xref: /netbsd/sys/arch/arm/arm32/cpu.c (revision c4a72b64)
1 /*	$NetBSD: cpu.c,v 1.46 2002/11/17 08:32:43 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master cpu
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 
46 #include <sys/param.h>
47 
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.46 2002/11/17 08:32:43 chs Exp $");
49 
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/conf.h>
55 #include <uvm/uvm_extern.h>
56 #include <machine/cpu.h>
57 
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60 
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65 
66 char cpu_model[256];
67 
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70 
71 /*
72  * Identify the master (boot) CPU
73  */
74 
75 void
76 cpu_attach(struct device *dv)
77 {
78 	int usearmfpe;
79 
80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
81 
82 	curcpu()->ci_dev = dv;
83 
84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 	    NULL, dv->dv_xname, "arm700swibug");
86 
87 	/* Get the cpu ID from coprocessor 15 */
88 
89 	curcpu()->ci_arm_cpuid = cpu_id();
90 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
91 	curcpu()->ci_arm_cpurev =
92 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
93 
94 	identify_arm_cpu(dv, curcpu());
95 
96 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
97 	    curcpu()->ci_arm_cpurev < 3) {
98 		printf("%s: SA-110 with bugged STM^ instruction\n",
99 		       dv->dv_xname);
100 	}
101 
102 #ifdef CPU_ARM8
103 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
104 		int clock = arm8_clock_config(0, 0);
105 		char *fclk;
106 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
107 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
108 		printf("%s", (clock & 2) ? " sync" : "");
109 		switch ((clock >> 2) & 3) {
110 		case 0:
111 			fclk = "bus clock";
112 			break;
113 		case 1:
114 			fclk = "ref clock";
115 			break;
116 		case 3:
117 			fclk = "pll";
118 			break;
119 		default:
120 			fclk = "illegal";
121 			break;
122 		}
123 		printf(" fclk source=%s\n", fclk);
124  	}
125 #endif
126 
127 #ifdef ARMFPE
128 	/*
129 	 * Ok now we test for an FPA
130 	 * At this point no floating point emulator has been installed.
131 	 * This means any FP instruction will cause undefined exception.
132 	 * We install a temporay coproc 1 handler which will modify
133 	 * undefined_test if it is called.
134 	 * We then try to read the FP status register. If undefined_test
135 	 * has been decremented then the instruction was not handled by
136 	 * an FPA so we know the FPA is missing. If undefined_test is
137 	 * still 1 then we know the instruction was handled by an FPA.
138 	 * We then remove our test handler and look at the
139 	 * FP status register for identification.
140 	 */
141 
142 	/*
143 	 * Ok if ARMFPE is defined and the boot options request the
144 	 * ARM FPE then it will be installed as the FPE.
145 	 * This is just while I work on integrating the new FPE.
146 	 * It means the new FPE gets installed if compiled int (ARMFPE
147 	 * defined) and also gives me a on/off option when I boot in
148 	 * case the new FPE is causing panics.
149 	 */
150 
151 
152 	if (boot_args)
153 		get_bootconf_option(boot_args, "armfpe",
154 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
155 	if (usearmfpe)
156 		initialise_arm_fpe();
157 #endif
158 }
159 
160 enum cpu_class {
161 	CPU_CLASS_NONE,
162 	CPU_CLASS_ARM2,
163 	CPU_CLASS_ARM2AS,
164 	CPU_CLASS_ARM3,
165 	CPU_CLASS_ARM6,
166 	CPU_CLASS_ARM7,
167 	CPU_CLASS_ARM7TDMI,
168 	CPU_CLASS_ARM8,
169 	CPU_CLASS_ARM9TDMI,
170 	CPU_CLASS_ARM9ES,
171 	CPU_CLASS_SA1,
172 	CPU_CLASS_XSCALE,
173 	CPU_CLASS_ARM10E
174 };
175 
176 static const char * const generic_steppings[16] = {
177 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
178 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
179 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
180 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
181 };
182 
183 static const char * const sa110_steppings[16] = {
184 	"rev 0",	"step J",	"step K",	"step S",
185 	"step T",	"rev 5",	"rev 6",	"rev 7",
186 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
187 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
188 };
189 
190 static const char * const sa1100_steppings[16] = {
191 	"rev 0",	"step B",	"step C",	"rev 3",
192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
193 	"step D",	"step E",	"rev 10"	"step G",
194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
195 };
196 
197 static const char * const sa1110_steppings[16] = {
198 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
199 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
200 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
201 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
202 };
203 
204 static const char * const ixp12x0_steppings[16] = {
205 	"(IXP1200 step A)",		"(IXP1200 step B)",
206 	"rev 2",			"(IXP1200 step C)",
207 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
208 	"(IXP1240 step B)",		"(IXP1250 step B)",
209 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
210 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
211 };
212 
213 static const char * const xscale_steppings[16] = {
214 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
215 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
216 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
217 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
218 };
219 
220 static const char * const i80321_steppings[16] = {
221 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
222 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
223 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
224 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
225 };
226 
227 static const char * const pxa2x0_steppings[16] = {
228 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
229 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
230 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
231 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
232 };
233 
234 struct cpuidtab {
235 	u_int32_t	cpuid;
236 	enum		cpu_class cpu_class;
237 	const char	*cpu_name;
238 	const char * const *cpu_steppings;
239 };
240 
241 const struct cpuidtab cpuids[] = {
242 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
243 	  generic_steppings },
244 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
245 	  generic_steppings },
246 
247 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
248 	  generic_steppings },
249 
250 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
251 	  generic_steppings },
252 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
253 	  generic_steppings },
254 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
255 	  generic_steppings },
256 
257 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
258 	  generic_steppings },
259 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
260 	  generic_steppings },
261 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
262 	  generic_steppings },
263 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
264 	  generic_steppings },
265 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
266 	  generic_steppings },
267 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
268 	  generic_steppings },
269 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
270 	  generic_steppings },
271 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
272 	  generic_steppings },
273 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
274 	  generic_steppings },
275 
276 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
277 	  generic_steppings },
278 
279 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
280 	  generic_steppings },
281 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
282 	  generic_steppings },
283 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
284 	  generic_steppings },
285 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
286 	  generic_steppings },
287 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
288 	  generic_steppings },
289 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
290 	  generic_steppings },
291 
292 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
293 	  sa110_steppings },
294 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
295 	  sa1100_steppings },
296 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
297 	  sa1110_steppings },
298 
299 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
300 	  ixp12x0_steppings },
301 
302 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
303 	  xscale_steppings },
304 
305 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
306 	  i80321_steppings },
307 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
308 	  i80321_steppings },
309 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
310 	  i80321_steppings },
311 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
312 	  i80321_steppings },
313 
314 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250(1st ver core)",
315 	  pxa2x0_steppings },
316 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210(1st ver core)",
317 	  pxa2x0_steppings },
318 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250(3rd ver core)",
319 	  pxa2x0_steppings },
320 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210(3rd ver core)",
321 	  pxa2x0_steppings },
322 
323 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
324 	  generic_steppings },
325 
326 	{ 0, CPU_CLASS_NONE, NULL, NULL }
327 };
328 
329 struct cpu_classtab {
330 	const char	*class_name;
331 	const char	*class_option;
332 };
333 
334 const struct cpu_classtab cpu_classes[] = {
335 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
336 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
337 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
338 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
339 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
340 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
341 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
342 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
343 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
344 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
345 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
346 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
347 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
348 };
349 
350 /*
351  * Report the type of the specifed arm processor. This uses the generic and
352  * arm specific information in the cpu structure to identify the processor.
353  * The remaining fields in the cpu structure are filled in appropriately.
354  */
355 
356 static const char * const wtnames[] = {
357 	"write-through",
358 	"write-back",
359 	"write-back",
360 	"**unknown 3**",
361 	"**unknown 4**",
362 	"write-back-locking",		/* XXX XScale-specific? */
363 	"write-back-locking-A",
364 	"write-back-locking-B",
365 	"**unknown 8**",
366 	"**unknown 9**",
367 	"**unknown 10**",
368 	"**unknown 11**",
369 	"**unknown 12**",
370 	"**unknown 13**",
371 	"**unknown 14**",
372 	"**unknown 15**",
373 };
374 
375 void
376 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
377 {
378 	u_int cpuid;
379 	enum cpu_class cpu_class;
380 	int i;
381 
382 	cpuid = ci->ci_arm_cpuid;
383 
384 	if (cpuid == 0) {
385 		printf("Processor failed probe - no CPU ID\n");
386 		return;
387 	}
388 
389 	for (i = 0; cpuids[i].cpuid != 0; i++)
390 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
391 			cpu_class = cpuids[i].cpu_class;
392 			sprintf(cpu_model, "%s %s (%s core)",
393 			    cpuids[i].cpu_name,
394 			    cpuids[i].cpu_steppings[cpuid &
395 						    CPU_ID_REVISION_MASK],
396 			    cpu_classes[cpu_class].class_name);
397 			break;
398 		}
399 
400 	if (cpuids[i].cpuid == 0)
401 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
402 
403 	printf(": %s\n", cpu_model);
404 
405 	printf("%s:", dv->dv_xname);
406 
407 	switch (cpu_class) {
408 	case CPU_CLASS_ARM6:
409 	case CPU_CLASS_ARM7:
410 	case CPU_CLASS_ARM7TDMI:
411 	case CPU_CLASS_ARM8:
412 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
413 			printf(" IDC disabled");
414 		else
415 			printf(" IDC enabled");
416 		break;
417 	case CPU_CLASS_ARM9TDMI:
418 	case CPU_CLASS_SA1:
419 	case CPU_CLASS_XSCALE:
420 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
421 			printf(" DC disabled");
422 		else
423 			printf(" DC enabled");
424 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
425 			printf(" IC disabled");
426 		else
427 			printf(" IC enabled");
428 		break;
429 	default:
430 		break;
431 	}
432 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
433 		printf(" WB disabled");
434 	else
435 		printf(" WB enabled");
436 
437 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
438 		printf(" LABT");
439 	else
440 		printf(" EABT");
441 
442 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
443 		printf(" branch prediction enabled");
444 
445 	printf("\n");
446 
447 	/* Print cache info. */
448 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
449 		goto skip_pcache;
450 
451 	if (arm_pcache_unified) {
452 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
453 		    dv->dv_xname, arm_pdcache_size / 1024,
454 		    arm_pdcache_line_size, arm_pdcache_ways,
455 		    wtnames[arm_pcache_type]);
456 	} else {
457 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
458 		    dv->dv_xname, arm_picache_size / 1024,
459 		    arm_picache_line_size, arm_picache_ways);
460 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
461 		    dv->dv_xname, arm_pdcache_size / 1024,
462 		    arm_pdcache_line_size, arm_pdcache_ways,
463 		    wtnames[arm_pcache_type]);
464 	}
465 
466  skip_pcache:
467 
468 	switch (cpu_class) {
469 #ifdef CPU_ARM2
470 	case CPU_CLASS_ARM2:
471 #endif
472 #ifdef CPU_ARM250
473 	case CPU_CLASS_ARM2AS:
474 #endif
475 #ifdef CPU_ARM3
476 	case CPU_CLASS_ARM3:
477 #endif
478 #ifdef CPU_ARM6
479 	case CPU_CLASS_ARM6:
480 #endif
481 #ifdef CPU_ARM7
482 	case CPU_CLASS_ARM7:
483 #endif
484 #ifdef CPU_ARM7TDMI
485 	case CPU_CLASS_ARM7TDMI:
486 #endif
487 #ifdef CPU_ARM8
488 	case CPU_CLASS_ARM8:
489 #endif
490 #ifdef CPU_ARM9
491 	case CPU_CLASS_ARM9TDMI:
492 #endif
493 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
494     defined(CPU_SA1110) || defined(CPU_IXP12X0)
495 	case CPU_CLASS_SA1:
496 #endif
497 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
498     defined(CPU_XSCALE_PXA2X0)
499 	case CPU_CLASS_XSCALE:
500 #endif
501 		break;
502 	default:
503 		if (cpu_classes[cpu_class].class_option != NULL)
504 			printf("%s: %s does not fully support this CPU."
505 			       "\n", dv->dv_xname, ostype);
506 		else {
507 			printf("%s: This kernel does not fully support "
508 			       "this CPU.\n", dv->dv_xname);
509 			printf("%s: Recompile with \"options %s\" to "
510 			       "correct this.\n", dv->dv_xname,
511 			       cpu_classes[cpu_class].class_option);
512 		}
513 		break;
514 	}
515 
516 }
517 #ifdef MULTIPROCESSOR
518 int
519 cpu_alloc_idlepcb(struct cpu_info *ci)
520 {
521 	vaddr_t uaddr;
522 	struct pcb *pcb;
523 	struct trapframe *tf;
524 	int error;
525 
526 	/*
527 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
528 	 * new CPU.
529 	 */
530 	if (uvm_uarea_alloc(&uaddr)) {
531 		error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
532 		    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
533 		if (error)
534 			return error;
535 	}
536 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
537 
538 	/*
539 	 * This code is largely derived from cpu_fork(), with which it
540 	 * should perhaps be shared.
541 	 */
542 
543 	/* Copy the pcb */
544 	*pcb = proc0.p_addr->u_pcb;
545 
546 	/* Set up the undefined stack for the process. */
547 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
548 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
549 
550 #ifdef STACKCHECKS
551 	/* Fill the undefined stack with a known pattern */
552 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
553 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
554 	/* Fill the kernel stack with a known pattern */
555 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
556 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
557 #endif	/* STACKCHECKS */
558 
559 	pcb->pcb_tf = tf =
560 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
561 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
562 	return 0;
563 }
564 #endif /* MULTIPROCESSOR */
565 
566 /* End of cpu.c */
567