on match.
894  */
895 const char *
896 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
897 {
898 	int i;
899 
900 	for (i = 0; avtp[i].avt_model != NULL; i++)
901 		if (avtp[i].avt_variation == variation)
902 			return (avtp[i].avt_model);
903 	return (NULL);
904 }
905 
906 /*
907  * Generate a default platform name based for unknown system variations.
908  */
909 const char *
910 alpha_unknown_sysname(void)
911 {
912 	static char s[128];		/* safe size */
913 
914 	sprintf(s, "%s family, unknown model variation 0x%lx",
915 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
916 	return ((const char *)s);
917 }
918 
919 void
920 identifycpu(void)
921 {
922 	char *s;
923 	int i;
924 
925 	/*
926 	 * print out CPU identification information.
927 	 */
928 	printf("%s", cpu_model);
929 	for(s = cpu_model; *s; ++s)
930 		if(strncasecmp(s, "MHz", 3) == 0)
931 			goto skipMHz;
932 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
933 skipMHz:
934 	printf(", s/n ");
935 	for (i = 0; i < 10; i++)
936 		printf("%c", hwrpb->rpb_ssn[i]);
937 	printf("\n");
938 	printf("%ld byte page size, %d processor%s.\n",
939 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
940 #if 0
941 	/* this isn't defined for any systems that we run on? */
942 	printf("serial number 0x%lx 0x%lx\n",
943 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
944 
945 	/* and these aren't particularly useful! */
946 	printf("variation: 0x%lx, revision 0x%lx\n",
947 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
948 #endif
949 }
950 
951 int	waittime = -1;
952 struct pcb dumppcb;
953 
954 void
955 cpu_reboot(int howto, char *bootstr)
956 {
957 #if defined(MULTIPROCESSOR)
958 	u_long cpu_id = cpu_number();
959 	u_long wait_mask;
960 	int i;
961 #endif
962 
963 	/* If "always halt" was specified as a boot flag, obey. */
964 	if ((boothowto & RB_HALT) != 0)
965 		howto |= RB_HALT;
966 
967 	boothowto = howto;
968 
969 	/* If system is cold, just halt. */
970 	if (cold) {
971 		boothowto |= RB_HALT;
972 		goto haltsys;
973 	}
974 
975 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
976 		waittime = 0;
977 		vfs_shutdown();
978 		/*
979 		 * If we've been adjusting the clock, the todr
980 		 * will be out of synch; adjust it now.
981 		 */
982 		resettodr();
983 	}
984 
985 	/* Disable interrupts. */
986 	splhigh();
987 
988 #if defined(MULTIPROCESSOR)
989 	/*
990 	 * Halt all other CPUs.  If we're not the primary, the
991 	 * primary will spin, waiting for us to halt.
992 	 */
993 	cpu_id = cpu_number();		/* may have changed cpu */
994 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
995 
996 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
997 
998 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
999 	cpus_paused = 0;
1000 
1001 	for (i = 0; i < 10000; i++) {
1002 		alpha_mb();
1003 		if (cpus_running == wait_mask)
1004 			break;
1005 		delay(1000);
1006 	}
1007 	alpha_mb();
1008 	if (cpus_running != wait_mask)
1009 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1010 		    cpus_running);
1011 #endif /* MULTIPROCESSOR */
1012 
1013 	/* If rebooting and a dump is requested do it. */
1014 #if 0
1015 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1016 #else
1017 	if (boothowto & RB_DUMP)
1018 #endif
1019 		dumpsys();
1020 
1021 haltsys:
1022 
1023 	/* run any shutdown hooks */
1024 	doshutdownhooks();
1025 
1026 	pmf_system_shutdown(boothowto);
1027 
1028 #ifdef BOOTKEY
1029 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1030 	cnpollc(1);	/* for proper keyboard command handling */
1031 	cngetc();
1032 	cnpollc(0);
1033 	printf("\n");
1034 #endif
1035 
1036 	/* Finally, powerdown/halt/reboot the system. */
1037 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1038 	    platform.powerdown != NULL) {
1039 		(*platform.powerdown)();
1040 		printf("WARNING: powerdown failed!\n");
1041 	}
1042 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1043 #if defined(MULTIPROCESSOR)
1044 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
1045 		cpu_halt();
1046 	else
1047 #endif
1048 		prom_halt(boothowto & RB_HALT);
1049 	/*NOTREACHED*/
1050 }
1051 
1052 /*
1053  * These variables are needed by /sbin/savecore
1054  */
1055 u_int32_t dumpmag = 0x8fca0101;	/* magic number */
1056 int 	dumpsize = 0;		/* pages */
1057 long	dumplo = 0; 		/* blocks */
1058 
1059 /*
1060  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1061  */
1062 int
1063 cpu_dumpsize(void)
1064 {
1065 	int size;
1066 
1067 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1068 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1069 	if (roundup(size, dbtob(1)) != dbtob(1))
1070 		return -1;
1071 
1072 	return (1);
1073 }
1074 
1075 /*
1076  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1077  */
1078 u_long
1079 cpu_dump_mempagecnt(void)
1080 {
1081 	u_long i, n;
1082 
1083 	n = 0;
1084 	for (i = 0; i < mem_cluster_cnt; i++)
1085 		n += atop(mem_clusters[i].size);
1086 	return (n);
1087 }
1088 
1089 /*
1090  * cpu_dump: dump machine-dependent kernel core dump headers.
1091  */
1092 int
1093 cpu_dump(void)
1094 {
1095 	int (*dump)(dev_t, daddr_t, void *, size_t);
1096 	char buf[dbtob(1)];
1097 	kcore_seg_t *segp;
1098 	cpu_kcore_hdr_t *cpuhdrp;
1099 	phys_ram_seg_t *memsegp;
1100 	const struct bdevsw *bdev;
1101 	int i;
1102 
1103 	bdev = bdevsw_lookup(dumpdev);
1104 	if (bdev == NULL)
1105 		return (ENXIO);
1106 	dump = bdev->d_dump;
1107 
1108 	memset(buf, 0, sizeof buf);
1109 	segp = (kcore_seg_t *)buf;
1110 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1111 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1112 	    ALIGN(sizeof(*cpuhdrp))];
1113 
1114 	/*
1115 	 * Generate a segment header.
1116 	 */
1117 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1118 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1119 
1120 	/*
1121 	 * Add the machine-dependent header info.
1122 	 */
1123 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1124 	cpuhdrp->page_size = PAGE_SIZE;
1125 	cpuhdrp->nmemsegs = mem_cluster_cnt;
1126 
1127 	/*
1128 	 * Fill in the memory segment descriptors.
1129 	 */
1130 	for (i = 0; i < mem_cluster_cnt; i++) {
1131 		memsegp[i].start = mem_clusters[i].start;
1132 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1133 	}
1134 
1135 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1136 }
1137 
1138 /*
1139  * This is called by main to set dumplo and dumpsize.
1140  * Dumps always skip the first PAGE_SIZE of disk space
1141  * in case there might be a disk label stored there.
1142  * If there is extra space, put dump at the end to
1143  * reduce the chance that swapping trashes it.
1144  */
1145 void
1146 cpu_dumpconf(void)
1147 {
1148 	const struct bdevsw *bdev;
1149 	int nblks, dumpblks;	/* size of dump area */
1150 
1151 	if (dumpdev == NODEV)
1152 		goto bad;
1153 	bdev = bdevsw_lookup(dumpdev);
1154 	if (bdev == NULL) {
1155 		dumpdev = NODEV;
1156 		goto bad;
1157 	}
1158 	if (bdev->d_psize == NULL)
1159 		goto bad;
1160 	nblks = (*bdev->d_psize)(dumpdev);
1161 	if (nblks <= ctod(1))
1162 		goto bad;
1163 
1164 	dumpblks = cpu_dumpsize();
1165 	if (dumpblks < 0)
1166 		goto bad;
1167 	dumpblks += ctod(cpu_dump_mempagecnt());
1168 
1169 	/* If dump won't fit (incl. room for possible label), punt. */
1170 	if (dumpblks > (nblks - ctod(1)))
1171 		goto bad;
1172 
1173 	/* Put dump at end of partition */
1174 	dumplo = nblks - dumpblks;
1175 
1176 	/* dumpsize is in page units, and doesn't include headers. */
1177 	dumpsize = cpu_dump_mempagecnt();
1178 	return;
1179 
1180 bad:
1181 	dumpsize = 0;
1182 	return;
1183 }
1184 
1185 /*
1186  * Dump the kernel's image to the swap partition.
1187  */
1188 #define	BYTES_PER_DUMP	PAGE_SIZE
1189 
1190 void
1191 dumpsys(void)
1192 {
1193 	const struct bdevsw *bdev;
1194 	u_long totalbytesleft, bytes, i, n, memcl;
1195 	u_long maddr;
1196 	int psize;
1197 	daddr_t blkno;
1198 	int (*dump)(dev_t, daddr_t, void *, size_t);
1199 	int error;
1200 
1201 	/* Save registers. */
1202 	savectx(&dumppcb);
1203 
1204 	if (dumpdev == NODEV)
1205 		return;
1206 	bdev = bdevsw_lookup(dumpdev);
1207 	if (bdev == NULL || bdev->d_psize == NULL)
1208 		return;
1209 
1210 	/*
1211 	 * For dumps during autoconfiguration,
1212 	 * if dump device has already configured...
1213 	 */
1214 	if (dumpsize == 0)
1215 		cpu_dumpconf();
1216 	if (dumplo <= 0) {
1217 		printf("\ndump to dev %u,%u not possible\n",
1218 		    major(dumpdev), minor(dumpdev));
1219 		return;
1220 	}
1221 	printf("\ndumping to dev %u,%u offset %ld\n",
1222 	    major(dumpdev), minor(dumpdev), dumplo);
1223 
1224 	psize = (*bdev->d_psize)(dumpdev);
1225 	printf("dump ");
1226 	if (psize == -1) {
1227 		printf("area unavailable\n");
1228 		return;
1229 	}
1230 
1231 	/* XXX should purge all outstanding keystrokes. */
1232 
1233 	if ((error = cpu_dump()) != 0)
1234 		goto err;
1235 
1236 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
1237 	blkno = dumplo + cpu_dumpsize();
1238 	dump = bdev->d_dump;
1239 	error = 0;
1240 
1241 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1242 		maddr = mem_clusters[memcl].start;
1243 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1244 
1245 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1246 
1247 			/* Print out how many MBs we to go. */
1248 			if ((totalbytesleft % (1024*1024)) == 0)
1249 				printf_nolog("%ld ",
1250 				    totalbytesleft / (1024 * 1024));
1251 
1252 			/* Limit size for next transfer. */
1253 			n = bytes - i;
1254 			if (n > BYTES_PER_DUMP)
1255 				n =  BYTES_PER_DUMP;
1256 
1257 			error = (*dump)(dumpdev, blkno,
1258 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1259 			if (error)
1260 				goto err;
1261 			maddr += n;
1262 			blkno += btodb(n);			/* XXX? */
1263 
1264 			/* XXX should look for keystrokes, to cancel. */
1265 		}
1266 	}
1267 
1268 err:
1269 	switch (error) {
1270 
1271 	case ENXIO:
1272 		printf("device bad\n");
1273 		break;
1274 
1275 	case EFAULT:
1276 		printf("device not ready\n");
1277 		break;
1278 
1279 	case EINVAL:
1280 		printf("area improper\n");
1281 		break;
1282 
1283 	case EIO:
1284 		printf("i/o error\n");
1285 		break;
1286 
1287 	case EINTR:
1288 		printf("aborted from console\n");
1289 		break;
1290 
1291 	case 0:
1292 		printf("succeeded\n");
1293 		break;
1294 
1295 	default:
1296 		printf("error %d\n", error);
1297 		break;
1298 	}
1299 	printf("\n\n");
1300 	delay(1000);
1301 }
1302 
1303 void
1304 frametoreg(const struct trapframe *framep, struct reg *regp)
1305 {
1306 
1307 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1308 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1309 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1310 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1311 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1312 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1313 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1314 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1315 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1316 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1317 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1318 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1319 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1320 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1321 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1322 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1323 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1324 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1325 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1326 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1327 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1328 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1329 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1330 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1331 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1332 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1333 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1334 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1335 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1336 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1337 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1338 	regp->r_regs[R_ZERO] = 0;
1339 }
1340 
1341 void
1342 regtoframe(const struct reg *regp, struct trapframe *framep)
1343 {
1344 
1345 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1346 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1347 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1348 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1349 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1350 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1351 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1352 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1353 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1354 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1355 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1356 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1357 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1358 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1359 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1360 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1361 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1362 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1363 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1364 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1365 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1366 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1367 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1368 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1369 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1370 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1371 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1372 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1373 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1374 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1375 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1376 	/* ??? = regp->r_regs[R_ZERO]; */
1377 }
1378 
1379 void
1380 printregs(struct reg *regp)
1381 {
1382 	int i;
1383 
1384 	for (i = 0; i < 32; i++)
1385 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1386 		   i & 1 ? "\n" : "\t");
1387 }
1388 
1389 void
1390 regdump(struct trapframe *framep)
1391 {
1392 	struct reg reg;
1393 
1394 	frametoreg(framep, &reg);
1395 	reg.r_regs[R_SP] = alpha_pal_rdusp();
1396 
1397 	printf("REGISTERS:\n");
1398 	printregs(&reg);
1399 }
1400 
1401 
1402 
1403 void *
1404 getframe(const struct lwp *l, int sig, int *onstack)
1405 {
1406 	void *frame;
1407 
1408 	/* Do we need to jump onto the signal stack? */
1409 	*onstack =
1410 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1411 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1412 
1413 	if (*onstack)
1414 		frame = (void *)((char *)l->l_sigstk.ss_sp +
1415 					l->l_sigstk.ss_size);
1416 	else
1417 		frame = (void *)(alpha_pal_rdusp());
1418 	return (frame);
1419 }
1420 
1421 void
1422 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1423 {
1424 	struct trapframe *tf = l->l_md.md_tf;
1425 
1426 	tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1427 	tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1428 	tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1429 	alpha_pal_wrusp((unsigned long)fp);
1430 }
1431 
1432 
1433 /*
1434  * Send an interrupt to process, new style
1435  */
1436 void
1437 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1438 {
1439 	struct lwp *l = curlwp;
1440 	struct proc *p = l->l_proc;
1441 	struct sigacts *ps = p->p_sigacts;
1442 	int onstack, sig = ksi->ksi_signo, error;
1443 	struct sigframe_siginfo *fp, frame;
1444 	struct trapframe *tf;
1445 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1446 
1447 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1448 	tf = l->l_md.md_tf;
1449 
1450 	/* Allocate space for the signal handler context. */
1451 	fp--;
1452 
1453 #ifdef DEBUG
1454 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1455 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1456 		    sig, &onstack, fp);
1457 #endif
1458 
1459 	/* Build stack frame for signal trampoline. */
1460 
1461 	frame.sf_si._info = ksi->ksi_info;
1462 	frame.sf_uc.uc_flags = _UC_SIGMASK;
1463 	frame.sf_uc.uc_sigmask = *mask;
1464 	frame.sf_uc.uc_link = l->l_ctxlink;
1465 	memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1466 	sendsig_reset(l, sig);
1467 	mutex_exit(p->p_lock);
1468 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1469 	error = copyout(&frame, fp, sizeof(frame));
1470 	mutex_enter(p->p_lock);
1471 
1472 	if (error != 0) {
1473 		/*
1474 		 * Process has trashed its stack; give it an illegal
1475 		 * instruction to halt it in its tracks.
1476 		 */
1477 #ifdef DEBUG
1478 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1479 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1480 			    p->p_pid, sig);
1481 #endif
1482 		sigexit(l, SIGILL);
1483 		/* NOTREACHED */
1484 	}
1485 
1486 #ifdef DEBUG
1487 	if (sigdebug & SDB_FOLLOW)
1488 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1489 		       p->p_pid, sig, fp, ksi->ksi_code);
1490 #endif
1491 
1492 	/*
1493 	 * Set up the registers to directly invoke the signal handler.  The
1494 	 * signal trampoline is then used to return from the signal.  Note
1495 	 * the trampoline version numbers are coordinated with machine-
1496 	 * dependent code in libc.
1497 	 */
1498 
1499 	tf->tf_regs[FRAME_A0] = sig;
1500 	tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1501 	tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1502 
1503 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1504 
1505 	/* Remember that we're now on the signal stack. */
1506 	if (onstack)
1507 		l->l_sigstk.ss_flags |= SS_ONSTACK;
1508 
1509 #ifdef DEBUG
1510 	if (sigdebug & SDB_FOLLOW)
1511 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1512 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1513 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1514 		printf("sendsig_siginfo(%d): sig %d returns\n",
1515 		    p->p_pid, sig);
1516 #endif
1517 }
1518 
1519 
1520 void
1521 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1522 {
1523        	struct trapframe *tf;
1524 
1525 	tf = l->l_md.md_tf;
1526 
1527 	tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1528 	tf->tf_regs[FRAME_RA] = 0;
1529 	tf->tf_regs[FRAME_A0] = type;
1530 	tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1531 	tf->tf_regs[FRAME_A2] = nevents;
1532 	tf->tf_regs[FRAME_A3] = ninterrupted;
1533 	tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1534 	tf->tf_regs[FRAME_T12] = (u_int64_t)upcall;  /* t12 is pv */
1535 	alpha_pal_wrusp((unsigned long)sp);
1536 }
1537 
1538 /*
1539  * machine dependent system variables.
1540  */
1541 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1542 {
1543 
1544 	sysctl_createv(clog, 0, NULL, NULL,
1545 		       CTLFLAG_PERMANENT,
1546 		       CTLTYPE_NODE, "machdep", NULL,
1547 		       NULL, 0, NULL, 0,
1548 		       CTL_MACHDEP, CTL_EOL);
1549 
1550 	sysctl_createv(clog, 0, NULL, NULL,
1551 		       CTLFLAG_PERMANENT,
1552 		       CTLTYPE_STRUCT, "console_device", NULL,
1553 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
1554 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1555 	sysctl_createv(clog, 0, NULL, NULL,
1556 		       CTLFLAG_PERMANENT,
1557 		       CTLTYPE_STRING, "root_device", NULL,
1558 		       sysctl_root_device, 0, NULL, 0,
1559 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1560 	sysctl_createv(clog, 0, NULL, NULL,
1561 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1562 		       CTLTYPE_INT, "unaligned_print", NULL,
1563 		       NULL, 0, &alpha_unaligned_print, 0,
1564 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1565 	sysctl_createv(clog, 0, NULL, NULL,
1566 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1567 		       CTLTYPE_INT, "unaligned_fix", NULL,
1568 		       NULL, 0, &alpha_unaligned_fix, 0,
1569 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1570 	sysctl_createv(clog, 0, NULL, NULL,
1571 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1572 		       CTLTYPE_INT, "unaligned_sigbus", NULL,
1573 		       NULL, 0, &alpha_unaligned_sigbus, 0,
1574 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1575 	sysctl_createv(clog, 0, NULL, NULL,
1576 		       CTLFLAG_PERMANENT,
1577 		       CTLTYPE_STRING, "booted_kernel", NULL,
1578 		       NULL, 0, bootinfo.booted_kernel, 0,
1579 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1580 	sysctl_createv(clog, 0, NULL, NULL,
1581 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1582 		       CTLTYPE_INT, "fp_sync_complete", NULL,
1583 		       NULL, 0, &alpha_fp_sync_complete, 0,
1584 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1585 }
1586 
1587 /*
1588  * Set registers on exec.
1589  */
1590 void
1591 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1592 {
1593 	struct trapframe *tfp = l->l_md.md_tf;
1594 	struct pcb *pcb;
1595 #ifdef DEBUG
1596 	int i;
1597 #endif
1598 
1599 #ifdef DEBUG
1600 	/*
1601 	 * Crash and dump, if the user requested it.
1602 	 */
1603 	if (boothowto & RB_DUMP)
1604 		panic("crash requested by boot flags");
1605 #endif
1606 
1607 #ifdef DEBUG
1608 	for (i = 0; i < FRAME_SIZE; i++)
1609 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
1610 #else
1611 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1612 #endif
1613 	pcb = lwp_getpcb(l);
1614 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1615 	alpha_pal_wrusp(stack);
1616 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1617 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1618 
1619 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
1620 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
1621 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
1622 	tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr;	/* a3 = ps_strings */
1623 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
1624 
1625 	l->l_md.md_flags &= ~MDP_FPUSED;
1626 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1627 		l->l_md.md_flags &= ~MDP_FP_C;
1628 		pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1629 	}
1630 	if (pcb->pcb_fpcpu != NULL)
1631 		fpusave_proc(l, 0);
1632 }
1633 
1634 /*
1635  * Release the FPU.
1636  */
1637 void
1638 fpusave_cpu(struct cpu_info *ci, int save)
1639 {
1640 	struct lwp *l;
1641 	struct pcb *pcb;
1642 #if defined(MULTIPROCESSOR)
1643 	int s;
1644 #endif
1645 
1646 	KDASSERT(ci == curcpu());
1647 
1648 #if defined(MULTIPROCESSOR)
1649 	s = splhigh();		/* block IPIs for the duration */
1650 	atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1651 #endif
1652 
1653 	l = ci->ci_fpcurlwp;
1654 	if (l == NULL)
1655 		goto out;
1656 
1657 	pcb = lwp_getpcb(l);
1658 	if (save) {
1659 		alpha_pal_wrfen(1);
1660 		savefpstate(&pcb->pcb_fp);
1661 	}
1662 
1663 	alpha_pal_wrfen(0);
1664 
1665 	FPCPU_LOCK(pcb);
1666 
1667 	pcb->pcb_fpcpu = NULL;
1668 	ci->ci_fpcurlwp = NULL;
1669 
1670 	FPCPU_UNLOCK(pcb);
1671 
1672  out:
1673 #if defined(MULTIPROCESSOR)
1674 	atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1675 	splx(s);
1676 #endif
1677 	return;
1678 }
1679 
1680 /*
1681  * Synchronize FP state for this process.
1682  */
1683 void
1684 fpusave_proc(struct lwp *l, int save)
1685 {
1686 	struct cpu_info *ci = curcpu();
1687 	struct cpu_info *oci;
1688 	struct pcb *pcb;
1689 #if defined(MULTIPROCESSOR)
1690 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1691 	int s, spincount;
1692 #endif
1693 
1694 	pcb = lwp_getpcb(l);
1695 	KDASSERT(pcb != NULL);
1696 
1697 #if defined(MULTIPROCESSOR)
1698 	s = splhigh();		/* block IPIs for the duration */
1699 #endif
1700 	FPCPU_LOCK(pcb);
1701 
1702 	oci = pcb->pcb_fpcpu;
1703 	if (oci == NULL) {
1704 		FPCPU_UNLOCK(pcb);
1705 #if defined(MULTIPROCESSOR)
1706 		splx(s);
1707 #endif
1708 		return;
1709 	}
1710 
1711 #if defined(MULTIPROCESSOR)
1712 	if (oci == ci) {
1713 		KASSERT(ci->ci_fpcurlwp == l);
1714 		FPCPU_UNLOCK(pcb);
1715 		splx(s);
1716 		fpusave_cpu(ci, save);
1717 		return;
1718 	}
1719 
1720 	KASSERT(oci->ci_fpcurlwp == l);
1721 	alpha_send_ipi(oci->ci_cpuid, ipi);
1722 	FPCPU_UNLOCK(pcb);
1723 
1724 	spincount = 0;
1725 	while (pcb->pcb_fpcpu != NULL) {
1726 		spincount++;
1727 		delay(1000);	/* XXX */
1728 		if (spincount > 10000)
1729 			panic("fpsave ipi didn't");
1730 	}
1731 #else
1732 	KASSERT(ci->ci_fpcurlwp == l);
1733 	FPCPU_UNLOCK(pcb);
1734 	fpusave_cpu(ci, save);
1735 #endif /* MULTIPROCESSOR */
1736 }
1737 
1738 /*
1739  * Wait "n" microseconds.
1740  */
1741 void
1742 delay(unsigned long n)
1743 {
1744 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
1745 
1746 	if (n == 0)
1747 		return;
1748 
1749 	pcc0 = alpha_rpcc() & 0xffffffffUL;
1750 	cycles = 0;
1751 	usec = 0;
1752 
1753 	while (usec <= n) {
1754 		/*
1755 		 * Get the next CPU cycle count- assumes that we cannot
1756 		 * have had more than one 32 bit overflow.
1757 		 */
1758 		pcc1 = alpha_rpcc() & 0xffffffffUL;
1759 		if (pcc1 < pcc0)
1760 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
1761 		else
1762 			curcycle = pcc1 - pcc0;
1763 
1764 		/*
1765 		 * We now have the number of processor cycles since we
1766 		 * last checked. Add the current cycle count to the
1767 		 * running total. If it's over cycles_per_usec, increment
1768 		 * the usec counter.
1769 		 */
1770 		cycles += curcycle;
1771 		while (cycles > cycles_per_usec) {
1772 			usec++;
1773 			cycles -= cycles_per_usec;
1774 		}
1775 		pcc0 = pcc1;
1776 	}
1777 }
1778 
1779 #ifdef EXEC_ECOFF
1780 void
1781 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1782 {
1783 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1784 
1785 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1786 }
1787 
1788 /*
1789  * cpu_exec_ecoff_hook():
1790  *	cpu-dependent ECOFF format hook for execve().
1791  *
1792  * Do any machine-dependent diddling of the exec package when doing ECOFF.
1793  *
1794  */
1795 int
1796 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1797 {
1798 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1799 	int error;
1800 
1801 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1802 		error = 0;
1803 	else
1804 		error = ENOEXEC;
1805 
1806 	return (error);
1807 }
1808 #endif /* EXEC_ECOFF */
1809 
1810 int
1811 alpha_pa_access(u_long pa)
1812 {
1813 	int i;
1814 
1815 	for (i = 0; i < mem_cluster_cnt; i++) {
1816 		if (pa < mem_clusters[i].start)
1817 			continue;
1818 		if ((pa - mem_clusters[i].start) >=
1819 		    (mem_clusters[i].size & ~PAGE_MASK))
1820 			continue;
1821 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
1822 	}
1823 
1824 	/*
1825 	 * Address is not a memory address.  If we're secure, disallow
1826 	 * access.  Otherwise, grant read/write.
1827 	 */
1828 	if (kauth_authorize_machdep(kauth_cred_get(),
1829 	    KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1830 		return (PROT_NONE);
1831 	else
1832 		return (PROT_READ | PROT_WRITE);
1833 }
1834 
1835 /* XXX XXX BEGIN XXX XXX */
1836 paddr_t alpha_XXX_dmamap_or;					/* XXX */
1837 								/* XXX */
1838 paddr_t								/* XXX */
1839 alpha_XXX_dmamap(v)						/* XXX */
1840 	vaddr_t v;						/* XXX */
1841 {								/* XXX */
1842 								/* XXX */
1843 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
1844 }								/* XXX */
1845 /* XXX XXX END XXX XXX */
1846 
1847 char *
1848 dot_conv(unsigned long x)
1849 {
1850 	int i;
1851 	char *xc;
1852 	static int next;
1853 	static char space[2][20];
1854 
1855 	xc = space[next ^= 1] + sizeof space[0];
1856 	*--xc = '\0';
1857 	for (i = 0;; ++i) {
1858 		if (i && (i & 3) == 0)
1859 			*--xc = '.';
1860 		*--xc = hexdigits[x & 0xf];
1861 		x >>= 4;
1862 		if (x == 0)
1863 			break;
1864 	}
1865 	return xc;
1866 }
1867 
1868 void
1869 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1870 {
1871 	struct trapframe *frame = l->l_md.md_tf;
1872 	struct pcb *pcb = lwp_getpcb(l);
1873 	__greg_t *gr = mcp->__gregs;
1874 	__greg_t ras_pc;
1875 
1876 	/* Save register context. */
1877 	frametoreg(frame, (struct reg *)gr);
1878 	/* XXX if there's a better, general way to get the USP of
1879 	 * an LWP that might or might not be curlwp, I'd like to know
1880 	 * about it.
1881 	 */
1882 	if (l == curlwp) {
1883 		gr[_REG_SP] = alpha_pal_rdusp();
1884 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
1885 	} else {
1886 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1887 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1888 	}
1889 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1890 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1891 
1892 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1893 	    (void *) gr[_REG_PC])) != -1)
1894 		gr[_REG_PC] = ras_pc;
1895 
1896 	*flags |= _UC_CPU | _UC_UNIQUE;
1897 
1898 	/* Save floating point register context, if any, and copy it. */
1899 	if (l->l_md.md_flags & MDP_FPUSED) {
1900 		fpusave_proc(l, 1);
1901 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1902 		    sizeof (mcp->__fpregs));
1903 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1904 		*flags |= _UC_FPU;
1905 	}
1906 }
1907 
1908 
1909 int
1910 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1911 {
1912 	struct trapframe *frame = l->l_md.md_tf;
1913 	struct pcb *pcb = lwp_getpcb(l);
1914 	const __greg_t *gr = mcp->__gregs;
1915 
1916 	/* Restore register context, if any. */
1917 	if (flags & _UC_CPU) {
1918 		/* Check for security violations first. */
1919 		if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1920 		    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1921 			return (EINVAL);
1922 
1923 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
1924 		if (l == curlwp)
1925 			alpha_pal_wrusp(gr[_REG_SP]);
1926 		else
1927 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1928 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1929 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1930 	}
1931 	if (flags & _UC_UNIQUE) {
1932 		if (l == curlwp)
1933 			alpha_pal_wrunique(gr[_REG_UNIQUE]);
1934 		else
1935 			pcb->pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1936 	}
1937 	/* Restore floating point register context, if any. */
1938 	if (flags & _UC_FPU) {
1939 		/* If we have an FP register context, get rid of it. */
1940 		if (pcb->pcb_fpcpu != NULL)
1941 			fpusave_proc(l, 0);
1942 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1943 		    sizeof (pcb->pcb_fp));
1944 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1945 		l->l_md.md_flags |= MDP_FPUSED;
1946 	}
1947 
1948 	return (0);
1949 }
1950 
1951 /*
1952  * Preempt the current process if in interrupt from user mode,
1953  * or after the current trap/syscall if in system mode.
1954  */
1955 void
1956 cpu_need_resched(struct cpu_info *ci, int flags)
1957 {
1958 #if defined(MULTIPROCESSOR)
1959 	bool immed = (flags & RESCHED_IMMED) != 0;
1960 #endif /* defined(MULTIPROCESSOR) */
1961 
1962 	aston(ci->ci_data.cpu_onproc);
1963 	ci->ci_want_resched = 1;
1964 	if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1965 #if defined(MULTIPROCESSOR)
1966 		if (immed && ci != curcpu()) {
1967 			alpha_send_ipi(ci->ci_cpuid, 0);
1968 		}
1969 #endif /* defined(MULTIPROCESSOR) */
1970 	}
1971 }
1972