xref: /netbsd/sys/arch/amiga/dev/ite_rt.c (revision 6550d01e)
1 /*	$NetBSD: ite_rt.c,v 1.24 2009/10/26 19:16:54 cegger Exp $ */
2 
3 /*
4  * Copyright (c) 1993 Markus Wild
5  * Copyright (c) 1993 Lutz Vieweg
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Lutz Vieweg.
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: ite_rt.c,v 1.24 2009/10/26 19:16:54 cegger Exp $");
36 
37 #include "grfrt.h"
38 #if NGRFRT > 0
39 
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/tty.h>
46 #include <sys/systm.h>
47 #include <dev/cons.h>
48 #include <machine/cpu.h>
49 #include <amiga/amiga/device.h>
50 #include <amiga/dev/itevar.h>
51 #include <amiga/dev/grfioctl.h>
52 #include <amiga/dev/grfvar.h>
53 #include <amiga/dev/grf_rtreg.h>
54 
55 int retina_console = 1;
56 
57 void retina_cursor(struct ite_softc *, int);
58 void retina_scroll(struct ite_softc *, int, int, int, int);
59 void retina_deinit(struct ite_softc *);
60 void retina_clear(struct ite_softc *, int, int, int, int);
61 void retina_putc(struct ite_softc *, int, int, int, int);
62 void retina_init(struct ite_softc *);
63 
64 #ifdef RETINA_SPEED_HACK
65 static void screen_up(struct ite_softc *, int, int, int);
66 static void screen_down(struct ite_softc *, int, int, int);
67 #endif
68 
69 /*
70  * this function is called from grf_rt to init the grf_softc->g_conpri
71  * field each time a retina is attached.
72  */
73 int
74 grfrt_cnprobe(void)
75 {
76 	static int done;
77 	int rv;
78 
79 	if (retina_console && done == 0)
80 		rv = CN_INTERNAL;
81 	else
82 		rv = CN_NORMAL;
83 	done = 1;
84 	return(rv);
85 }
86 
87 /*
88  * init the required fields in the grf_softc struct for a
89  * grf to function as an ite.
90  */
91 void
92 grfrt_iteinit(struct grf_softc *gp)
93 {
94 	gp->g_iteinit = retina_init;
95 	gp->g_itedeinit = retina_deinit;
96 	gp->g_iteclear = retina_clear;
97 	gp->g_iteputc = retina_putc;
98 	gp->g_itescroll = retina_scroll;
99 	gp->g_itecursor = retina_cursor;
100 }
101 
102 
103 void
104 retina_init(struct ite_softc *ip)
105 {
106 	struct MonDef *md;
107 
108 	ip->priv = ip->grf->g_data;
109 	md = (struct MonDef *) ip->priv;
110 
111 	ip->cols = md->TX;
112 	ip->rows = md->TY;
113 }
114 
115 
116 void
117 retina_cursor(struct ite_softc *ip, int flag)
118 {
119       volatile void *ba = ip->grf->g_regkva;
120 
121       if (flag == ERASE_CURSOR)
122         {
123 	  /* disable cursor */
124           WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) | 0x20);
125         }
126       else
127 	{
128 	  int pos = ip->curx + ip->cury * ip->cols;
129 
130 	  /* make sure to enable cursor */
131           WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) & ~0x20);
132 
133 	  /* and position it */
134 	  WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, (u_char) (pos >> 8));
135 	  WCrt (ba, CRT_ID_CURSOR_LOC_LOW,  (u_char) pos);
136 
137 	  ip->cursorx = ip->curx;
138 	  ip->cursory = ip->cury;
139 	}
140 }
141 
142 
143 
144 #ifdef	RETINA_SPEED_HACK
145 static void
146 screen_up(struct ite_softc *ip, int top, int bottom, int lines)
147 {
148 	volatile void *ba = ip->grf->g_regkva;
149 	volatile void *fb = ip->grf->g_fbkva;
150 	const struct MonDef * md = (struct MonDef *) ip->priv;
151 
152 	/* do some bounds-checking here.. */
153 	if (top >= bottom)
154 	  return;
155 
156 	if (top + lines >= bottom)
157 	  {
158 	    retina_clear (ip, top, 0, bottom - top, ip->cols);
159 	    return;
160 	  }
161 
162 	/* the trick here is to use a feature of the NCR chip. It can
163 	   optimize data access in various read/write modes. One of
164 	   the modes is able to read/write from/to different zones.
165 
166 	   Thus, by setting the read-offset to lineN, and the write-offset
167 	   to line0, we just cause read/write cycles for all characters
168 	   up to the last line, and have the chip transfer the data. The
169 	   `addqb' are the cheapest way to cause read/write cycles (DONT
170 	   use `tas' on the Amiga!), their results are completely ignored
171 	   by the NCR chip, it just replicates what it just read. */
172 
173 		/* write to primary, read from secondary */
174 	WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
175 		(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
176 		/* clear extended chain4 mode */
177 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
178 
179 		/* set write mode 1, "[...] data in the read latches is written
180 		   to memory during CPU memory write cycles. [...]" */
181 	WGfx (ba, GCT_ID_GRAPHICS_MODE,
182 		(RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
183 
184 	{
185 		/* write to line TOP */
186 		long toploc = top * (md->TX / 16);
187 		WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toploc));
188 		WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toploc >> 8)));
189 	}
190 	{
191 		/* read from line TOP + LINES */
192 		long fromloc = (top+lines) * (md->TX / 16);
193 		WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc)) ;
194 		WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ;
195 	}
196 	{
197 		void *p = (void *)fb;
198 		/* transfer all characters but LINES lines, unroll by 16 */
199 		short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1;
200 		do {
201 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
202 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
203 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
204 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
205 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
206 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
207 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
208 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
209 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
210 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
211 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
212 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
213 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
214 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
215 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
216 			__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
217 		} while (x--);
218 	}
219 
220 		/* reset to default values */
221 	WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0);
222 	WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0);
223 	WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0);
224 	WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0);
225 		/* write mode 0 */
226 	WGfx (ba, GCT_ID_GRAPHICS_MODE,
227 		(RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
228 		/* extended chain4 enable */
229 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR,
230 		RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
231 		/* read/write to primary on A0, secondary on B0 */
232 	WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
233 		(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40);
234 
235 
236 	/* fill the free lines with spaces */
237 
238 	{  /* feed latches with value */
239 		unsigned short * f = (unsigned short *) fb;
240 
241 		f += (1 + bottom - lines) * md->TX * 2;
242 		*f = 0x2010;
243 	}
244 
245 	   /* clear extended chain4 mode */
246 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
247 	   /* set write mode 1, "[...] data in the read latches is written
248 	      to memory during CPU memory write cycles. [...]" */
249 	WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
250 
251 	{
252 		unsigned long * p = (unsigned long *) fb;
253 		short x = (lines * (md->TX/16)) - 1;
254 		const unsigned long dummyval = 0;
255 
256 		p += (1 + bottom - lines) * (md->TX/4);
257 
258 		do {
259 			*p++ = dummyval;
260 			*p++ = dummyval;
261 			*p++ = dummyval;
262 			*p++ = dummyval;
263 		} while (x--);
264 	}
265 
266 	   /* write mode 0 */
267 	WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
268 	   /* extended chain4 enable */
269 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
270 };
271 
272 
273 static void
274 screen_down(struct ite_softc *ip, int top, int bottom, int lines)
275 {
276 	volatile void *ba = ip->grf->g_regkva;
277 	volatile void *fb = ip->grf->g_fbkva;
278 	const struct MonDef * md = (struct MonDef *) ip->priv;
279 
280 	/* do some bounds-checking here.. */
281 	if (top >= bottom)
282 	  return;
283 
284 	if (top + lines >= bottom)
285 	  {
286 	    retina_clear (ip, top, 0, bottom - top, ip->cols);
287 	    return;
288 	  }
289 
290 	/* see screen_up() for explanation of chip-tricks */
291 
292 		/* write to primary, read from secondary */
293 	WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
294 		(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
295 		/* clear extended chain4 mode */
296 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
297 
298 		/* set write mode 1, "[...] data in the read latches is written
299 		   to memory during CPU memory write cycles. [...]" */
300 	WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
301 
302 	{
303 		/* write to line TOP + LINES */
304 		long toloc = (top + lines) * (md->TX / 16);
305 		WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toloc));
306 		WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toloc >> 8)));
307 	}
308 	{
309 		/* read from line TOP */
310 		long fromloc = top * (md->TX / 16);
311 		WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc));
312 		WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ;
313 	}
314 
315 	{
316 		void *p = (void *)fb;
317 		short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1;
318 		p += (1 + bottom - (top + lines)) * md->TX;
319 		do {
320 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
321 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
322 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
323 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
324 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
325 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
326 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
327 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
328 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
329 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
330 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
331 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
332 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
333 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
334 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
335 			__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
336 		} while (x--);
337 	}
338 
339 	WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0);
340 	WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0);
341 	WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0);
342 	WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0);
343 
344 		/* write mode 0 */
345 	WGfx (ba, GCT_ID_GRAPHICS_MODE,
346 		(RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
347 		/* extended chain4 enable */
348 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
349 		/* read/write to primary on A0, secondary on B0 */
350 	WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
351 		(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40 );
352 
353 	/* fill the free lines with spaces */
354 
355 	{  /* feed latches with value */
356 		unsigned short * f = (unsigned short *) fb;
357 
358 		f += top * md->TX * 2;
359 		*f = 0x2010;
360 	}
361 
362 	   /* clear extended chain4 mode */
363 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
364 	   /* set write mode 1, "[...] data in the read latches is written
365 	      to memory during CPU memory write cycles. [...]" */
366 	WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
367 
368 	{
369 		unsigned long * p = (unsigned long *) fb;
370 		short x = (lines * (md->TX/16)) - 1;
371 		const unsigned long dummyval = 0;
372 
373 		p += top * (md->TX/4);
374 
375 		do {
376 			*p++ = dummyval;
377 			*p++ = dummyval;
378 			*p++ = dummyval;
379 			*p++ = dummyval;
380 		} while (x--);
381 	}
382 
383 	   /* write mode 0 */
384 	WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
385 	   /* extended chain4 enable */
386 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
387 };
388 #endif	/* RETINA_SPEED_HACK */
389 
390 
391 void
392 retina_deinit(struct ite_softc *ip)
393 {
394 	ip->flags &= ~ITE_INITED;
395 }
396 
397 
398 void
399 retina_putc(struct ite_softc *ip, int c, int dy, int dx, int mode)
400 {
401 	volatile char *fb = (volatile char*)ip->grf->g_fbkva;
402 	register u_char attr;
403 
404 	attr = (mode & ATTR_INV) ? 0x21 : 0x10;
405 	if (mode & ATTR_UL)     attr  = 0x01;	/* ???????? */
406 	if (mode & ATTR_BOLD)   attr |= 0x08;
407 	if (mode & ATTR_BLINK)	attr |= 0x80;
408 
409 	fb += 4 * (dy * ip->cols + dx);
410 	*fb++ = c; *fb = attr;
411 }
412 
413 
414 void
415 retina_clear(struct ite_softc *ip, int sy, int sx, int h, int w)
416 {
417 	volatile u_short * fb = (volatile u_short *) ip->grf->g_fbkva;
418 	short x;
419 	const u_short fillval = 0x2010;
420 
421 	/* could probably be optimized just like the scrolling functions !! */
422 	fb += 2 * (sy * ip->cols + sx);
423 	while (h--)
424 	  {
425 	    for (x = 2 * (w - 1); x >= 0; x -= 2)
426 	      fb[x] = fillval;
427 	    fb += 2 * ip->cols;
428 	  }
429 }
430 
431 
432 /*
433  * RETINA_SPEED_HACK code seems to work on some boards and on others
434  * it causes text to smear horizontally
435  */
436 void
437 retina_scroll(struct ite_softc *ip, int sy, int sx, int count, int dir)
438 {
439 	volatile void *ba;
440 	u_long *fb;
441 
442 	ba = ip->grf->g_regkva;
443 	fb = (u_long *)__UNVOLATILE(ip->grf->g_fbkva);
444 
445 	retina_cursor(ip, ERASE_CURSOR);
446 
447 	if (dir == SCROLL_UP) {
448 #ifdef	RETINA_SPEED_HACK
449 		screen_up(ip, sy - count, ip->bottom_margin, count);
450 #else
451 		memcpy(fb + (sy - count) * ip->cols, fb + sy * ip->cols,
452 		    4 * (ip->bottom_margin - sy + 1) * ip->cols);
453 		retina_clear(ip, ip->bottom_margin + 1 - count, 0, count,
454 		    ip->cols);
455 #endif
456 	} else if (dir == SCROLL_DOWN) {
457 #ifdef	RETINA_SPEED_HACK
458 		screen_down(ip, sy, ip->bottom_margin, count);
459 #else
460 		memcpy(fb + (sy + count) * ip->cols, fb + sy * ip->cols,
461 		    4 * (ip->bottom_margin - sy - count + 1) * ip->cols);
462 		retina_clear(ip, sy, 0, count, ip->cols);
463 #endif
464 	} else if (dir == SCROLL_RIGHT) {
465 		memcpy(fb + sx + sy * ip->cols + count, fb + sx + sy * ip->cols,
466 		    4 * (ip->cols - (sx + count)));
467 		retina_clear(ip, sy, sx, 1, count);
468 	} else {
469 		memcpy(fb + sx - count + sy * ip->cols, fb + sx + sy * ip->cols,
470 		    4 * (ip->cols - sx));
471 		retina_clear(ip, sy, ip->cols - count, 1, count);
472 	}
473 #ifndef	RETINA_SPEED_HACK
474 	retina_cursor(ip, !ERASE_CURSOR);
475 #endif
476 }
477 
478 #endif /* NGRFRT */
479