xref: /netbsd/sys/arch/arm/arm32/cpu.c (revision bf9ec67e)
1 /*	$NetBSD: cpu.c,v 1.37 2002/05/12 15:05:41 ichiro Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master cpu
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 
46 #include <sys/param.h>
47 
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.37 2002/05/12 15:05:41 ichiro Exp $");
49 
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <uvm/uvm_extern.h>
55 #include <machine/conf.h>
56 #include <machine/cpu.h>
57 
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60 
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65 
66 char cpu_model[256];
67 
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70 
71 /*
72  * Identify the master (boot) CPU
73  */
74 
75 void
76 cpu_attach(struct device *dv)
77 {
78 	int usearmfpe;
79 
80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
81 
82 	curcpu()->ci_dev = dv;
83 
84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 	    NULL, dv->dv_xname, "arm700swibug");
86 
87 	/* Get the cpu ID from coprocessor 15 */
88 
89 	curcpu()->ci_cpuid = cpu_id();
90 	curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
91 	curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
92 
93 	identify_arm_cpu(dv, curcpu());
94 
95 	if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
96 		printf("%s: SA-110 with bugged STM^ instruction\n",
97 		       dv->dv_xname);
98 	}
99 
100 #ifdef CPU_ARM8
101 	if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
102 		int clock = arm8_clock_config(0, 0);
103 		char *fclk;
104 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
105 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
106 		printf("%s", (clock & 2) ? " sync" : "");
107 		switch ((clock >> 2) & 3) {
108 		case 0:
109 			fclk = "bus clock";
110 			break;
111 		case 1:
112 			fclk = "ref clock";
113 			break;
114 		case 3:
115 			fclk = "pll";
116 			break;
117 		default:
118 			fclk = "illegal";
119 			break;
120 		}
121 		printf(" fclk source=%s\n", fclk);
122  	}
123 #endif
124 
125 #ifdef ARMFPE
126 	/*
127 	 * Ok now we test for an FPA
128 	 * At this point no floating point emulator has been installed.
129 	 * This means any FP instruction will cause undefined exception.
130 	 * We install a temporay coproc 1 handler which will modify
131 	 * undefined_test if it is called.
132 	 * We then try to read the FP status register. If undefined_test
133 	 * has been decremented then the instruction was not handled by
134 	 * an FPA so we know the FPA is missing. If undefined_test is
135 	 * still 1 then we know the instruction was handled by an FPA.
136 	 * We then remove our test handler and look at the
137 	 * FP status register for identification.
138 	 */
139 
140 	/*
141 	 * Ok if ARMFPE is defined and the boot options request the
142 	 * ARM FPE then it will be installed as the FPE.
143 	 * This is just while I work on integrating the new FPE.
144 	 * It means the new FPE gets installed if compiled int (ARMFPE
145 	 * defined) and also gives me a on/off option when I boot in
146 	 * case the new FPE is causing panics.
147 	 */
148 
149 
150 	if (boot_args)
151 		get_bootconf_option(boot_args, "armfpe",
152 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
153 	if (usearmfpe)
154 		initialise_arm_fpe();
155 #endif
156 }
157 
158 enum cpu_class {
159 	CPU_CLASS_NONE,
160 	CPU_CLASS_ARM2,
161 	CPU_CLASS_ARM2AS,
162 	CPU_CLASS_ARM3,
163 	CPU_CLASS_ARM6,
164 	CPU_CLASS_ARM7,
165 	CPU_CLASS_ARM7TDMI,
166 	CPU_CLASS_ARM8,
167 	CPU_CLASS_ARM9TDMI,
168 	CPU_CLASS_ARM9ES,
169 	CPU_CLASS_SA1,
170 	CPU_CLASS_XSCALE,
171 	CPU_CLASS_ARM10E
172 };
173 
174 static const char *generic_steppings[16] = {
175 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
176 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
177 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
178 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
179 };
180 
181 static const char *sa110_steppings[16] = {
182 	"rev 0",	"step J",	"step K",	"step S",
183 	"step T",	"rev 5",	"rev 6",	"rev 7",
184 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
185 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
186 };
187 
188 static const char *sa1100_steppings[16] = {
189 	"rev 0",	"step B",	"step C",	"rev 3",
190 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
191 	"step D",	"step E",	"rev 10"	"step G",
192 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
193 };
194 
195 static const char *sa1110_steppings[16] = {
196 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
197 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
198 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
199 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
200 };
201 
202 static const char *ixp12x0_steppings[16] = {
203 	"(IXP1200 step A)",		"(IXP1200 step B)",
204 	"rev 2",			"(IXP1200 step C)",
205 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
206 	"(IXP1240 step B)",		"(IXP1250 step B)",
207 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
208 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
209 };
210 
211 static const char *xscale_steppings[16] = {
212 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
213 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
214 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
215 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
216 };
217 
218 static const char *pxa2x0_steppings[16] = {
219 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
220 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
221 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
222 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
223 };
224 
225 struct cpuidtab {
226 	u_int32_t	cpuid;
227 	enum		cpu_class cpu_class;
228 	const char	*cpu_name;
229 	const char	**cpu_steppings;
230 };
231 
232 const struct cpuidtab cpuids[] = {
233 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
234 	  generic_steppings },
235 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
236 	  generic_steppings },
237 
238 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
239 	  generic_steppings },
240 
241 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
242 	  generic_steppings },
243 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
244 	  generic_steppings },
245 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
246 	  generic_steppings },
247 
248 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
249 	  generic_steppings },
250 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
251 	  generic_steppings },
252 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
253 	  generic_steppings },
254 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
255 	  generic_steppings },
256 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
257 	  generic_steppings },
258 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
259 	  generic_steppings },
260 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
261 	  generic_steppings },
262 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
263 	  generic_steppings },
264 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
265 	  generic_steppings },
266 
267 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
268 	  generic_steppings },
269 
270 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
271 	  generic_steppings },
272 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
273 	  generic_steppings },
274 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
275 	  generic_steppings },
276 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
277 	  generic_steppings },
278 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
279 	  generic_steppings },
280 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
281 	  generic_steppings },
282 
283 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
284 	  sa110_steppings },
285 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
286 	  sa1100_steppings },
287 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
288 	  sa1110_steppings },
289 
290 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
291 	  ixp12x0_steppings },
292 
293 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
294 	  xscale_steppings },
295 
296 	{ CPU_ID_80321,		CPU_CLASS_XSCALE,	"i80321",
297 	  xscale_steppings },
298 
299 	{ CPU_ID_PXA250,	CPU_CLASS_XSCALE,	"PXA250",
300 	  pxa2x0_steppings },
301 	{ CPU_ID_PXA210,	CPU_CLASS_XSCALE,	"PXA210",
302 	  pxa2x0_steppings },	/* XXX */
303 
304 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
305 	  generic_steppings },
306 
307 	{ 0, CPU_CLASS_NONE, NULL, NULL }
308 };
309 
310 struct cpu_classtab {
311 	const char	*class_name;
312 	const char	*class_option;
313 };
314 
315 const struct cpu_classtab cpu_classes[] = {
316 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
317 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
318 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
319 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
320 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
321 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
322 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
323 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
324 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
325 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
326 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
327 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
328 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
329 };
330 
331 /*
332  * Report the type of the specifed arm processor. This uses the generic and
333  * arm specific information in the cpu structure to identify the processor.
334  * The remaining fields in the cpu structure are filled in appropriately.
335  */
336 
337 static const char *wtnames[] = {
338 	"write-through",
339 	"write-back",
340 	"write-back",
341 	"**unknown 3**",
342 	"**unknown 4**",
343 	"write-back-locking",		/* XXX XScale-specific? */
344 	"write-back-locking-A",
345 	"write-back-locking-B",
346 	"**unknown 8**",
347 	"**unknown 9**",
348 	"**unknown 10**",
349 	"**unknown 11**",
350 	"**unknown 12**",
351 	"**unknown 13**",
352 	"**unknown 14**",
353 	"**unknown 15**",
354 };
355 
356 void
357 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
358 {
359 	u_int cpuid;
360 	enum cpu_class cpu_class;
361 	int i;
362 
363 	cpuid = ci->ci_cpuid;
364 
365 	if (cpuid == 0) {
366 		printf("Processor failed probe - no CPU ID\n");
367 		return;
368 	}
369 
370 	for (i = 0; cpuids[i].cpuid != 0; i++)
371 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
372 			cpu_class = cpuids[i].cpu_class;
373 			sprintf(cpu_model, "%s %s (%s core)",
374 			    cpuids[i].cpu_name,
375 			    cpuids[i].cpu_steppings[cpuid &
376 						    CPU_ID_REVISION_MASK],
377 			    cpu_classes[cpu_class].class_name);
378 			break;
379 		}
380 
381 	if (cpuids[i].cpuid == 0)
382 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
383 
384 	printf(": %s\n", cpu_model);
385 
386 	printf("%s:", dv->dv_xname);
387 
388 	switch (cpu_class) {
389 	case CPU_CLASS_ARM6:
390 	case CPU_CLASS_ARM7:
391 	case CPU_CLASS_ARM7TDMI:
392 	case CPU_CLASS_ARM8:
393 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
394 			printf(" IDC disabled");
395 		else
396 			printf(" IDC enabled");
397 		break;
398 	case CPU_CLASS_ARM9TDMI:
399 	case CPU_CLASS_SA1:
400 	case CPU_CLASS_XSCALE:
401 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
402 			printf(" DC disabled");
403 		else
404 			printf(" DC enabled");
405 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
406 			printf(" IC disabled");
407 		else
408 			printf(" IC enabled");
409 		break;
410 	default:
411 		break;
412 	}
413 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
414 		printf(" WB disabled");
415 	else
416 		printf(" WB enabled");
417 
418 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
419 		printf(" LABT");
420 	else
421 		printf(" EABT");
422 
423 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
424 		printf(" branch prediction enabled");
425 
426 	printf("\n");
427 
428 	/* Print cache info. */
429 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
430 		goto skip_pcache;
431 
432 	if (arm_pcache_unified) {
433 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
434 		    dv->dv_xname, arm_pdcache_size / 1024,
435 		    arm_pdcache_line_size, arm_pdcache_ways,
436 		    wtnames[arm_pcache_type]);
437 	} else {
438 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
439 		    dv->dv_xname, arm_picache_size / 1024,
440 		    arm_picache_line_size, arm_picache_ways);
441 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
442 		    dv->dv_xname, arm_pdcache_size / 1024,
443 		    arm_pdcache_line_size, arm_pdcache_ways,
444 		    wtnames[arm_pcache_type]);
445 	}
446 
447  skip_pcache:
448 
449 	switch (cpu_class) {
450 #ifdef CPU_ARM2
451 	case CPU_CLASS_ARM2:
452 #endif
453 #ifdef CPU_ARM250
454 	case CPU_CLASS_ARM2AS:
455 #endif
456 #ifdef CPU_ARM3
457 	case CPU_CLASS_ARM3:
458 #endif
459 #ifdef CPU_ARM6
460 	case CPU_CLASS_ARM6:
461 #endif
462 #ifdef CPU_ARM7
463 	case CPU_CLASS_ARM7:
464 #endif
465 #ifdef CPU_ARM7TDMI
466 	case CPU_CLASS_ARM7TDMI:
467 #endif
468 #ifdef CPU_ARM8
469 	case CPU_CLASS_ARM8:
470 #endif
471 #ifdef CPU_ARM9
472 	case CPU_CLASS_ARM9TDMI:
473 #endif
474 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
475     defined(CPU_SA1110) || defined(CPU_IXP12X0)
476 	case CPU_CLASS_SA1:
477 #endif
478 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
479     defined(CPU_XSCALE_PXA2X0)
480 	case CPU_CLASS_XSCALE:
481 #endif
482 		break;
483 	default:
484 		if (cpu_classes[cpu_class].class_option != NULL)
485 			printf("%s: %s does not fully support this CPU."
486 			       "\n", dv->dv_xname, ostype);
487 		else {
488 			printf("%s: This kernel does not fully support "
489 			       "this CPU.\n", dv->dv_xname);
490 			printf("%s: Recompile with \"options %s\" to "
491 			       "correct this.\n", dv->dv_xname,
492 			       cpu_classes[cpu_class].class_option);
493 		}
494 		break;
495 	}
496 
497 }
498 
499 /* End of cpu.c */
500