xref: /netbsd/sys/arch/arm/arm32/pmap.c (revision c4a72b64)
1 /*	$NetBSD: pmap.c,v 1.123 2002/11/24 01:09:09 chris Exp $	*/
2 
3 /*
4  * Copyright (c) 2002 Wasabi Systems, Inc.
5  * Copyright (c) 2001 Richard Earnshaw
6  * Copyright (c) 2001-2002 Christopher Gilbert
7  * All rights reserved.
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the company nor the name of the author may be used to
15  *    endorse or promote products derived from this software without specific
16  *    prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*-
32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
33  * All rights reserved.
34  *
35  * This code is derived from software contributed to The NetBSD Foundation
36  * by Charles M. Hannum.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *        This product includes software developed by the NetBSD
49  *        Foundation, Inc. and its contributors.
50  * 4. Neither the name of The NetBSD Foundation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64  * POSSIBILITY OF SUCH DAMAGE.
65  */
66 
67 /*
68  * Copyright (c) 1994-1998 Mark Brinicombe.
69  * Copyright (c) 1994 Brini.
70  * All rights reserved.
71  *
72  * This code is derived from software written for Brini by Mark Brinicombe
73  *
74  * Redistribution and use in source and binary forms, with or without
75  * modification, are permitted provided that the following conditions
76  * are met:
77  * 1. Redistributions of source code must retain the above copyright
78  *    notice, this list of conditions and the following disclaimer.
79  * 2. Redistributions in binary form must reproduce the above copyright
80  *    notice, this list of conditions and the following disclaimer in the
81  *    documentation and/or other materials provided with the distribution.
82  * 3. All advertising materials mentioning features or use of this software
83  *    must display the following acknowledgement:
84  *	This product includes software developed by Mark Brinicombe.
85  * 4. The name of the author may not be used to endorse or promote products
86  *    derived from this software without specific prior written permission.
87  *
88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97  *
98  * RiscBSD kernel project
99  *
100  * pmap.c
101  *
102  * Machine dependant vm stuff
103  *
104  * Created      : 20/09/94
105  */
106 
107 /*
108  * Performance improvements, UVM changes, overhauls and part-rewrites
109  * were contributed by Neil A. Carson <neil@causality.com>.
110  */
111 
112 /*
113  * The dram block info is currently referenced from the bootconfig.
114  * This should be placed in a separate structure.
115  */
116 
117 /*
118  * Special compilation symbols
119  * PMAP_DEBUG		- Build in pmap_debug_level code
120  */
121 
122 /* Include header files */
123 
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126 
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136 
137 #include <uvm/uvm.h>
138 
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145 
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.123 2002/11/24 01:09:09 chris Exp $");
147 
148 #ifdef PMAP_DEBUG
149 #define	PDEBUG(_lev_,_stat_) \
150 	if (pmap_debug_level >= (_lev_)) \
151         	((_stat_))
152 int pmap_debug_level = -2;
153 void pmap_dump_pvlist(vaddr_t phys, char *m);
154 
155 /*
156  * for switching to potentially finer grained debugging
157  */
158 #define	PDB_FOLLOW	0x0001
159 #define	PDB_INIT	0x0002
160 #define	PDB_ENTER	0x0004
161 #define	PDB_REMOVE	0x0008
162 #define	PDB_CREATE	0x0010
163 #define	PDB_PTPAGE	0x0020
164 #define	PDB_GROWKERN	0x0040
165 #define	PDB_BITS	0x0080
166 #define	PDB_COLLECT	0x0100
167 #define	PDB_PROTECT	0x0200
168 #define	PDB_MAP_L1	0x0400
169 #define	PDB_BOOTSTRAP	0x1000
170 #define	PDB_PARANOIA	0x2000
171 #define	PDB_WIRING	0x4000
172 #define	PDB_PVDUMP	0x8000
173 
174 int debugmap = 0;
175 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW | PDB_GROWKERN | PDB_ENTER | PDB_REMOVE;
176 #define	NPDEBUG(_lev_,_stat_) \
177 	if (pmapdebug & (_lev_)) \
178         	((_stat_))
179 
180 #else	/* PMAP_DEBUG */
181 #define	PDEBUG(_lev_,_stat_) /* Nothing */
182 #define NPDEBUG(_lev_,_stat_) /* Nothing */
183 #endif	/* PMAP_DEBUG */
184 
185 struct pmap     kernel_pmap_store;
186 
187 /*
188  * linked list of all non-kernel pmaps
189  */
190 
191 static LIST_HEAD(, pmap) pmaps;
192 
193 /*
194  * pool that pmap structures are allocated from
195  */
196 
197 struct pool pmap_pmap_pool;
198 
199 /*
200  * pool/cache that PT-PT's are allocated from
201  */
202 
203 struct pool pmap_ptpt_pool;
204 struct pool_cache pmap_ptpt_cache;
205 u_int pmap_ptpt_cache_generation;
206 
207 static void *pmap_ptpt_page_alloc(struct pool *, int);
208 static void pmap_ptpt_page_free(struct pool *, void *);
209 
210 struct pool_allocator pmap_ptpt_allocator = {
211 	pmap_ptpt_page_alloc, pmap_ptpt_page_free,
212 };
213 
214 static int pmap_ptpt_ctor(void *, void *, int);
215 
216 static pt_entry_t *csrc_pte, *cdst_pte;
217 static vaddr_t csrcp, cdstp;
218 
219 char *memhook;
220 extern caddr_t msgbufaddr;
221 
222 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
223 /*
224  * locking data structures
225  */
226 
227 static struct lock pmap_main_lock;
228 static struct simplelock pvalloc_lock;
229 static struct simplelock pmaps_lock;
230 #ifdef LOCKDEBUG
231 #define PMAP_MAP_TO_HEAD_LOCK() \
232      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
233 #define PMAP_MAP_TO_HEAD_UNLOCK() \
234      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
235 
236 #define PMAP_HEAD_TO_MAP_LOCK() \
237      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
238 #define PMAP_HEAD_TO_MAP_UNLOCK() \
239      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
240 #else
241 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
242 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
243 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
244 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
245 #endif /* LOCKDEBUG */
246 
247 /*
248  * pv_page management structures: locked by pvalloc_lock
249  */
250 
251 TAILQ_HEAD(pv_pagelist, pv_page);
252 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
253 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
254 static unsigned int pv_nfpvents;	/* # of free pv entries */
255 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
256 static vaddr_t pv_cachedva;		/* cached VA for later use */
257 
258 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
259 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
260 					/* high water mark */
261 
262 /*
263  * local prototypes
264  */
265 
266 static struct pv_entry	*pmap_add_pvpage(struct pv_page *, boolean_t);
267 static struct pv_entry	*pmap_alloc_pv(struct pmap *, int); /* see codes below */
268 #define ALLOCPV_NEED	0	/* need PV now */
269 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
270 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
271 static struct pv_entry	*pmap_alloc_pvpage(struct pmap *, int);
272 static void		 pmap_enter_pv(struct vm_page *,
273 				       struct pv_entry *, struct pmap *,
274 				       vaddr_t, struct vm_page *, unsigned int);
275 static void		 pmap_free_pv(struct pmap *, struct pv_entry *);
276 static void		 pmap_free_pvs(struct pmap *, struct pv_entry *);
277 static void		 pmap_free_pv_doit(struct pv_entry *);
278 static void		 pmap_free_pvpage(void);
279 static boolean_t	 pmap_is_curpmap(struct pmap *);
280 static struct pv_entry	*pmap_remove_pv(struct vm_page *, struct pmap *,
281 					vaddr_t);
282 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
283 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
284 
285 static u_int pmap_modify_pv(struct pmap *, vaddr_t, struct vm_page *,
286 			    u_int, u_int);
287 
288 /*
289  * Structure that describes and L1 table.
290  */
291 struct l1pt {
292 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
293 	struct pglist		pt_plist;	/* Allocated page list */
294 	vaddr_t			pt_va;		/* Allocated virtual address */
295 	int			pt_flags;	/* Flags */
296 };
297 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
298 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
299 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
300 
301 static void	pmap_free_l1pt(struct l1pt *);
302 static int	pmap_allocpagedir(struct pmap *);
303 static int	pmap_clean_page(struct pv_entry *, boolean_t);
304 static void	pmap_page_remove(struct vm_page *);
305 
306 static struct vm_page	*pmap_alloc_ptp(struct pmap *, vaddr_t);
307 static struct vm_page	*pmap_get_ptp(struct pmap *, vaddr_t);
308 __inline static void 	 pmap_clearbit(struct vm_page *, unsigned int);
309 
310 extern paddr_t physical_start;
311 extern paddr_t physical_end;
312 extern unsigned int free_pages;
313 extern int max_processes;
314 
315 vaddr_t virtual_avail;
316 vaddr_t virtual_end;
317 vaddr_t pmap_curmaxkvaddr;
318 
319 vaddr_t avail_start;
320 vaddr_t avail_end;
321 
322 extern pv_addr_t systempage;
323 
324 /* Variables used by the L1 page table queue code */
325 SIMPLEQ_HEAD(l1pt_queue, l1pt);
326 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
327 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
328 static int l1pt_static_create_count;	    /* static l1 items created */
329 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
330 static int l1pt_queue_count;		    /* items in the l1 queue */
331 static int l1pt_create_count;		    /* stat - L1's create count */
332 static int l1pt_reuse_count;		    /* stat - L1's reused count */
333 
334 /* Local function prototypes (not used outside this file) */
335 void pmap_pinit(struct pmap *);
336 void pmap_freepagedir(struct pmap *);
337 
338 /* Other function prototypes */
339 extern void bzero_page(vaddr_t);
340 extern void bcopy_page(vaddr_t, vaddr_t);
341 
342 struct l1pt *pmap_alloc_l1pt(void);
343 static __inline void pmap_map_in_l1(struct pmap *pmap, vaddr_t va,
344      				    vaddr_t l2pa, int);
345 
346 static pt_entry_t *pmap_map_ptes(struct pmap *);
347 static void 	   pmap_unmap_ptes(struct pmap *);
348 
349 __inline static void pmap_vac_me_harder(struct pmap *, struct vm_page *,
350 					pt_entry_t *, boolean_t);
351 static void pmap_vac_me_kpmap(struct pmap *, struct vm_page *,
352 			      pt_entry_t *, boolean_t);
353 static void pmap_vac_me_user(struct pmap *, struct vm_page *,
354 			     pt_entry_t *, boolean_t);
355 
356 /*
357  * real definition of pv_entry.
358  */
359 
360 struct pv_entry {
361 	struct pv_entry *pv_next;       /* next pv_entry */
362 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
363 	vaddr_t         pv_va;          /* virtual address for mapping */
364 	int             pv_flags;       /* flags */
365 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
366 };
367 
368 /*
369  * pv_entrys are dynamically allocated in chunks from a single page.
370  * we keep track of how many pv_entrys are in use for each page and
371  * we can free pv_entry pages if needed.  there is one lock for the
372  * entire allocation system.
373  */
374 
375 struct pv_page_info {
376 	TAILQ_ENTRY(pv_page) pvpi_list;
377 	struct pv_entry *pvpi_pvfree;
378 	int pvpi_nfree;
379 };
380 
381 /*
382  * number of pv_entry's in a pv_page
383  * (note: won't work on systems where NPBG isn't a constant)
384  */
385 
386 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
387 			sizeof(struct pv_entry))
388 
389 /*
390  * a pv_page: where pv_entrys are allocated from
391  */
392 
393 struct pv_page {
394 	struct pv_page_info pvinfo;
395 	struct pv_entry pvents[PVE_PER_PVPAGE];
396 };
397 
398 #ifdef MYCROFT_HACK
399 int mycroft_hack = 0;
400 #endif
401 
402 /* Function to set the debug level of the pmap code */
403 
404 #ifdef PMAP_DEBUG
405 void
406 pmap_debug(int level)
407 {
408 	pmap_debug_level = level;
409 	printf("pmap_debug: level=%d\n", pmap_debug_level);
410 }
411 #endif	/* PMAP_DEBUG */
412 
413 __inline static boolean_t
414 pmap_is_curpmap(struct pmap *pmap)
415 {
416 
417 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
418 	    pmap == pmap_kernel())
419 		return (TRUE);
420 
421 	return (FALSE);
422 }
423 
424 /*
425  * PTE_SYNC_CURRENT:
426  *
427  *	Make sure the pte is flushed to RAM.  If the pmap is
428  *	not the current pmap, then also evict the pte from
429  *	any cache lines.
430  */
431 #define	PTE_SYNC_CURRENT(pmap, pte)					\
432 do {									\
433 	if (pmap_is_curpmap(pmap))					\
434 		PTE_SYNC(pte);						\
435 	else								\
436 		PTE_FLUSH(pte);						\
437 } while (/*CONSTCOND*/0)
438 
439 /*
440  * PTE_FLUSH_ALT:
441  *
442  *	Make sure the pte is not in any cache lines.  We expect
443  *	this to be used only when a pte has not been modified.
444  */
445 #define	PTE_FLUSH_ALT(pmap, pte)					\
446 do {									\
447 	if (pmap_is_curpmap(pmap) == 0)					\
448 		PTE_FLUSH(pte);						\
449 } while (/*CONSTCOND*/0)
450 
451 /*
452  * p v _ e n t r y   f u n c t i o n s
453  */
454 
455 /*
456  * pv_entry allocation functions:
457  *   the main pv_entry allocation functions are:
458  *     pmap_alloc_pv: allocate a pv_entry structure
459  *     pmap_free_pv: free one pv_entry
460  *     pmap_free_pvs: free a list of pv_entrys
461  *
462  * the rest are helper functions
463  */
464 
465 /*
466  * pmap_alloc_pv: inline function to allocate a pv_entry structure
467  * => we lock pvalloc_lock
468  * => if we fail, we call out to pmap_alloc_pvpage
469  * => 3 modes:
470  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
471  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
472  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
473  *			one now
474  *
475  * "try" is for optional functions like pmap_copy().
476  */
477 
478 __inline static struct pv_entry *
479 pmap_alloc_pv(struct pmap *pmap, int mode)
480 {
481 	struct pv_page *pvpage;
482 	struct pv_entry *pv;
483 
484 	simple_lock(&pvalloc_lock);
485 
486 	pvpage = TAILQ_FIRST(&pv_freepages);
487 
488 	if (pvpage != NULL) {
489 		pvpage->pvinfo.pvpi_nfree--;
490 		if (pvpage->pvinfo.pvpi_nfree == 0) {
491 			/* nothing left in this one? */
492 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
493 		}
494 		pv = pvpage->pvinfo.pvpi_pvfree;
495 		KASSERT(pv);
496 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 		pv_nfpvents--;  /* took one from pool */
498 	} else {
499 		pv = NULL;		/* need more of them */
500 	}
501 
502 	/*
503 	 * if below low water mark or we didn't get a pv_entry we try and
504 	 * create more pv_entrys ...
505 	 */
506 
507 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 		if (pv == NULL)
509 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 					       mode : ALLOCPV_NEED);
511 		else
512 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 	}
514 
515 	simple_unlock(&pvalloc_lock);
516 	return(pv);
517 }
518 
519 /*
520  * pmap_alloc_pvpage: maybe allocate a new pvpage
521  *
522  * if need_entry is false: try and allocate a new pv_page
523  * if need_entry is true: try and allocate a new pv_page and return a
524  *	new pv_entry from it.   if we are unable to allocate a pv_page
525  *	we make a last ditch effort to steal a pv_page from some other
526  *	mapping.    if that fails, we panic...
527  *
528  * => we assume that the caller holds pvalloc_lock
529  */
530 
531 static struct pv_entry *
532 pmap_alloc_pvpage(struct pmap *pmap, int mode)
533 {
534 	struct vm_page *pg;
535 	struct pv_page *pvpage;
536 	struct pv_entry *pv;
537 
538 	/*
539 	 * if we need_entry and we've got unused pv_pages, allocate from there
540 	 */
541 
542 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
543 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
544 
545 		/* move it to pv_freepages list */
546 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
547 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
548 
549 		/* allocate a pv_entry */
550 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
551 		pv = pvpage->pvinfo.pvpi_pvfree;
552 		KASSERT(pv);
553 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
554 
555 		pv_nfpvents--;  /* took one from pool */
556 		return(pv);
557 	}
558 
559 	/*
560 	 *  see if we've got a cached unmapped VA that we can map a page in.
561 	 * if not, try to allocate one.
562 	 */
563 
564 
565 	if (pv_cachedva == 0) {
566 		int s;
567 		s = splvm();
568 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
569 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
570 		splx(s);
571 		if (pv_cachedva == 0) {
572 			return (NULL);
573 		}
574 	}
575 
576 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
577 	    UVM_PGA_USERESERVE);
578 
579 	if (pg == NULL)
580 		return (NULL);
581 	pg->flags &= ~PG_BUSY;	/* never busy */
582 
583 	/*
584 	 * add a mapping for our new pv_page and free its entrys (save one!)
585 	 *
586 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
587 	 * pmap is already locked!  (...but entering the mapping is safe...)
588 	 */
589 
590 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
591 		VM_PROT_READ|VM_PROT_WRITE);
592 	pmap_update(pmap_kernel());
593 	pvpage = (struct pv_page *) pv_cachedva;
594 	pv_cachedva = 0;
595 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
596 }
597 
598 /*
599  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
600  *
601  * => caller must hold pvalloc_lock
602  * => if need_entry is true, we allocate and return one pv_entry
603  */
604 
605 static struct pv_entry *
606 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
607 {
608 	unsigned int tofree, lcv;
609 
610 	/* do we need to return one? */
611 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
612 
613 	pvp->pvinfo.pvpi_pvfree = NULL;
614 	pvp->pvinfo.pvpi_nfree = tofree;
615 	for (lcv = 0 ; lcv < tofree ; lcv++) {
616 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
617 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
618 	}
619 	if (need_entry)
620 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
621 	else
622 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
623 	pv_nfpvents += tofree;
624 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
625 }
626 
627 /*
628  * pmap_free_pv_doit: actually free a pv_entry
629  *
630  * => do not call this directly!  instead use either
631  *    1. pmap_free_pv ==> free a single pv_entry
632  *    2. pmap_free_pvs => free a list of pv_entrys
633  * => we must be holding pvalloc_lock
634  */
635 
636 __inline static void
637 pmap_free_pv_doit(struct pv_entry *pv)
638 {
639 	struct pv_page *pvp;
640 
641 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
642 	pv_nfpvents++;
643 	pvp->pvinfo.pvpi_nfree++;
644 
645 	/* nfree == 1 => fully allocated page just became partly allocated */
646 	if (pvp->pvinfo.pvpi_nfree == 1) {
647 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
648 	}
649 
650 	/* free it */
651 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
652 	pvp->pvinfo.pvpi_pvfree = pv;
653 
654 	/*
655 	 * are all pv_page's pv_entry's free?  move it to unused queue.
656 	 */
657 
658 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
659 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
660 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
661 	}
662 }
663 
664 /*
665  * pmap_free_pv: free a single pv_entry
666  *
667  * => we gain the pvalloc_lock
668  */
669 
670 __inline static void
671 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
672 {
673 	simple_lock(&pvalloc_lock);
674 	pmap_free_pv_doit(pv);
675 
676 	/*
677 	 * Can't free the PV page if the PV entries were associated with
678 	 * the kernel pmap; the pmap is already locked.
679 	 */
680 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
681 	    pmap != pmap_kernel())
682 		pmap_free_pvpage();
683 
684 	simple_unlock(&pvalloc_lock);
685 }
686 
687 /*
688  * pmap_free_pvs: free a list of pv_entrys
689  *
690  * => we gain the pvalloc_lock
691  */
692 
693 __inline static void
694 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
695 {
696 	struct pv_entry *nextpv;
697 
698 	simple_lock(&pvalloc_lock);
699 
700 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
701 		nextpv = pvs->pv_next;
702 		pmap_free_pv_doit(pvs);
703 	}
704 
705 	/*
706 	 * Can't free the PV page if the PV entries were associated with
707 	 * the kernel pmap; the pmap is already locked.
708 	 */
709 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
710 	    pmap != pmap_kernel())
711 		pmap_free_pvpage();
712 
713 	simple_unlock(&pvalloc_lock);
714 }
715 
716 
717 /*
718  * pmap_free_pvpage: try and free an unused pv_page structure
719  *
720  * => assume caller is holding the pvalloc_lock and that
721  *	there is a page on the pv_unusedpgs list
722  * => if we can't get a lock on the kmem_map we try again later
723  */
724 
725 static void
726 pmap_free_pvpage(void)
727 {
728 	int s;
729 	struct vm_map *map;
730 	struct vm_map_entry *dead_entries;
731 	struct pv_page *pvp;
732 
733 	s = splvm(); /* protect kmem_map */
734 
735 	pvp = TAILQ_FIRST(&pv_unusedpgs);
736 
737 	/*
738 	 * note: watch out for pv_initpage which is allocated out of
739 	 * kernel_map rather than kmem_map.
740 	 */
741 	if (pvp == pv_initpage)
742 		map = kernel_map;
743 	else
744 		map = kmem_map;
745 	if (vm_map_lock_try(map)) {
746 
747 		/* remove pvp from pv_unusedpgs */
748 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
749 
750 		/* unmap the page */
751 		dead_entries = NULL;
752 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
753 		    &dead_entries);
754 		vm_map_unlock(map);
755 
756 		if (dead_entries != NULL)
757 			uvm_unmap_detach(dead_entries, 0);
758 
759 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
760 	}
761 	if (pvp == pv_initpage)
762 		/* no more initpage, we've freed it */
763 		pv_initpage = NULL;
764 
765 	splx(s);
766 }
767 
768 /*
769  * main pv_entry manipulation functions:
770  *   pmap_enter_pv: enter a mapping onto a vm_page list
771  *   pmap_remove_pv: remove a mappiing from a vm_page list
772  *
773  * NOTE: pmap_enter_pv expects to lock the pvh itself
774  *       pmap_remove_pv expects te caller to lock the pvh before calling
775  */
776 
777 /*
778  * pmap_enter_pv: enter a mapping onto a vm_page lst
779  *
780  * => caller should hold the proper lock on pmap_main_lock
781  * => caller should have pmap locked
782  * => we will gain the lock on the vm_page and allocate the new pv_entry
783  * => caller should adjust ptp's wire_count before calling
784  * => caller should not adjust pmap's wire_count
785  */
786 
787 __inline static void
788 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
789     vaddr_t va, struct vm_page *ptp, unsigned int flags)
790 {
791 	pve->pv_pmap = pmap;
792 	pve->pv_va = va;
793 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
794 	pve->pv_flags = flags;
795 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
796 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
797 	pg->mdpage.pvh_list = pve;		/* ... locked list */
798 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
799 	if (pve->pv_flags & PVF_WIRED)
800 		++pmap->pm_stats.wired_count;
801 #ifdef PMAP_ALIAS_DEBUG
802     {
803 	int s = splhigh();
804 	if (pve->pv_flags & PVF_WRITE)
805 		pg->mdpage.rw_mappings++;
806 	else
807 		pg->mdpage.ro_mappings++;
808 	if (pg->mdpage.rw_mappings != 0 &&
809 	    (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
810 		printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
811 		    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
812 		    pg->mdpage.krw_mappings);
813 	}
814 	splx(s);
815     }
816 #endif /* PMAP_ALIAS_DEBUG */
817 }
818 
819 /*
820  * pmap_remove_pv: try to remove a mapping from a pv_list
821  *
822  * => caller should hold proper lock on pmap_main_lock
823  * => pmap should be locked
824  * => caller should hold lock on vm_page [so that attrs can be adjusted]
825  * => caller should adjust ptp's wire_count and free PTP if needed
826  * => caller should NOT adjust pmap's wire_count
827  * => we return the removed pve
828  */
829 
830 __inline static struct pv_entry *
831 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
832 {
833 	struct pv_entry *pve, **prevptr;
834 
835 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
836 	pve = *prevptr;
837 	while (pve) {
838 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
839 			*prevptr = pve->pv_next;		/* remove it! */
840 			if (pve->pv_flags & PVF_WIRED)
841 			    --pmap->pm_stats.wired_count;
842 #ifdef PMAP_ALIAS_DEBUG
843     {
844 			int s = splhigh();
845 			if (pve->pv_flags & PVF_WRITE) {
846 				KASSERT(pg->mdpage.rw_mappings != 0);
847 				pg->mdpage.rw_mappings--;
848 			} else {
849 				KASSERT(pg->mdpage.ro_mappings != 0);
850 				pg->mdpage.ro_mappings--;
851 			}
852 			splx(s);
853     }
854 #endif /* PMAP_ALIAS_DEBUG */
855 			break;
856 		}
857 		prevptr = &pve->pv_next;		/* previous pointer */
858 		pve = pve->pv_next;			/* advance */
859 	}
860 	return(pve);				/* return removed pve */
861 }
862 
863 /*
864  *
865  * pmap_modify_pv: Update pv flags
866  *
867  * => caller should hold lock on vm_page [so that attrs can be adjusted]
868  * => caller should NOT adjust pmap's wire_count
869  * => caller must call pmap_vac_me_harder() if writable status of a page
870  *    may have changed.
871  * => we return the old flags
872  *
873  * Modify a physical-virtual mapping in the pv table
874  */
875 
876 static /* __inline */ u_int
877 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
878     u_int bic_mask, u_int eor_mask)
879 {
880 	struct pv_entry *npv;
881 	u_int flags, oflags;
882 
883 	/*
884 	 * There is at least one VA mapping this page.
885 	 */
886 
887 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
888 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
889 			oflags = npv->pv_flags;
890 			npv->pv_flags = flags =
891 			    ((oflags & ~bic_mask) ^ eor_mask);
892 			if ((flags ^ oflags) & PVF_WIRED) {
893 				if (flags & PVF_WIRED)
894 					++pmap->pm_stats.wired_count;
895 				else
896 					--pmap->pm_stats.wired_count;
897 			}
898 #ifdef PMAP_ALIAS_DEBUG
899     {
900 			int s = splhigh();
901 			if ((flags ^ oflags) & PVF_WRITE) {
902 				if (flags & PVF_WRITE) {
903 					pg->mdpage.rw_mappings++;
904 					pg->mdpage.ro_mappings--;
905 					if (pg->mdpage.rw_mappings != 0 &&
906 					    (pg->mdpage.kro_mappings != 0 ||
907 					     pg->mdpage.krw_mappings != 0)) {
908 						printf("pmap_modify_pv: rw %u, "
909 						    "kro %u, krw %u\n",
910 						    pg->mdpage.rw_mappings,
911 						    pg->mdpage.kro_mappings,
912 						    pg->mdpage.krw_mappings);
913 					}
914 				} else {
915 					KASSERT(pg->mdpage.rw_mappings != 0);
916 					pg->mdpage.rw_mappings--;
917 					pg->mdpage.ro_mappings++;
918 				}
919 			}
920 			splx(s);
921     }
922 #endif /* PMAP_ALIAS_DEBUG */
923 			return (oflags);
924 		}
925 	}
926 	return (0);
927 }
928 
929 /*
930  * Map the specified level 2 pagetable into the level 1 page table for
931  * the given pmap to cover a chunk of virtual address space starting from the
932  * address specified.
933  */
934 #define	PMAP_PTP_SELFREF	0x01
935 #define	PMAP_PTP_CACHEABLE	0x02
936 
937 static __inline void
938 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
939 {
940 	vaddr_t ptva;
941 
942 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
943 
944 	/* Calculate the index into the L1 page table. */
945 	ptva = va >> L1_S_SHIFT;
946 
947 	/* Map page table into the L1. */
948 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
949 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
950 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
951 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
952 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
953 
954 	/* Map the page table into the page table area. */
955 	if (flags & PMAP_PTP_SELFREF) {
956 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
957 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
958 		    ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
959 		PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
960 	}
961 }
962 
963 #if 0
964 static __inline void
965 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
966 {
967 	vaddr_t ptva;
968 
969 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
970 
971 	/* Calculate the index into the L1 page table. */
972 	ptva = va >> L1_S_SHIFT;
973 
974 	/* Unmap page table from the L1. */
975 	pmap->pm_pdir[ptva + 0] = 0;
976 	pmap->pm_pdir[ptva + 1] = 0;
977 	pmap->pm_pdir[ptva + 2] = 0;
978 	pmap->pm_pdir[ptva + 3] = 0;
979 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
980 
981 	/* Unmap the page table from the page table area. */
982 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
983 	PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
984 }
985 #endif
986 
987 /*
988  *	Used to map a range of physical addresses into kernel
989  *	virtual address space.
990  *
991  *	For now, VM is already on, we only need to map the
992  *	specified memory.
993  *
994  *	XXX This routine should eventually go away; it's only used
995  *	XXX by machine-dependent crash dump code.
996  */
997 vaddr_t
998 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
999 {
1000 	pt_entry_t *pte;
1001 
1002 	while (spa < epa) {
1003 		pte = vtopte(va);
1004 
1005 		*pte = L2_S_PROTO | spa |
1006 		    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1007 		PTE_SYNC(pte);
1008 		cpu_tlb_flushID_SE(va);
1009 		va += NBPG;
1010 		spa += NBPG;
1011 	}
1012 	pmap_update(pmap_kernel());
1013 	return(va);
1014 }
1015 
1016 
1017 /*
1018  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1019  *
1020  * bootstrap the pmap system. This is called from initarm and allows
1021  * the pmap system to initailise any structures it requires.
1022  *
1023  * Currently this sets up the kernel_pmap that is statically allocated
1024  * and also allocated virtual addresses for certain page hooks.
1025  * Currently the only one page hook is allocated that is used
1026  * to zero physical pages of memory.
1027  * It also initialises the start and end address of the kernel data space.
1028  */
1029 
1030 char *boot_head;
1031 
1032 void
1033 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1034 {
1035 	pt_entry_t *pte;
1036 
1037 	pmap_kernel()->pm_pdir = kernel_l1pt;
1038 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1039 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1040 	simple_lock_init(&pmap_kernel()->pm_lock);
1041 	pmap_kernel()->pm_obj.pgops = NULL;
1042 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1043 	pmap_kernel()->pm_obj.uo_npages = 0;
1044 	pmap_kernel()->pm_obj.uo_refs = 1;
1045 
1046 	virtual_avail = KERNEL_VM_BASE;
1047 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1048 
1049 	/*
1050 	 * now we allocate the "special" VAs which are used for tmp mappings
1051 	 * by the pmap (and other modules).  we allocate the VAs by advancing
1052 	 * virtual_avail (note that there are no pages mapped at these VAs).
1053 	 * we find the PTE that maps the allocated VA via the linear PTE
1054 	 * mapping.
1055 	 */
1056 
1057 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1058 
1059 	csrcp = virtual_avail; csrc_pte = pte;
1060 	virtual_avail += PAGE_SIZE; pte++;
1061 
1062 	cdstp = virtual_avail; cdst_pte = pte;
1063 	virtual_avail += PAGE_SIZE; pte++;
1064 
1065 	memhook = (char *) virtual_avail;	/* don't need pte */
1066 	*pte = 0;
1067 	virtual_avail += PAGE_SIZE; pte++;
1068 
1069 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
1070 	virtual_avail += round_page(MSGBUFSIZE);
1071 	pte += atop(round_page(MSGBUFSIZE));
1072 
1073 	/*
1074 	 * init the static-global locks and global lists.
1075 	 */
1076 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
1077 	simple_lock_init(&pvalloc_lock);
1078 	simple_lock_init(&pmaps_lock);
1079 	LIST_INIT(&pmaps);
1080 	TAILQ_INIT(&pv_freepages);
1081 	TAILQ_INIT(&pv_unusedpgs);
1082 
1083 	/*
1084 	 * initialize the pmap pool.
1085 	 */
1086 
1087 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1088 		  &pool_allocator_nointr);
1089 
1090 	/*
1091 	 * initialize the PT-PT pool and cache.
1092 	 */
1093 
1094 	pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1095 		  &pmap_ptpt_allocator);
1096 	pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1097 			pmap_ptpt_ctor, NULL, NULL);
1098 
1099 	cpu_dcache_wbinv_all();
1100 }
1101 
1102 /*
1103  * void pmap_init(void)
1104  *
1105  * Initialize the pmap module.
1106  * Called by vm_init() in vm/vm_init.c in order to initialise
1107  * any structures that the pmap system needs to map virtual memory.
1108  */
1109 
1110 extern int physmem;
1111 
1112 void
1113 pmap_init(void)
1114 {
1115 
1116 	/*
1117 	 * Set the available memory vars - These do not map to real memory
1118 	 * addresses and cannot as the physical memory is fragmented.
1119 	 * They are used by ps for %mem calculations.
1120 	 * One could argue whether this should be the entire memory or just
1121 	 * the memory that is useable in a user process.
1122 	 */
1123 	avail_start = 0;
1124 	avail_end = physmem * NBPG;
1125 
1126 	/*
1127 	 * now we need to free enough pv_entry structures to allow us to get
1128 	 * the kmem_map/kmem_object allocated and inited (done after this
1129 	 * function is finished).  to do this we allocate one bootstrap page out
1130 	 * of kernel_map and use it to provide an initial pool of pv_entry
1131 	 * structures.   we never free this page.
1132 	 */
1133 
1134 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1135 	if (pv_initpage == NULL)
1136 		panic("pmap_init: pv_initpage");
1137 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
1138 	pv_nfpvents = 0;
1139 	(void) pmap_add_pvpage(pv_initpage, FALSE);
1140 
1141 	pmap_initialized = TRUE;
1142 
1143 	/* Initialise our L1 page table queues and counters */
1144 	SIMPLEQ_INIT(&l1pt_static_queue);
1145 	l1pt_static_queue_count = 0;
1146 	l1pt_static_create_count = 0;
1147 	SIMPLEQ_INIT(&l1pt_queue);
1148 	l1pt_queue_count = 0;
1149 	l1pt_create_count = 0;
1150 	l1pt_reuse_count = 0;
1151 }
1152 
1153 /*
1154  * pmap_postinit()
1155  *
1156  * This routine is called after the vm and kmem subsystems have been
1157  * initialised. This allows the pmap code to perform any initialisation
1158  * that can only be done one the memory allocation is in place.
1159  */
1160 
1161 void
1162 pmap_postinit(void)
1163 {
1164 	unsigned int loop;
1165 	struct l1pt *pt;
1166 
1167 #ifdef PMAP_STATIC_L1S
1168 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1169 #else	/* PMAP_STATIC_L1S */
1170 	for (loop = 0; loop < max_processes; ++loop) {
1171 #endif	/* PMAP_STATIC_L1S */
1172 		/* Allocate a L1 page table */
1173 		pt = pmap_alloc_l1pt();
1174 		if (!pt)
1175 			panic("Cannot allocate static L1 page tables");
1176 
1177 		/* Clean it */
1178 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1179 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1180 		/* Add the page table to the queue */
1181 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1182 		++l1pt_static_queue_count;
1183 		++l1pt_static_create_count;
1184 	}
1185 }
1186 
1187 
1188 /*
1189  * Create and return a physical map.
1190  *
1191  * If the size specified for the map is zero, the map is an actual physical
1192  * map, and may be referenced by the hardware.
1193  *
1194  * If the size specified is non-zero, the map will be used in software only,
1195  * and is bounded by that size.
1196  */
1197 
1198 pmap_t
1199 pmap_create(void)
1200 {
1201 	struct pmap *pmap;
1202 
1203 	/*
1204 	 * Fetch pmap entry from the pool
1205 	 */
1206 
1207 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1208 	/* XXX is this really needed! */
1209 	memset(pmap, 0, sizeof(*pmap));
1210 
1211 	simple_lock_init(&pmap->pm_obj.vmobjlock);
1212 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
1213 	TAILQ_INIT(&pmap->pm_obj.memq);
1214 	pmap->pm_obj.uo_npages = 0;
1215 	pmap->pm_obj.uo_refs = 1;
1216 	pmap->pm_stats.wired_count = 0;
1217 	pmap->pm_stats.resident_count = 1;
1218 	pmap->pm_ptphint = NULL;
1219 
1220 	/* Now init the machine part of the pmap */
1221 	pmap_pinit(pmap);
1222 	return(pmap);
1223 }
1224 
1225 /*
1226  * pmap_alloc_l1pt()
1227  *
1228  * This routine allocates physical and virtual memory for a L1 page table
1229  * and wires it.
1230  * A l1pt structure is returned to describe the allocated page table.
1231  *
1232  * This routine is allowed to fail if the required memory cannot be allocated.
1233  * In this case NULL is returned.
1234  */
1235 
1236 struct l1pt *
1237 pmap_alloc_l1pt(void)
1238 {
1239 	paddr_t pa;
1240 	vaddr_t va;
1241 	struct l1pt *pt;
1242 	int error;
1243 	struct vm_page *m;
1244 
1245 	/* Allocate virtual address space for the L1 page table */
1246 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1247 	if (va == 0) {
1248 #ifdef DIAGNOSTIC
1249 		PDEBUG(0,
1250 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
1251 #endif	/* DIAGNOSTIC */
1252 		return(NULL);
1253 	}
1254 
1255 	/* Allocate memory for the l1pt structure */
1256 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1257 
1258 	/*
1259 	 * Allocate pages from the VM system.
1260 	 */
1261 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1262 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1263 	if (error) {
1264 #ifdef DIAGNOSTIC
1265 		PDEBUG(0,
1266 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1267 		    error));
1268 #endif	/* DIAGNOSTIC */
1269 		/* Release the resources we already have claimed */
1270 		free(pt, M_VMPMAP);
1271 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1272 		return(NULL);
1273 	}
1274 
1275 	/* Map our physical pages into our virtual space */
1276 	pt->pt_va = va;
1277 	m = TAILQ_FIRST(&pt->pt_plist);
1278 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1279 		pa = VM_PAGE_TO_PHYS(m);
1280 
1281 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1282 
1283 		va += NBPG;
1284 		m = m->pageq.tqe_next;
1285 	}
1286 
1287 #ifdef DIAGNOSTIC
1288 	if (m)
1289 		panic("pmap_alloc_l1pt: pglist not empty");
1290 #endif	/* DIAGNOSTIC */
1291 
1292 	pt->pt_flags = 0;
1293 	return(pt);
1294 }
1295 
1296 /*
1297  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1298  */
1299 static void
1300 pmap_free_l1pt(struct l1pt *pt)
1301 {
1302 	/* Separate the physical memory for the virtual space */
1303 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1304 	pmap_update(pmap_kernel());
1305 
1306 	/* Return the physical memory */
1307 	uvm_pglistfree(&pt->pt_plist);
1308 
1309 	/* Free the virtual space */
1310 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1311 
1312 	/* Free the l1pt structure */
1313 	free(pt, M_VMPMAP);
1314 }
1315 
1316 /*
1317  * pmap_ptpt_page_alloc:
1318  *
1319  *	Back-end page allocator for the PT-PT pool.
1320  */
1321 static void *
1322 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1323 {
1324 	struct vm_page *pg;
1325 	pt_entry_t *pte;
1326 	vaddr_t va;
1327 
1328 	/* XXX PR_WAITOK? */
1329 	va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1330 	if (va == 0)
1331 		return (NULL);
1332 
1333 	for (;;) {
1334 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1335 		if (pg != NULL)
1336 			break;
1337 		if ((flags & PR_WAITOK) == 0) {
1338 			uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1339 			return (NULL);
1340 		}
1341 		uvm_wait("pmap_ptpt");
1342 	}
1343 
1344 	pte = vtopte(va);
1345 	KDASSERT(pmap_pte_v(pte) == 0);
1346 
1347 	*pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1348 	     L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1349 	PTE_SYNC(pte);
1350 #ifdef PMAP_ALIAS_DEBUG
1351     {
1352 	int s = splhigh();
1353 	pg->mdpage.krw_mappings++;
1354 	splx(s);
1355     }
1356 #endif /* PMAP_ALIAS_DEBUG */
1357 
1358 	return ((void *) va);
1359 }
1360 
1361 /*
1362  * pmap_ptpt_page_free:
1363  *
1364  *	Back-end page free'er for the PT-PT pool.
1365  */
1366 static void
1367 pmap_ptpt_page_free(struct pool *pp, void *v)
1368 {
1369 	vaddr_t va = (vaddr_t) v;
1370 	paddr_t pa;
1371 
1372 	pa = vtophys(va);
1373 
1374 	pmap_kremove(va, L2_TABLE_SIZE);
1375 	pmap_update(pmap_kernel());
1376 
1377 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1378 
1379 	uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1380 }
1381 
1382 /*
1383  * pmap_ptpt_ctor:
1384  *
1385  *	Constructor for the PT-PT cache.
1386  */
1387 static int
1388 pmap_ptpt_ctor(void *arg, void *object, int flags)
1389 {
1390 	caddr_t vptpt = object;
1391 
1392 	/* Page is already zero'd. */
1393 
1394 	/*
1395 	 * Map in kernel PTs.
1396 	 *
1397 	 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1398 	 */
1399 	memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1400 	       (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1401 			((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1402 	       (KERNEL_PD_SIZE >> 2));
1403 
1404 	return (0);
1405 }
1406 
1407 /*
1408  * Allocate a page directory.
1409  * This routine will either allocate a new page directory from the pool
1410  * of L1 page tables currently held by the kernel or it will allocate
1411  * a new one via pmap_alloc_l1pt().
1412  * It will then initialise the l1 page table for use.
1413  */
1414 static int
1415 pmap_allocpagedir(struct pmap *pmap)
1416 {
1417 	vaddr_t vptpt;
1418 	struct l1pt *pt;
1419 	u_int gen;
1420 
1421 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1422 
1423 	/* Do we have any spare L1's lying around ? */
1424 	if (l1pt_static_queue_count) {
1425 		--l1pt_static_queue_count;
1426 		pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1427 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1428 	} else if (l1pt_queue_count) {
1429 		--l1pt_queue_count;
1430 		pt = SIMPLEQ_FIRST(&l1pt_queue);
1431 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1432 		++l1pt_reuse_count;
1433 	} else {
1434 		pt = pmap_alloc_l1pt();
1435 		if (!pt)
1436 			return(ENOMEM);
1437 		++l1pt_create_count;
1438 	}
1439 
1440 	/* Store the pointer to the l1 descriptor in the pmap. */
1441 	pmap->pm_l1pt = pt;
1442 
1443 	/* Store the virtual address of the l1 in the pmap. */
1444 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1445 
1446 	/* Clean the L1 if it is dirty */
1447 	if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1448 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1449 		cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1450 		    (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1451 	}
1452 
1453 	/* Allocate a page table to map all the page tables for this pmap */
1454 	KASSERT(pmap->pm_vptpt == 0);
1455 
1456  try_again:
1457 	gen = pmap_ptpt_cache_generation;
1458 	vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1459 	if (vptpt == NULL) {
1460 		PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1461 		pmap_freepagedir(pmap);
1462 		return (ENOMEM);
1463 	}
1464 
1465 	/* need to lock this all up for growkernel */
1466 	simple_lock(&pmaps_lock);
1467 
1468 	if (gen != pmap_ptpt_cache_generation) {
1469 		simple_unlock(&pmaps_lock);
1470 		pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1471 		goto try_again;
1472 	}
1473 
1474 	pmap->pm_vptpt = vptpt;
1475 	pmap->pm_pptpt = vtophys(vptpt);
1476 
1477 	/* Duplicate the kernel mappings. */
1478 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1479 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1480 		KERNEL_PD_SIZE);
1481 	cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1482 	    (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1483 
1484 	/* Wire in this page table */
1485 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
1486 
1487 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
1488 
1489 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1490 	simple_unlock(&pmaps_lock);
1491 
1492 	return(0);
1493 }
1494 
1495 
1496 /*
1497  * Initialize a preallocated and zeroed pmap structure,
1498  * such as one in a vmspace structure.
1499  */
1500 
1501 void
1502 pmap_pinit(struct pmap *pmap)
1503 {
1504 	int backoff = 6;
1505 	int retry = 10;
1506 
1507 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1508 
1509 	/* Keep looping until we succeed in allocating a page directory */
1510 	while (pmap_allocpagedir(pmap) != 0) {
1511 		/*
1512 		 * Ok we failed to allocate a suitable block of memory for an
1513 		 * L1 page table. This means that either:
1514 		 * 1. 16KB of virtual address space could not be allocated
1515 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
1516 		 *    could not be allocated.
1517 		 *
1518 		 * Since we cannot fail we will sleep for a while and try
1519 		 * again.
1520 		 *
1521 		 * Searching for a suitable L1 PT is expensive:
1522 		 * to avoid hogging the system when memory is really
1523 		 * scarce, use an exponential back-off so that
1524 		 * eventually we won't retry more than once every 8
1525 		 * seconds.  This should allow other processes to run
1526 		 * to completion and free up resources.
1527 		 */
1528 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1529 		    NULL);
1530 		if (--retry == 0) {
1531 			retry = 10;
1532 			if (backoff)
1533 				--backoff;
1534 		}
1535 	}
1536 
1537 	if (vector_page < KERNEL_BASE) {
1538 		/*
1539 		 * Map the vector page.  This will also allocate and map
1540 		 * an L2 table for it.
1541 		 */
1542 		pmap_enter(pmap, vector_page, systempage.pv_pa,
1543 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1544 		pmap_update(pmap);
1545 	}
1546 }
1547 
1548 void
1549 pmap_freepagedir(struct pmap *pmap)
1550 {
1551 	/* Free the memory used for the page table mapping */
1552 	if (pmap->pm_vptpt != 0) {
1553 		/*
1554 		 * XXX Objects freed to a pool cache must be in constructed
1555 		 * XXX form when freed, but we don't free page tables as we
1556 		 * XXX go, so we need to zap the mappings here.
1557 		 *
1558 		 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1559 		 */
1560 		memset((caddr_t) pmap->pm_vptpt, 0,
1561 		       ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1562 		pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1563 	}
1564 
1565 	/* junk the L1 page table */
1566 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1567 		/* Add the page table to the queue */
1568 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1569 				    pmap->pm_l1pt, pt_queue);
1570 		++l1pt_static_queue_count;
1571 	} else if (l1pt_queue_count < 8) {
1572 		/* Add the page table to the queue */
1573 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1574 		++l1pt_queue_count;
1575 	} else
1576 		pmap_free_l1pt(pmap->pm_l1pt);
1577 }
1578 
1579 /*
1580  * Retire the given physical map from service.
1581  * Should only be called if the map contains no valid mappings.
1582  */
1583 
1584 void
1585 pmap_destroy(struct pmap *pmap)
1586 {
1587 	struct vm_page *page;
1588 	int count;
1589 
1590 	if (pmap == NULL)
1591 		return;
1592 
1593 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1594 
1595 	/*
1596 	 * Drop reference count
1597 	 */
1598 	simple_lock(&pmap->pm_obj.vmobjlock);
1599 	count = --pmap->pm_obj.uo_refs;
1600 	simple_unlock(&pmap->pm_obj.vmobjlock);
1601 	if (count > 0) {
1602 		return;
1603 	}
1604 
1605 	/*
1606 	 * reference count is zero, free pmap resources and then free pmap.
1607 	 */
1608 
1609 	/*
1610 	 * remove it from global list of pmaps
1611 	 */
1612 
1613 	simple_lock(&pmaps_lock);
1614 	LIST_REMOVE(pmap, pm_list);
1615 	simple_unlock(&pmaps_lock);
1616 
1617 	if (vector_page < KERNEL_BASE) {
1618 		/* Remove the vector page mapping */
1619 		pmap_remove(pmap, vector_page, vector_page + NBPG);
1620 		pmap_update(pmap);
1621 	}
1622 
1623 	/*
1624 	 * Free any page tables still mapped
1625 	 * This is only temporay until pmap_enter can count the number
1626 	 * of mappings made in a page table. Then pmap_remove() can
1627 	 * reduce the count and free the pagetable when the count
1628 	 * reaches zero.  Note that entries in this list should match the
1629 	 * contents of the ptpt, however this is faster than walking a 1024
1630 	 * entries looking for pt's
1631 	 * taken from i386 pmap.c
1632 	 */
1633 	/*
1634 	 * vmobjlock must be held while freeing pages
1635 	 */
1636 	simple_lock(&pmap->pm_obj.vmobjlock);
1637 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1638 		KASSERT((page->flags & PG_BUSY) == 0);
1639 
1640 		/* Freeing a PT page?  The contents are a throw-away. */
1641 		KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
1642 		cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
1643 
1644 		page->wire_count = 0;
1645 		uvm_pagefree(page);
1646 	}
1647 	simple_unlock(&pmap->pm_obj.vmobjlock);
1648 
1649 	/* Free the page dir */
1650 	pmap_freepagedir(pmap);
1651 
1652 	/* return the pmap to the pool */
1653 	pool_put(&pmap_pmap_pool, pmap);
1654 }
1655 
1656 
1657 /*
1658  * void pmap_reference(struct pmap *pmap)
1659  *
1660  * Add a reference to the specified pmap.
1661  */
1662 
1663 void
1664 pmap_reference(struct pmap *pmap)
1665 {
1666 	if (pmap == NULL)
1667 		return;
1668 
1669 	simple_lock(&pmap->pm_lock);
1670 	pmap->pm_obj.uo_refs++;
1671 	simple_unlock(&pmap->pm_lock);
1672 }
1673 
1674 /*
1675  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1676  *
1677  * Return the start and end addresses of the kernel's virtual space.
1678  * These values are setup in pmap_bootstrap and are updated as pages
1679  * are allocated.
1680  */
1681 
1682 void
1683 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1684 {
1685 	*start = virtual_avail;
1686 	*end = virtual_end;
1687 }
1688 
1689 /*
1690  * Activate the address space for the specified process.  If the process
1691  * is the current process, load the new MMU context.
1692  */
1693 void
1694 pmap_activate(struct proc *p)
1695 {
1696 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1697 	struct pcb *pcb = &p->p_addr->u_pcb;
1698 
1699 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1700 	    (paddr_t *)&pcb->pcb_pagedir);
1701 
1702 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1703 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1704 
1705 	if (p == curproc) {
1706 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1707 		setttb((u_int)pcb->pcb_pagedir);
1708 	}
1709 }
1710 
1711 /*
1712  * Deactivate the address space of the specified process.
1713  */
1714 void
1715 pmap_deactivate(struct proc *p)
1716 {
1717 }
1718 
1719 /*
1720  * Perform any deferred pmap operations.
1721  */
1722 void
1723 pmap_update(struct pmap *pmap)
1724 {
1725 
1726 	/*
1727 	 * We haven't deferred any pmap operations, but we do need to
1728 	 * make sure TLB/cache operations have completed.
1729 	 */
1730 	cpu_cpwait();
1731 }
1732 
1733 /*
1734  * pmap_clean_page()
1735  *
1736  * This is a local function used to work out the best strategy to clean
1737  * a single page referenced by its entry in the PV table. It's used by
1738  * pmap_copy_page, pmap_zero page and maybe some others later on.
1739  *
1740  * Its policy is effectively:
1741  *  o If there are no mappings, we don't bother doing anything with the cache.
1742  *  o If there is one mapping, we clean just that page.
1743  *  o If there are multiple mappings, we clean the entire cache.
1744  *
1745  * So that some functions can be further optimised, it returns 0 if it didn't
1746  * clean the entire cache, or 1 if it did.
1747  *
1748  * XXX One bug in this routine is that if the pv_entry has a single page
1749  * mapped at 0x00000000 a whole cache clean will be performed rather than
1750  * just the 1 page. Since this should not occur in everyday use and if it does
1751  * it will just result in not the most efficient clean for the page.
1752  */
1753 static int
1754 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1755 {
1756 	struct pmap *pmap;
1757 	struct pv_entry *npv;
1758 	int cache_needs_cleaning = 0;
1759 	vaddr_t page_to_clean = 0;
1760 
1761 	if (pv == NULL) {
1762 		/* nothing mapped in so nothing to flush */
1763 		return (0);
1764 	}
1765 
1766 	/*
1767 	 * Since we flush the cache each time we change curproc, we
1768 	 * only need to flush the page if it is in the current pmap.
1769 	 */
1770 	if (curproc)
1771 		pmap = curproc->p_vmspace->vm_map.pmap;
1772 	else
1773 		pmap = pmap_kernel();
1774 
1775 	for (npv = pv; npv; npv = npv->pv_next) {
1776 		if (npv->pv_pmap == pmap) {
1777 			/*
1778 			 * The page is mapped non-cacheable in
1779 			 * this map.  No need to flush the cache.
1780 			 */
1781 			if (npv->pv_flags & PVF_NC) {
1782 #ifdef DIAGNOSTIC
1783 				if (cache_needs_cleaning)
1784 					panic("pmap_clean_page: "
1785 					    "cache inconsistency");
1786 #endif
1787 				break;
1788 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1789 				continue;
1790 			if (cache_needs_cleaning) {
1791 				page_to_clean = 0;
1792 				break;
1793 			} else
1794 				page_to_clean = npv->pv_va;
1795 			cache_needs_cleaning = 1;
1796 		}
1797 	}
1798 
1799 	if (page_to_clean) {
1800 		/*
1801 		 * XXX If is_src, we really only need to write-back,
1802 		 * XXX not invalidate, too.  Investigate further.
1803 		 * XXX --thorpej@netbsd.org
1804 		 */
1805 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
1806 	} else if (cache_needs_cleaning) {
1807 		cpu_idcache_wbinv_all();
1808 		return (1);
1809 	}
1810 	return (0);
1811 }
1812 
1813 /*
1814  * pmap_zero_page()
1815  *
1816  * Zero a given physical page by mapping it at a page hook point.
1817  * In doing the zero page op, the page we zero is mapped cachable, as with
1818  * StrongARM accesses to non-cached pages are non-burst making writing
1819  * _any_ bulk data very slow.
1820  */
1821 #if ARM_MMU_GENERIC == 1
1822 void
1823 pmap_zero_page_generic(paddr_t phys)
1824 {
1825 #ifdef DEBUG
1826 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1827 
1828 	if (pg->mdpage.pvh_list != NULL)
1829 		panic("pmap_zero_page: page has mappings");
1830 #endif
1831 
1832 	KDASSERT((phys & PGOFSET) == 0);
1833 
1834 	/*
1835 	 * Hook in the page, zero it, and purge the cache for that
1836 	 * zeroed page. Invalidate the TLB as needed.
1837 	 */
1838 	*cdst_pte = L2_S_PROTO | phys |
1839 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1840 	PTE_SYNC(cdst_pte);
1841 	cpu_tlb_flushD_SE(cdstp);
1842 	cpu_cpwait();
1843 	bzero_page(cdstp);
1844 	cpu_dcache_wbinv_range(cdstp, NBPG);
1845 }
1846 #endif /* ARM_MMU_GENERIC == 1 */
1847 
1848 #if ARM_MMU_XSCALE == 1
1849 void
1850 pmap_zero_page_xscale(paddr_t phys)
1851 {
1852 #ifdef DEBUG
1853 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1854 
1855 	if (pg->mdpage.pvh_list != NULL)
1856 		panic("pmap_zero_page: page has mappings");
1857 #endif
1858 
1859 	KDASSERT((phys & PGOFSET) == 0);
1860 
1861 	/*
1862 	 * Hook in the page, zero it, and purge the cache for that
1863 	 * zeroed page. Invalidate the TLB as needed.
1864 	 */
1865 	*cdst_pte = L2_S_PROTO | phys |
1866 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1867 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
1868 	PTE_SYNC(cdst_pte);
1869 	cpu_tlb_flushD_SE(cdstp);
1870 	cpu_cpwait();
1871 	bzero_page(cdstp);
1872 	xscale_cache_clean_minidata();
1873 }
1874 #endif /* ARM_MMU_XSCALE == 1 */
1875 
1876 /* pmap_pageidlezero()
1877  *
1878  * The same as above, except that we assume that the page is not
1879  * mapped.  This means we never have to flush the cache first.  Called
1880  * from the idle loop.
1881  */
1882 boolean_t
1883 pmap_pageidlezero(paddr_t phys)
1884 {
1885 	unsigned int i;
1886 	int *ptr;
1887 	boolean_t rv = TRUE;
1888 #ifdef DEBUG
1889 	struct vm_page *pg;
1890 
1891 	pg = PHYS_TO_VM_PAGE(phys);
1892 	if (pg->mdpage.pvh_list != NULL)
1893 		panic("pmap_pageidlezero: page has mappings");
1894 #endif
1895 
1896 	KDASSERT((phys & PGOFSET) == 0);
1897 
1898 	/*
1899 	 * Hook in the page, zero it, and purge the cache for that
1900 	 * zeroed page. Invalidate the TLB as needed.
1901 	 */
1902 	*cdst_pte = L2_S_PROTO | phys |
1903 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1904 	PTE_SYNC(cdst_pte);
1905 	cpu_tlb_flushD_SE(cdstp);
1906 	cpu_cpwait();
1907 
1908 	for (i = 0, ptr = (int *)cdstp;
1909 			i < (NBPG / sizeof(int)); i++) {
1910 		if (sched_whichqs != 0) {
1911 			/*
1912 			 * A process has become ready.  Abort now,
1913 			 * so we don't keep it waiting while we
1914 			 * do slow memory access to finish this
1915 			 * page.
1916 			 */
1917 			rv = FALSE;
1918 			break;
1919 		}
1920 		*ptr++ = 0;
1921 	}
1922 
1923 	if (rv)
1924 		/*
1925 		 * if we aborted we'll rezero this page again later so don't
1926 		 * purge it unless we finished it
1927 		 */
1928 		cpu_dcache_wbinv_range(cdstp, NBPG);
1929 	return (rv);
1930 }
1931 
1932 /*
1933  * pmap_copy_page()
1934  *
1935  * Copy one physical page into another, by mapping the pages into
1936  * hook points. The same comment regarding cachability as in
1937  * pmap_zero_page also applies here.
1938  */
1939 #if ARM_MMU_GENERIC == 1
1940 void
1941 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1942 {
1943 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1944 #ifdef DEBUG
1945 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1946 
1947 	if (dst_pg->mdpage.pvh_list != NULL)
1948 		panic("pmap_copy_page: dst page has mappings");
1949 #endif
1950 
1951 	KDASSERT((src & PGOFSET) == 0);
1952 	KDASSERT((dst & PGOFSET) == 0);
1953 
1954 	/*
1955 	 * Clean the source page.  Hold the source page's lock for
1956 	 * the duration of the copy so that no other mappings can
1957 	 * be created while we have a potentially aliased mapping.
1958 	 */
1959 	simple_lock(&src_pg->mdpage.pvh_slock);
1960 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1961 
1962 	/*
1963 	 * Map the pages into the page hook points, copy them, and purge
1964 	 * the cache for the appropriate page. Invalidate the TLB
1965 	 * as required.
1966 	 */
1967 	*csrc_pte = L2_S_PROTO | src |
1968 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1969 	PTE_SYNC(csrc_pte);
1970 	*cdst_pte = L2_S_PROTO | dst |
1971 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1972 	PTE_SYNC(cdst_pte);
1973 	cpu_tlb_flushD_SE(csrcp);
1974 	cpu_tlb_flushD_SE(cdstp);
1975 	cpu_cpwait();
1976 	bcopy_page(csrcp, cdstp);
1977 	cpu_dcache_inv_range(csrcp, NBPG);
1978 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1979 	cpu_dcache_wbinv_range(cdstp, NBPG);
1980 }
1981 #endif /* ARM_MMU_GENERIC == 1 */
1982 
1983 #if ARM_MMU_XSCALE == 1
1984 void
1985 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1986 {
1987 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1988 #ifdef DEBUG
1989 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1990 
1991 	if (dst_pg->mdpage.pvh_list != NULL)
1992 		panic("pmap_copy_page: dst page has mappings");
1993 #endif
1994 
1995 	KDASSERT((src & PGOFSET) == 0);
1996 	KDASSERT((dst & PGOFSET) == 0);
1997 
1998 	/*
1999 	 * Clean the source page.  Hold the source page's lock for
2000 	 * the duration of the copy so that no other mappings can
2001 	 * be created while we have a potentially aliased mapping.
2002 	 */
2003 	simple_lock(&src_pg->mdpage.pvh_slock);
2004 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2005 
2006 	/*
2007 	 * Map the pages into the page hook points, copy them, and purge
2008 	 * the cache for the appropriate page. Invalidate the TLB
2009 	 * as required.
2010 	 */
2011 	*csrc_pte = L2_S_PROTO | src |
2012 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2013 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
2014 	PTE_SYNC(csrc_pte);
2015 	*cdst_pte = L2_S_PROTO | dst |
2016 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2017 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
2018 	PTE_SYNC(cdst_pte);
2019 	cpu_tlb_flushD_SE(csrcp);
2020 	cpu_tlb_flushD_SE(cdstp);
2021 	cpu_cpwait();
2022 	bcopy_page(csrcp, cdstp);
2023 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2024 	xscale_cache_clean_minidata();
2025 }
2026 #endif /* ARM_MMU_XSCALE == 1 */
2027 
2028 #if 0
2029 void
2030 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2031 {
2032 	pd_entry_t *pde;
2033 	paddr_t pa;
2034 	struct vm_page *m;
2035 
2036 	if (pmap == pmap_kernel())
2037 		return;
2038 
2039 	pde = pmap_pde(pmap, va & PD_FRAME);
2040 	pa = pmap_pte_pa(pde);
2041 	m = PHYS_TO_VM_PAGE(pa);
2042 	m->wire_count++;
2043 #ifdef MYCROFT_HACK
2044 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2045 	    pmap, va, pde, pa, m, m->wire_count);
2046 #endif
2047 }
2048 
2049 void
2050 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2051 {
2052 	pd_entry_t *pde;
2053 	paddr_t pa;
2054 	struct vm_page *m;
2055 
2056 	if (pmap == pmap_kernel())
2057 		return;
2058 
2059 	pde = pmap_pde(pmap, va & PD_FRAME);
2060 	pa = pmap_pte_pa(pde);
2061 	m = PHYS_TO_VM_PAGE(pa);
2062 	m->wire_count--;
2063 #ifdef MYCROFT_HACK
2064 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2065 	    pmap, va, pde, pa, m, m->wire_count);
2066 #endif
2067 	if (m->wire_count == 0) {
2068 #ifdef MYCROFT_HACK
2069 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2070 		    pmap, va, pde, pa, m);
2071 #endif
2072 		pmap_unmap_in_l1(pmap, va & PD_FRAME);
2073 		uvm_pagefree(m);
2074 		--pmap->pm_stats.resident_count;
2075 	}
2076 }
2077 #else
2078 #define	pmap_pte_addref(pmap, va)
2079 #define	pmap_pte_delref(pmap, va)
2080 #endif
2081 
2082 /*
2083  * Since we have a virtually indexed cache, we may need to inhibit caching if
2084  * there is more than one mapping and at least one of them is writable.
2085  * Since we purge the cache on every context switch, we only need to check for
2086  * other mappings within the same pmap, or kernel_pmap.
2087  * This function is also called when a page is unmapped, to possibly reenable
2088  * caching on any remaining mappings.
2089  *
2090  * The code implements the following logic, where:
2091  *
2092  * KW = # of kernel read/write pages
2093  * KR = # of kernel read only pages
2094  * UW = # of user read/write pages
2095  * UR = # of user read only pages
2096  * OW = # of user read/write pages in another pmap, then
2097  *
2098  * KC = kernel mapping is cacheable
2099  * UC = user mapping is cacheable
2100  *
2101  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
2102  *                   +---------------------------------------------
2103  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
2104  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
2105  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
2106  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
2107  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
2108  *
2109  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2110  */
2111 __inline static void
2112 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2113 	boolean_t clear_cache)
2114 {
2115 	if (pmap == pmap_kernel())
2116 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2117 	else
2118 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2119 }
2120 
2121 static void
2122 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2123 	boolean_t clear_cache)
2124 {
2125 	unsigned int user_entries = 0;
2126 	unsigned int user_writable = 0;
2127 	unsigned int user_cacheable = 0;
2128 	unsigned int kernel_entries = 0;
2129 	unsigned int kernel_writable = 0;
2130 	unsigned int kernel_cacheable = 0;
2131 	struct pv_entry *pv;
2132 	struct pmap *last_pmap = pmap;
2133 
2134 #ifdef DIAGNOSTIC
2135 	if (pmap != pmap_kernel())
2136 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2137 #endif
2138 
2139 	/*
2140 	 * Pass one, see if there are both kernel and user pmaps for
2141 	 * this page.  Calculate whether there are user-writable or
2142 	 * kernel-writable pages.
2143 	 */
2144 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2145 		if (pv->pv_pmap != pmap) {
2146 			user_entries++;
2147 			if (pv->pv_flags & PVF_WRITE)
2148 				user_writable++;
2149 			if ((pv->pv_flags & PVF_NC) == 0)
2150 				user_cacheable++;
2151 		} else {
2152 			kernel_entries++;
2153 			if (pv->pv_flags & PVF_WRITE)
2154 				kernel_writable++;
2155 			if ((pv->pv_flags & PVF_NC) == 0)
2156 				kernel_cacheable++;
2157 		}
2158 	}
2159 
2160 	/*
2161 	 * We know we have just been updating a kernel entry, so if
2162 	 * all user pages are already cacheable, then there is nothing
2163 	 * further to do.
2164 	 */
2165 	if (kernel_entries == 0 &&
2166 	    user_cacheable == user_entries)
2167 		return;
2168 
2169 	if (user_entries) {
2170 		/*
2171 		 * Scan over the list again, for each entry, if it
2172 		 * might not be set correctly, call pmap_vac_me_user
2173 		 * to recalculate the settings.
2174 		 */
2175 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2176 			/*
2177 			 * We know kernel mappings will get set
2178 			 * correctly in other calls.  We also know
2179 			 * that if the pmap is the same as last_pmap
2180 			 * then we've just handled this entry.
2181 			 */
2182 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2183 				continue;
2184 			/*
2185 			 * If there are kernel entries and this page
2186 			 * is writable but non-cacheable, then we can
2187 			 * skip this entry also.
2188 			 */
2189 			if (kernel_entries > 0 &&
2190 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2191 			    (PVF_NC | PVF_WRITE))
2192 				continue;
2193 			/*
2194 			 * Similarly if there are no kernel-writable
2195 			 * entries and the page is already
2196 			 * read-only/cacheable.
2197 			 */
2198 			if (kernel_writable == 0 &&
2199 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2200 				continue;
2201 			/*
2202 			 * For some of the remaining cases, we know
2203 			 * that we must recalculate, but for others we
2204 			 * can't tell if they are correct or not, so
2205 			 * we recalculate anyway.
2206 			 */
2207 			pmap_unmap_ptes(last_pmap);
2208 			last_pmap = pv->pv_pmap;
2209 			ptes = pmap_map_ptes(last_pmap);
2210 			pmap_vac_me_user(last_pmap, pg, ptes,
2211 			    pmap_is_curpmap(last_pmap));
2212 		}
2213 		/* Restore the pte mapping that was passed to us.  */
2214 		if (last_pmap != pmap) {
2215 			pmap_unmap_ptes(last_pmap);
2216 			ptes = pmap_map_ptes(pmap);
2217 		}
2218 		if (kernel_entries == 0)
2219 			return;
2220 	}
2221 
2222 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2223 	return;
2224 }
2225 
2226 static void
2227 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2228 	boolean_t clear_cache)
2229 {
2230 	struct pmap *kpmap = pmap_kernel();
2231 	struct pv_entry *pv, *npv;
2232 	unsigned int entries = 0;
2233 	unsigned int writable = 0;
2234 	unsigned int cacheable_entries = 0;
2235 	unsigned int kern_cacheable = 0;
2236 	unsigned int other_writable = 0;
2237 
2238 	pv = pg->mdpage.pvh_list;
2239 	KASSERT(ptes != NULL);
2240 
2241 	/*
2242 	 * Count mappings and writable mappings in this pmap.
2243 	 * Include kernel mappings as part of our own.
2244 	 * Keep a pointer to the first one.
2245 	 */
2246 	for (npv = pv; npv; npv = npv->pv_next) {
2247 		/* Count mappings in the same pmap */
2248 		if (pmap == npv->pv_pmap ||
2249 		    kpmap == npv->pv_pmap) {
2250 			if (entries++ == 0)
2251 				pv = npv;
2252 			/* Cacheable mappings */
2253 			if ((npv->pv_flags & PVF_NC) == 0) {
2254 				cacheable_entries++;
2255 				if (kpmap == npv->pv_pmap)
2256 					kern_cacheable++;
2257 			}
2258 			/* Writable mappings */
2259 			if (npv->pv_flags & PVF_WRITE)
2260 				++writable;
2261 		} else if (npv->pv_flags & PVF_WRITE)
2262 			other_writable = 1;
2263 	}
2264 
2265 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2266 		"writable %d cacheable %d %s\n", pmap, entries, writable,
2267 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
2268 
2269 	/*
2270 	 * Enable or disable caching as necessary.
2271 	 * Note: the first entry might be part of the kernel pmap,
2272 	 * so we can't assume this is indicative of the state of the
2273 	 * other (maybe non-kpmap) entries.
2274 	 */
2275 	if ((entries > 1 && writable) ||
2276 	    (entries > 0 && pmap == kpmap && other_writable)) {
2277 		if (cacheable_entries == 0)
2278 		    return;
2279 		for (npv = pv; npv; npv = npv->pv_next) {
2280 			if ((pmap == npv->pv_pmap
2281 			    || kpmap == npv->pv_pmap) &&
2282 			    (npv->pv_flags & PVF_NC) == 0) {
2283 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2284 				PTE_SYNC_CURRENT(pmap,
2285 				    &ptes[arm_btop(npv->pv_va)]);
2286  				npv->pv_flags |= PVF_NC;
2287 				/*
2288 				 * If this page needs flushing from the
2289 				 * cache, and we aren't going to do it
2290 				 * below, do it now.
2291 				 */
2292 				if ((cacheable_entries < 4 &&
2293 				    (clear_cache || npv->pv_pmap == kpmap)) ||
2294 				    (npv->pv_pmap == kpmap &&
2295 				    !clear_cache && kern_cacheable < 4)) {
2296 					cpu_idcache_wbinv_range(npv->pv_va,
2297 					    NBPG);
2298 					cpu_tlb_flushID_SE(npv->pv_va);
2299 				}
2300 			}
2301 		}
2302 		if ((clear_cache && cacheable_entries >= 4) ||
2303 		    kern_cacheable >= 4) {
2304 			cpu_idcache_wbinv_all();
2305 			cpu_tlb_flushID();
2306 		}
2307 		cpu_cpwait();
2308 	} else if (entries > cacheable_entries) {
2309 		/*
2310 		 * Turn cacheing back on for some pages.  If it is a kernel
2311 		 * page, only do so if there are no other writable pages.
2312 		 */
2313 		for (npv = pv; npv; npv = npv->pv_next) {
2314 			if ((pmap == npv->pv_pmap ||
2315 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
2316 			    (npv->pv_flags & PVF_NC)) {
2317 				ptes[arm_btop(npv->pv_va)] |=
2318 				    pte_l2_s_cache_mode;
2319 				PTE_SYNC_CURRENT(pmap,
2320 				    &ptes[arm_btop(npv->pv_va)]);
2321 				npv->pv_flags &= ~PVF_NC;
2322 			}
2323 		}
2324 	}
2325 }
2326 
2327 /*
2328  * pmap_remove()
2329  *
2330  * pmap_remove is responsible for nuking a number of mappings for a range
2331  * of virtual address space in the current pmap. To do this efficiently
2332  * is interesting, because in a number of cases a wide virtual address
2333  * range may be supplied that contains few actual mappings. So, the
2334  * optimisations are:
2335  *  1. Try and skip over hunks of address space for which an L1 entry
2336  *     does not exist.
2337  *  2. Build up a list of pages we've hit, up to a maximum, so we can
2338  *     maybe do just a partial cache clean. This path of execution is
2339  *     complicated by the fact that the cache must be flushed _before_
2340  *     the PTE is nuked, being a VAC :-)
2341  *  3. Maybe later fast-case a single page, but I don't think this is
2342  *     going to make _that_ much difference overall.
2343  */
2344 
2345 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
2346 
2347 void
2348 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2349 {
2350 	unsigned int cleanlist_idx = 0;
2351 	struct pagelist {
2352 		vaddr_t va;
2353 		pt_entry_t *pte;
2354 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2355 	pt_entry_t *pte = 0, *ptes;
2356 	paddr_t pa;
2357 	int pmap_active;
2358 	struct vm_page *pg;
2359 	struct pv_entry *pv_tofree = NULL;
2360 
2361 	/* Exit quick if there is no pmap */
2362 	if (!pmap)
2363 		return;
2364 
2365 	NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2366 	    pmap, sva, eva));
2367 
2368 	/*
2369 	 * we lock in the pmap => vm_page direction
2370 	 */
2371 	PMAP_MAP_TO_HEAD_LOCK();
2372 
2373 	ptes = pmap_map_ptes(pmap);
2374 	/* Get a page table pointer */
2375 	while (sva < eva) {
2376 		if (pmap_pde_page(pmap_pde(pmap, sva)))
2377 			break;
2378 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2379 	}
2380 
2381 	pte = &ptes[arm_btop(sva)];
2382 	/* Note if the pmap is active thus require cache and tlb cleans */
2383 	pmap_active = pmap_is_curpmap(pmap);
2384 
2385 	/* Now loop along */
2386 	while (sva < eva) {
2387 		/* Check if we can move to the next PDE (l1 chunk) */
2388 		if ((sva & L2_ADDR_BITS) == 0) {
2389 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2390 				sva += L1_S_SIZE;
2391 				pte += arm_btop(L1_S_SIZE);
2392 				continue;
2393 			}
2394 		}
2395 
2396 		/* We've found a valid PTE, so this page of PTEs has to go. */
2397 		if (pmap_pte_v(pte)) {
2398 			/* Update statistics */
2399 			--pmap->pm_stats.resident_count;
2400 
2401 			/*
2402 			 * Add this page to our cache remove list, if we can.
2403 			 * If, however the cache remove list is totally full,
2404 			 * then do a complete cache invalidation taking note
2405 			 * to backtrack the PTE table beforehand, and ignore
2406 			 * the lists in future because there's no longer any
2407 			 * point in bothering with them (we've paid the
2408 			 * penalty, so will carry on unhindered). Otherwise,
2409 			 * when we fall out, we just clean the list.
2410 			 */
2411 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2412 			pa = pmap_pte_pa(pte);
2413 
2414 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2415 				/* Add to the clean list. */
2416 				cleanlist[cleanlist_idx].pte = pte;
2417 				cleanlist[cleanlist_idx].va = sva;
2418 				cleanlist_idx++;
2419 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2420 				int cnt;
2421 
2422 				/* Nuke everything if needed. */
2423 				if (pmap_active) {
2424 					cpu_idcache_wbinv_all();
2425 					cpu_tlb_flushID();
2426 				}
2427 
2428 				/*
2429 				 * Roll back the previous PTE list,
2430 				 * and zero out the current PTE.
2431 				 */
2432 				for (cnt = 0;
2433 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
2434 				     cnt++) {
2435 					*cleanlist[cnt].pte = 0;
2436 					if (pmap_active)
2437 						PTE_SYNC(cleanlist[cnt].pte);
2438 					else
2439 						PTE_FLUSH(cleanlist[cnt].pte);
2440 					pmap_pte_delref(pmap,
2441 					    cleanlist[cnt].va);
2442 				}
2443 				*pte = 0;
2444 				if (pmap_active)
2445 					PTE_SYNC(pte);
2446 				else
2447 					PTE_FLUSH(pte);
2448 				pmap_pte_delref(pmap, sva);
2449 				cleanlist_idx++;
2450 			} else {
2451 				/*
2452 				 * We've already nuked the cache and
2453 				 * TLB, so just carry on regardless,
2454 				 * and we won't need to do it again
2455 				 */
2456 				*pte = 0;
2457 				if (pmap_active)
2458 					PTE_SYNC(pte);
2459 				else
2460 					PTE_FLUSH(pte);
2461 				pmap_pte_delref(pmap, sva);
2462 			}
2463 
2464 			/*
2465 			 * Update flags. In a number of circumstances,
2466 			 * we could cluster a lot of these and do a
2467 			 * number of sequential pages in one go.
2468 			 */
2469 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2470 				struct pv_entry *pve;
2471 				simple_lock(&pg->mdpage.pvh_slock);
2472 				pve = pmap_remove_pv(pg, pmap, sva);
2473 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2474 				simple_unlock(&pg->mdpage.pvh_slock);
2475 				if (pve != NULL) {
2476 					pve->pv_next = pv_tofree;
2477 					pv_tofree = pve;
2478 				}
2479 			}
2480 		} else if (pmap_active == 0)
2481 			PTE_FLUSH(pte);
2482 		sva += NBPG;
2483 		pte++;
2484 	}
2485 
2486 	/*
2487 	 * Now, if we've fallen through down to here, chances are that there
2488 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2489 	 */
2490 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2491 		u_int cnt;
2492 
2493 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2494 			if (pmap_active) {
2495 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
2496 				    NBPG);
2497 				*cleanlist[cnt].pte = 0;
2498 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
2499 				PTE_SYNC(cleanlist[cnt].pte);
2500 			} else {
2501 				*cleanlist[cnt].pte = 0;
2502 				PTE_FLUSH(cleanlist[cnt].pte);
2503 			}
2504 			pmap_pte_delref(pmap, cleanlist[cnt].va);
2505 		}
2506 	}
2507 
2508 	/* Delete pv entries */
2509 	if (pv_tofree != NULL)
2510 		pmap_free_pvs(pmap, pv_tofree);
2511 
2512 	pmap_unmap_ptes(pmap);
2513 
2514 	PMAP_MAP_TO_HEAD_UNLOCK();
2515 }
2516 
2517 /*
2518  * Routine:	pmap_page_remove
2519  * Function:
2520  *		Removes this physical page from
2521  *		all physical maps in which it resides.
2522  *		Reflects back modify bits to the pager.
2523  */
2524 
2525 static void
2526 pmap_page_remove(struct vm_page *pg)
2527 {
2528 	struct pv_entry *pv, *npv;
2529 	struct pmap *pmap;
2530 	pt_entry_t *pte, *ptes;
2531 
2532 	PDEBUG(0, printf("pmap_page_remove: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2533 
2534 	/* set vm_page => pmap locking */
2535 	PMAP_HEAD_TO_MAP_LOCK();
2536 
2537 	simple_lock(&pg->mdpage.pvh_slock);
2538 
2539 	pv = pg->mdpage.pvh_list;
2540 	if (pv == NULL) {
2541 		PDEBUG(0, printf("free page\n"));
2542 		simple_unlock(&pg->mdpage.pvh_slock);
2543 		PMAP_HEAD_TO_MAP_UNLOCK();
2544 		return;
2545 	}
2546 	pmap_clean_page(pv, FALSE);
2547 
2548 	while (pv) {
2549 		pmap = pv->pv_pmap;
2550 		ptes = pmap_map_ptes(pmap);
2551 		pte = &ptes[arm_btop(pv->pv_va)];
2552 
2553 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2554 		    pv->pv_va, pv->pv_flags));
2555 #ifdef DEBUG
2556 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2557 		    pmap_pte_v(pte) == 0 ||
2558 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2559 			panic("pmap_page_remove: bad mapping");
2560 #endif	/* DEBUG */
2561 
2562 		/*
2563 		 * Update statistics
2564 		 */
2565 		--pmap->pm_stats.resident_count;
2566 
2567 		/* Wired bit */
2568 		if (pv->pv_flags & PVF_WIRED)
2569 			--pmap->pm_stats.wired_count;
2570 
2571 		/*
2572 		 * Invalidate the PTEs.
2573 		 * XXX: should cluster them up and invalidate as many
2574 		 * as possible at once.
2575 		 */
2576 
2577 #ifdef needednotdone
2578 reduce wiring count on page table pages as references drop
2579 #endif
2580 
2581 		*pte = 0;
2582 		PTE_SYNC_CURRENT(pmap, pte);
2583 		pmap_pte_delref(pmap, pv->pv_va);
2584 
2585 		npv = pv->pv_next;
2586 		pmap_free_pv(pmap, pv);
2587 		pv = npv;
2588 		pmap_unmap_ptes(pmap);
2589 	}
2590 	pg->mdpage.pvh_list = NULL;
2591 	simple_unlock(&pg->mdpage.pvh_slock);
2592 	PMAP_HEAD_TO_MAP_UNLOCK();
2593 
2594 	PDEBUG(0, printf("done\n"));
2595 	cpu_tlb_flushID();
2596 	cpu_cpwait();
2597 }
2598 
2599 
2600 /*
2601  * Set the physical protection on the specified range of this map as requested.
2602  */
2603 
2604 void
2605 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2606 {
2607 	pt_entry_t *pte = NULL, *ptes;
2608 	struct vm_page *pg;
2609 	int flush = 0;
2610 
2611 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2612 	    pmap, sva, eva, prot));
2613 
2614 	if (~prot & VM_PROT_READ) {
2615 		/*
2616 		 * Just remove the mappings.  pmap_update() is not required
2617 		 * here since the caller should do it.
2618 		 */
2619 		pmap_remove(pmap, sva, eva);
2620 		return;
2621 	}
2622 	if (prot & VM_PROT_WRITE) {
2623 		/*
2624 		 * If this is a read->write transition, just ignore it and let
2625 		 * uvm_fault() take care of it later.
2626 		 */
2627 		return;
2628 	}
2629 
2630 	/* Need to lock map->head */
2631 	PMAP_MAP_TO_HEAD_LOCK();
2632 
2633 	ptes = pmap_map_ptes(pmap);
2634 
2635 	/*
2636 	 * OK, at this point, we know we're doing write-protect operation.
2637 	 * If the pmap is active, write-back the range.
2638 	 */
2639 	if (pmap_is_curpmap(pmap))
2640 		cpu_dcache_wb_range(sva, eva - sva);
2641 
2642 	/*
2643 	 * We need to acquire a pointer to a page table page before entering
2644 	 * the following loop.
2645 	 */
2646 	while (sva < eva) {
2647 		if (pmap_pde_page(pmap_pde(pmap, sva)))
2648 			break;
2649 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2650 	}
2651 
2652 	pte = &ptes[arm_btop(sva)];
2653 
2654 	while (sva < eva) {
2655 		/* only check once in a while */
2656 		if ((sva & L2_ADDR_BITS) == 0) {
2657 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2658 				/* We can race ahead here, to the next pde. */
2659 				sva += L1_S_SIZE;
2660 				pte += arm_btop(L1_S_SIZE);
2661 				continue;
2662 			}
2663 		}
2664 
2665 		if (!pmap_pte_v(pte)) {
2666 			PTE_FLUSH_ALT(pmap, pte);
2667 			goto next;
2668 		}
2669 
2670 		flush = 1;
2671 
2672 		pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
2673 
2674 		*pte &= ~L2_S_PROT_W;		/* clear write bit */
2675 		PTE_SYNC_CURRENT(pmap, pte);	/* XXXJRT optimize */
2676 
2677 		/* Clear write flag */
2678 		if (pg != NULL) {
2679 			simple_lock(&pg->mdpage.pvh_slock);
2680 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2681 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2682 			simple_unlock(&pg->mdpage.pvh_slock);
2683 		}
2684 
2685  next:
2686 		sva += NBPG;
2687 		pte++;
2688 	}
2689 	pmap_unmap_ptes(pmap);
2690 	PMAP_MAP_TO_HEAD_UNLOCK();
2691 	if (flush)
2692 		cpu_tlb_flushID();
2693 }
2694 
2695 /*
2696  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2697  * int flags)
2698  *
2699  *      Insert the given physical page (p) at
2700  *      the specified virtual address (v) in the
2701  *      target physical map with the protection requested.
2702  *
2703  *      If specified, the page will be wired down, meaning
2704  *      that the related pte can not be reclaimed.
2705  *
2706  *      NB:  This is the only routine which MAY NOT lazy-evaluate
2707  *      or lose information.  That is, this routine must actually
2708  *      insert this page into the given map NOW.
2709  */
2710 
2711 int
2712 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2713     int flags)
2714 {
2715 	pt_entry_t *ptes, opte, npte;
2716 	paddr_t opa;
2717 	boolean_t wired = (flags & PMAP_WIRED) != 0;
2718 	struct vm_page *pg;
2719 	struct pv_entry *pve;
2720 	int error, nflags;
2721 	struct vm_page *ptp = NULL;
2722 
2723 	NPDEBUG(PDB_ENTER, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, flags=%08x, wired = %d\n",
2724 	    va, pa, pmap, prot, flags, wired));
2725 
2726 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2727 
2728 #ifdef DIAGNOSTIC
2729 	/* Valid address ? */
2730 	if (va >= (pmap_curmaxkvaddr))
2731 		panic("pmap_enter: too big");
2732 	if (pmap != pmap_kernel() && va != 0) {
2733 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2734 			panic("pmap_enter: kernel page in user map");
2735 	} else {
2736 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2737 			panic("pmap_enter: user page in kernel map");
2738 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2739 			panic("pmap_enter: entering PT page");
2740 	}
2741 #endif
2742 
2743 	KDASSERT(((va | pa) & PGOFSET) == 0);
2744 
2745 	/*
2746 	 * Get a pointer to the page.  Later on in this function, we
2747 	 * test for a managed page by checking pg != NULL.
2748 	 */
2749 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2750 
2751 	/* get lock */
2752 	PMAP_MAP_TO_HEAD_LOCK();
2753 
2754 	/*
2755 	 * map the ptes.  If there's not already an L2 table for this
2756 	 * address, allocate one.
2757 	 */
2758 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
2759 	/* kernel should be pre-grown */
2760 	if (pmap != pmap_kernel())
2761 	{
2762 		/* if failure is allowed then don't try too hard */
2763 		ptp = pmap_get_ptp(pmap, va & PD_FRAME);
2764 		if (ptp == NULL) {
2765 			if (flags & PMAP_CANFAIL) {
2766 				error = ENOMEM;
2767 				goto out;
2768 			}
2769 			panic("pmap_enter: get ptp failed");
2770 		}
2771 	}
2772 	opte = ptes[arm_btop(va)];
2773 
2774 	nflags = 0;
2775 	if (prot & VM_PROT_WRITE)
2776 		nflags |= PVF_WRITE;
2777 	if (wired)
2778 		nflags |= PVF_WIRED;
2779 
2780 	/* Is the pte valid ? If so then this page is already mapped */
2781 	if (l2pte_valid(opte)) {
2782 		/* Get the physical address of the current page mapped */
2783 		opa = l2pte_pa(opte);
2784 
2785 		/* Are we mapping the same page ? */
2786 		if (opa == pa) {
2787 			/* Check to see if we're doing rw->ro. */
2788 			if ((opte & L2_S_PROT_W) != 0 &&
2789 			    (prot & VM_PROT_WRITE) == 0) {
2790 				/* Yup, flush the cache if current pmap. */
2791 				if (pmap_is_curpmap(pmap))
2792 					cpu_dcache_wb_range(va, NBPG);
2793 			}
2794 
2795 			/* Has the wiring changed ? */
2796 			if (pg != NULL) {
2797 				simple_lock(&pg->mdpage.pvh_slock);
2798 				(void) pmap_modify_pv(pmap, va, pg,
2799 				    PVF_WRITE | PVF_WIRED, nflags);
2800 				simple_unlock(&pg->mdpage.pvh_slock);
2801  			}
2802 		} else {
2803 			struct vm_page *opg;
2804 
2805 			/* We are replacing the page with a new one. */
2806 			cpu_idcache_wbinv_range(va, NBPG);
2807 
2808 			/*
2809 			 * If it is part of our managed memory then we
2810 			 * must remove it from the PV list
2811 			 */
2812 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2813 				simple_lock(&opg->mdpage.pvh_slock);
2814 				pve = pmap_remove_pv(opg, pmap, va);
2815 				simple_unlock(&opg->mdpage.pvh_slock);
2816 			} else {
2817 				pve = NULL;
2818 			}
2819 
2820 			goto enter;
2821 		}
2822 	} else {
2823 		opa = 0;
2824 		pve = NULL;
2825 
2826 		/* bump ptp ref */
2827 		if (ptp != NULL)
2828 			ptp->wire_count++;
2829 
2830 		/* pte is not valid so we must be hooking in a new page */
2831 		++pmap->pm_stats.resident_count;
2832 
2833 	enter:
2834 		/*
2835 		 * Enter on the PV list if part of our managed memory
2836 		 */
2837 		if (pg != NULL) {
2838 			if (pve == NULL) {
2839 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2840 				if (pve == NULL) {
2841 					if (flags & PMAP_CANFAIL) {
2842 						PTE_FLUSH_ALT(pmap,
2843 						    ptes[arm_btop(va)]);
2844 						error = ENOMEM;
2845 						goto out;
2846 					}
2847 					panic("pmap_enter: no pv entries "
2848 					    "available");
2849 				}
2850 			}
2851 			/* enter_pv locks pvh when adding */
2852 			pmap_enter_pv(pg, pve, pmap, va, ptp, nflags);
2853 		} else {
2854 			if (pve != NULL)
2855 				pmap_free_pv(pmap, pve);
2856 		}
2857 	}
2858 
2859 	/* Construct the pte, giving the correct access. */
2860 	npte = pa;
2861 
2862 	/* VA 0 is magic. */
2863 	if (pmap != pmap_kernel() && va != vector_page)
2864 		npte |= L2_S_PROT_U;
2865 
2866 	if (pg != NULL) {
2867 #ifdef DIAGNOSTIC
2868 		if ((flags & VM_PROT_ALL) & ~prot)
2869 			panic("pmap_enter: access_type exceeds prot");
2870 #endif
2871 		npte |= pte_l2_s_cache_mode;
2872 		if (flags & VM_PROT_WRITE) {
2873 			npte |= L2_S_PROTO | L2_S_PROT_W;
2874 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2875 		} else if (flags & VM_PROT_ALL) {
2876 			npte |= L2_S_PROTO;
2877 			pg->mdpage.pvh_attrs |= PVF_REF;
2878 		} else
2879 			npte |= L2_TYPE_INV;
2880 	} else {
2881 		if (prot & VM_PROT_WRITE)
2882 			npte |= L2_S_PROTO | L2_S_PROT_W;
2883 		else if (prot & VM_PROT_ALL)
2884 			npte |= L2_S_PROTO;
2885 		else
2886 			npte |= L2_TYPE_INV;
2887 	}
2888 
2889 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2890 #if ARM_NMMUS > 1
2891 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2892 #endif
2893 	/*
2894 	 * XXX BRUTAL HACK!  This allows us to limp along with
2895 	 * XXX the read/write-allocate cache mode.
2896 	 */
2897 	if (pmap == pmap_kernel())
2898 		npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2899 #endif
2900 	ptes[arm_btop(va)] = npte;
2901 	PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
2902 
2903 	if (pg != NULL) {
2904 		simple_lock(&pg->mdpage.pvh_slock);
2905  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2906 		simple_unlock(&pg->mdpage.pvh_slock);
2907 	}
2908 
2909 	/* Better flush the TLB ... */
2910 	cpu_tlb_flushID_SE(va);
2911 	error = 0;
2912 out:
2913 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
2914 	PMAP_MAP_TO_HEAD_UNLOCK();
2915 
2916 	return error;
2917 }
2918 
2919 /*
2920  * pmap_kenter_pa: enter a kernel mapping
2921  *
2922  * => no need to lock anything assume va is already allocated
2923  * => should be faster than normal pmap enter function
2924  */
2925 void
2926 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2927 {
2928 	pt_entry_t *pte;
2929 
2930 	pte = vtopte(va);
2931 	KASSERT(!pmap_pte_v(pte));
2932 
2933 #ifdef PMAP_ALIAS_DEBUG
2934     {
2935 	struct vm_page *pg;
2936 	int s;
2937 
2938 	pg = PHYS_TO_VM_PAGE(pa);
2939 	if (pg != NULL) {
2940 		s = splhigh();
2941 		if (pg->mdpage.ro_mappings == 0 &&
2942 		    pg->mdpage.rw_mappings == 0 &&
2943 		    pg->mdpage.kro_mappings == 0 &&
2944 		    pg->mdpage.krw_mappings == 0) {
2945 			/* This case is okay. */
2946 		} else if (pg->mdpage.rw_mappings == 0 &&
2947 			   pg->mdpage.krw_mappings == 0 &&
2948 			   (prot & VM_PROT_WRITE) == 0) {
2949 			/* This case is okay. */
2950 		} else {
2951 			/* Something is awry. */
2952 			printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2953 			    "prot 0x%x\n", pg->mdpage.ro_mappings,
2954 			    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2955 			    pg->mdpage.krw_mappings, prot);
2956 			Debugger();
2957 		}
2958 		if (prot & VM_PROT_WRITE)
2959 			pg->mdpage.krw_mappings++;
2960 		else
2961 			pg->mdpage.kro_mappings++;
2962 		splx(s);
2963 	}
2964     }
2965 #endif /* PMAP_ALIAS_DEBUG */
2966 
2967 	*pte = L2_S_PROTO | pa |
2968 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2969 	PTE_SYNC(pte);
2970 }
2971 
2972 void
2973 pmap_kremove(vaddr_t va, vsize_t len)
2974 {
2975 	pt_entry_t *pte;
2976 	vaddr_t ova = va;
2977 	vaddr_t olen = len;
2978 
2979 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2980 
2981 		/*
2982 		 * We assume that we will only be called with small
2983 		 * regions of memory.
2984 		 */
2985 
2986 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2987 		pte = vtopte(va);
2988 #ifdef PMAP_ALIAS_DEBUG
2989     {
2990 		struct vm_page *pg;
2991 		int s;
2992 
2993 		if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2994 		    (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2995 			s = splhigh();
2996 			if (*pte & L2_S_PROT_W) {
2997 				KASSERT(pg->mdpage.krw_mappings != 0);
2998 				pg->mdpage.krw_mappings--;
2999 			} else {
3000 				KASSERT(pg->mdpage.kro_mappings != 0);
3001 				pg->mdpage.kro_mappings--;
3002 			}
3003 			splx(s);
3004 		}
3005     }
3006 #endif /* PMAP_ALIAS_DEBUG */
3007 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
3008 		*pte = 0;
3009 		cpu_tlb_flushID_SE(va);
3010 	}
3011 	PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
3012 }
3013 
3014 /*
3015  * pmap_page_protect:
3016  *
3017  * Lower the permission for all mappings to a given page.
3018  */
3019 
3020 void
3021 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3022 {
3023 
3024 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3025 	    VM_PAGE_TO_PHYS(pg), prot));
3026 
3027 	switch(prot) {
3028 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3029 	case VM_PROT_READ|VM_PROT_WRITE:
3030 		return;
3031 
3032 	case VM_PROT_READ:
3033 	case VM_PROT_READ|VM_PROT_EXECUTE:
3034 		pmap_clearbit(pg, PVF_WRITE);
3035 		break;
3036 
3037 	default:
3038 		pmap_page_remove(pg);
3039 		break;
3040 	}
3041 }
3042 
3043 
3044 /*
3045  * Routine:	pmap_unwire
3046  * Function:	Clear the wired attribute for a map/virtual-address
3047  *		pair.
3048  * In/out conditions:
3049  *		The mapping must already exist in the pmap.
3050  */
3051 
3052 void
3053 pmap_unwire(struct pmap *pmap, vaddr_t va)
3054 {
3055 	pt_entry_t *ptes;
3056 	struct vm_page *pg;
3057 	paddr_t pa;
3058 
3059 	PMAP_MAP_TO_HEAD_LOCK();
3060 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
3061 
3062 	if (pmap_pde_v(pmap_pde(pmap, va))) {
3063 #ifdef DIAGNOSTIC
3064 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3065 			panic("pmap_unwire: invalid L2 PTE");
3066 #endif
3067 		/* Extract the physical address of the page */
3068 		pa = l2pte_pa(ptes[arm_btop(va)]);
3069 		PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3070 
3071 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3072 			goto out;
3073 
3074 		/* Update the wired bit in the pv entry for this page. */
3075 		simple_lock(&pg->mdpage.pvh_slock);
3076 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3077 		simple_unlock(&pg->mdpage.pvh_slock);
3078 	}
3079 #ifdef DIAGNOSTIC
3080 	else {
3081 		panic("pmap_unwire: invalid L1 PTE");
3082 	}
3083 #endif
3084  out:
3085 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
3086 	PMAP_MAP_TO_HEAD_UNLOCK();
3087 }
3088 
3089 /*
3090  * Routine:  pmap_extract
3091  * Function:
3092  *           Extract the physical page address associated
3093  *           with the given map/virtual_address pair.
3094  */
3095 boolean_t
3096 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3097 {
3098 	pd_entry_t *pde;
3099 	pt_entry_t *pte, *ptes;
3100 	paddr_t pa;
3101 
3102 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3103 
3104 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
3105 
3106 	pde = pmap_pde(pmap, va);
3107 	pte = &ptes[arm_btop(va)];
3108 
3109 	if (pmap_pde_section(pde)) {
3110 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3111 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3112 		goto out;
3113 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3114 		PDEBUG(5, printf("no mapping\n"));
3115 		goto failed;
3116 	}
3117 
3118 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3119 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3120 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3121 		goto out;
3122 	}
3123 
3124 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3125 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3126 
3127  out:
3128 	if (pap != NULL)
3129 		*pap = pa;
3130 
3131 	PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3132 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
3133 	return (TRUE);
3134 
3135  failed:
3136 	PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3137 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
3138 	return (FALSE);
3139 }
3140 
3141 
3142 /*
3143  * pmap_copy:
3144  *
3145  *	Copy the range specified by src_addr/len from the source map to the
3146  *	range dst_addr/len in the destination map.
3147  *
3148  *	This routine is only advisory and need not do anything.
3149  */
3150 /* Call deleted in <arm/arm32/pmap.h> */
3151 
3152 #if defined(PMAP_DEBUG)
3153 void
3154 pmap_dump_pvlist(phys, m)
3155 	vaddr_t phys;
3156 	char *m;
3157 {
3158 	struct vm_page *pg;
3159 	struct pv_entry *pv;
3160 
3161 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3162 		printf("INVALID PA\n");
3163 		return;
3164 	}
3165 	simple_lock(&pg->mdpage.pvh_slock);
3166 	printf("%s %08lx:", m, phys);
3167 	if (pg->mdpage.pvh_list == NULL) {
3168 		simple_unlock(&pg->mdpage.pvh_slock);
3169 		printf(" no mappings\n");
3170 		return;
3171 	}
3172 
3173 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3174 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3175 		    pv->pv_va, pv->pv_flags);
3176 
3177 	printf("\n");
3178 	simple_unlock(&pg->mdpage.pvh_slock);
3179 }
3180 
3181 #endif	/* PMAP_DEBUG */
3182 
3183 static pt_entry_t *
3184 pmap_map_ptes(struct pmap *pmap)
3185 {
3186 	struct proc *p;
3187 
3188     	/* the kernel's pmap is always accessible */
3189 	if (pmap == pmap_kernel()) {
3190 		return (pt_entry_t *)PTE_BASE;
3191 	}
3192 
3193 	if (pmap_is_curpmap(pmap)) {
3194 		simple_lock(&pmap->pm_obj.vmobjlock);
3195 		return (pt_entry_t *)PTE_BASE;
3196 	}
3197 
3198 	p = curproc;
3199 	KDASSERT(p != NULL);
3200 
3201 	/* need to lock both curpmap and pmap: use ordered locking */
3202 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3203 		simple_lock(&pmap->pm_obj.vmobjlock);
3204 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3205 	} else {
3206 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3207 		simple_lock(&pmap->pm_obj.vmobjlock);
3208 	}
3209 
3210 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3211 	    pmap->pm_pptpt, 0);
3212 	cpu_tlb_flushD();
3213 	cpu_cpwait();
3214 	return (pt_entry_t *)APTE_BASE;
3215 }
3216 
3217 /*
3218  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3219  */
3220 
3221 static void
3222 pmap_unmap_ptes(struct pmap *pmap)
3223 {
3224 
3225 	if (pmap == pmap_kernel()) {
3226 		return;
3227 	}
3228 	if (pmap_is_curpmap(pmap)) {
3229 		simple_unlock(&pmap->pm_obj.vmobjlock);
3230 	} else {
3231 		KDASSERT(curproc != NULL);
3232 		simple_unlock(&pmap->pm_obj.vmobjlock);
3233 		simple_unlock(
3234 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3235 	}
3236 }
3237 
3238 /*
3239  * Modify pte bits for all ptes corresponding to the given physical address.
3240  * We use `maskbits' rather than `clearbits' because we're always passing
3241  * constants and the latter would require an extra inversion at run-time.
3242  */
3243 
3244 static void
3245 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3246 {
3247 	struct pv_entry *pv;
3248 	pt_entry_t *ptes, npte, opte;
3249 	vaddr_t va;
3250 
3251 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3252 	    VM_PAGE_TO_PHYS(pg), maskbits));
3253 
3254 	PMAP_HEAD_TO_MAP_LOCK();
3255 	simple_lock(&pg->mdpage.pvh_slock);
3256 
3257 	/*
3258 	 * Clear saved attributes (modify, reference)
3259 	 */
3260 	pg->mdpage.pvh_attrs &= ~maskbits;
3261 
3262 	if (pg->mdpage.pvh_list == NULL) {
3263 		simple_unlock(&pg->mdpage.pvh_slock);
3264 		PMAP_HEAD_TO_MAP_UNLOCK();
3265 		return;
3266 	}
3267 
3268 	/*
3269 	 * Loop over all current mappings setting/clearing as appropos
3270 	 */
3271 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3272 #ifdef PMAP_ALIAS_DEBUG
3273     {
3274 		int s = splhigh();
3275 		if ((maskbits & PVF_WRITE) != 0 &&
3276 		    (pv->pv_flags & PVF_WRITE) != 0) {
3277 			KASSERT(pg->mdpage.rw_mappings != 0);
3278 			pg->mdpage.rw_mappings--;
3279 			pg->mdpage.ro_mappings++;
3280 		}
3281 		splx(s);
3282     }
3283 #endif /* PMAP_ALIAS_DEBUG */
3284 		va = pv->pv_va;
3285 		pv->pv_flags &= ~maskbits;
3286 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
3287 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3288 		npte = opte = ptes[arm_btop(va)];
3289 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
3290 			if ((pv->pv_flags & PVF_NC)) {
3291 				/*
3292 				 * Entry is not cacheable: reenable
3293 				 * the cache, nothing to flush
3294 				 *
3295 				 * Don't turn caching on again if this
3296 				 * is a modified emulation.  This
3297 				 * would be inconsitent with the
3298 				 * settings created by
3299 				 * pmap_vac_me_harder().
3300 				 *
3301 				 * There's no need to call
3302 				 * pmap_vac_me_harder() here: all
3303 				 * pages are loosing their write
3304 				 * permission.
3305 				 *
3306 				 */
3307 				if (maskbits & PVF_WRITE) {
3308 					npte |= pte_l2_s_cache_mode;
3309 					pv->pv_flags &= ~PVF_NC;
3310 				}
3311 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
3312 				/*
3313 				 * Entry is cacheable: check if pmap is
3314 				 * current if it is flush it,
3315 				 * otherwise it won't be in the cache
3316 				 */
3317 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3318 			}
3319 
3320 			/* make the pte read only */
3321 			npte &= ~L2_S_PROT_W;
3322 		}
3323 
3324 		if (maskbits & PVF_REF) {
3325 			if (pmap_is_curpmap(pv->pv_pmap) &&
3326 			    (pv->pv_flags & PVF_NC) == 0) {
3327 				/*
3328 				 * Check npte here; we may have already
3329 				 * done the wbinv above, and the validity
3330 				 * of the PTE is the same for opte and
3331 				 * npte.
3332 				 */
3333 				if (npte & L2_S_PROT_W) {
3334 					cpu_idcache_wbinv_range(pv->pv_va,
3335 					    NBPG);
3336 				} else if ((npte & L2_TYPE_MASK)
3337 					   != L2_TYPE_INV) {
3338 					/* XXXJRT need idcache_inv_range */
3339 					cpu_idcache_wbinv_range(pv->pv_va,
3340 					    NBPG);
3341 				}
3342 			}
3343 
3344 			/* make the pte invalid */
3345 			npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3346 		}
3347 
3348 		if (npte != opte) {
3349 			ptes[arm_btop(va)] = npte;
3350 			PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
3351 			/* Flush the TLB entry if a current pmap. */
3352 			if (pmap_is_curpmap(pv->pv_pmap))
3353 				cpu_tlb_flushID_SE(pv->pv_va);
3354 		} else
3355 			PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
3356 
3357 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
3358 	}
3359 	cpu_cpwait();
3360 
3361 	simple_unlock(&pg->mdpage.pvh_slock);
3362 	PMAP_HEAD_TO_MAP_UNLOCK();
3363 }
3364 
3365 /*
3366  * pmap_clear_modify:
3367  *
3368  *	Clear the "modified" attribute for a page.
3369  */
3370 boolean_t
3371 pmap_clear_modify(struct vm_page *pg)
3372 {
3373 	boolean_t rv;
3374 
3375 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
3376 		rv = TRUE;
3377 		pmap_clearbit(pg, PVF_MOD);
3378 	} else
3379 		rv = FALSE;
3380 
3381 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3382 	    VM_PAGE_TO_PHYS(pg), rv));
3383 
3384 	return (rv);
3385 }
3386 
3387 /*
3388  * pmap_clear_reference:
3389  *
3390  *	Clear the "referenced" attribute for a page.
3391  */
3392 boolean_t
3393 pmap_clear_reference(struct vm_page *pg)
3394 {
3395 	boolean_t rv;
3396 
3397 	if (pg->mdpage.pvh_attrs & PVF_REF) {
3398 		rv = TRUE;
3399 		pmap_clearbit(pg, PVF_REF);
3400 	} else
3401 		rv = FALSE;
3402 
3403 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3404 	    VM_PAGE_TO_PHYS(pg), rv));
3405 
3406 	return (rv);
3407 }
3408 
3409 /*
3410  * pmap_is_modified:
3411  *
3412  *	Test if a page has the "modified" attribute.
3413  */
3414 /* See <arm/arm32/pmap.h> */
3415 
3416 /*
3417  * pmap_is_referenced:
3418  *
3419  *	Test if a page has the "referenced" attribute.
3420  */
3421 /* See <arm/arm32/pmap.h> */
3422 
3423 int
3424 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3425 {
3426 	pt_entry_t *ptes;
3427 	struct vm_page *pg;
3428 	paddr_t pa;
3429 	u_int flags;
3430 	int rv = 0;
3431 
3432 	PDEBUG(2, printf("pmap_modified_emulation\n"));
3433 
3434 	PMAP_MAP_TO_HEAD_LOCK();
3435 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
3436 
3437 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3438 		PDEBUG(2, printf("L1 PTE invalid\n"));
3439 		goto out;
3440 	}
3441 
3442 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3443 
3444 	/*
3445 	 * Don't need to PTE_FLUSH_ALT() here; this is always done
3446 	 * with the current pmap.
3447 	 */
3448 
3449 	/* Check for a invalid pte */
3450 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3451 		goto out;
3452 
3453 	/* This can happen if user code tries to access kernel memory. */
3454 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3455 		goto out;
3456 
3457 	/* Extract the physical address of the page */
3458 	pa = l2pte_pa(ptes[arm_btop(va)]);
3459 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3460 		goto out;
3461 
3462 	/* Get the current flags for this page. */
3463 	simple_lock(&pg->mdpage.pvh_slock);
3464 
3465 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3466 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3467 
3468 	/*
3469 	 * Do the flags say this page is writable ? If not then it is a
3470 	 * genuine write fault. If yes then the write fault is our fault
3471 	 * as we did not reflect the write access in the PTE. Now we know
3472 	 * a write has occurred we can correct this and also set the
3473 	 * modified bit
3474 	 */
3475 	if (~flags & PVF_WRITE) {
3476 	    	simple_unlock(&pg->mdpage.pvh_slock);
3477 		goto out;
3478 	}
3479 
3480 	PDEBUG(0,
3481 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3482 	    va, ptes[arm_btop(va)]));
3483 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3484 
3485 	/*
3486 	 * Re-enable write permissions for the page.  No need to call
3487 	 * pmap_vac_me_harder(), since this is just a
3488 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3489 	 * We've already set the cacheable bits based on the assumption
3490 	 * that we can write to this page.
3491 	 */
3492 	ptes[arm_btop(va)] =
3493 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3494 	PTE_SYNC(&ptes[arm_btop(va)]);
3495 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3496 
3497 	simple_unlock(&pg->mdpage.pvh_slock);
3498 
3499 	cpu_tlb_flushID_SE(va);
3500 	cpu_cpwait();
3501 	rv = 1;
3502  out:
3503 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
3504 	PMAP_MAP_TO_HEAD_UNLOCK();
3505 	return (rv);
3506 }
3507 
3508 int
3509 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3510 {
3511 	pt_entry_t *ptes;
3512 	struct vm_page *pg;
3513 	paddr_t pa;
3514 	int rv = 0;
3515 
3516 	PDEBUG(2, printf("pmap_handled_emulation\n"));
3517 
3518 	PMAP_MAP_TO_HEAD_LOCK();
3519 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
3520 
3521 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3522 		PDEBUG(2, printf("L1 PTE invalid\n"));
3523 		goto out;
3524 	}
3525 
3526 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3527 
3528 	/*
3529 	 * Don't need to PTE_FLUSH_ALT() here; this is always done
3530 	 * with the current pmap.
3531 	 */
3532 
3533 	/* Check for invalid pte */
3534 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3535 		goto out;
3536 
3537 	/* This can happen if user code tries to access kernel memory. */
3538 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3539 		goto out;
3540 
3541 	/* Extract the physical address of the page */
3542 	pa = l2pte_pa(ptes[arm_btop(va)]);
3543 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3544 		goto out;
3545 
3546 	simple_lock(&pg->mdpage.pvh_slock);
3547 
3548 	/*
3549 	 * Ok we just enable the pte and mark the attibs as handled
3550 	 * XXX Should we traverse the PV list and enable all PTEs?
3551 	 */
3552 	PDEBUG(0,
3553 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3554 	    va, ptes[arm_btop(va)]));
3555 	pg->mdpage.pvh_attrs |= PVF_REF;
3556 
3557 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3558 	PTE_SYNC(&ptes[arm_btop(va)]);
3559 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3560 
3561 	simple_unlock(&pg->mdpage.pvh_slock);
3562 
3563 	cpu_tlb_flushID_SE(va);
3564 	cpu_cpwait();
3565 	rv = 1;
3566  out:
3567 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
3568 	PMAP_MAP_TO_HEAD_UNLOCK();
3569 	return (rv);
3570 }
3571 
3572 /*
3573  * pmap_collect: free resources held by a pmap
3574  *
3575  * => optional function.
3576  * => called when a process is swapped out to free memory.
3577  */
3578 
3579 void
3580 pmap_collect(struct pmap *pmap)
3581 {
3582 }
3583 
3584 /*
3585  * Routine:	pmap_procwr
3586  *
3587  * Function:
3588  *	Synchronize caches corresponding to [addr, addr+len) in p.
3589  *
3590  */
3591 void
3592 pmap_procwr(struct proc *p, vaddr_t va, int len)
3593 {
3594 	/* We only need to do anything if it is the current process. */
3595 	if (p == curproc)
3596 		cpu_icache_sync_range(va, len);
3597 }
3598 /*
3599  * PTP functions
3600  */
3601 
3602 /*
3603  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3604  *
3605  * => pmap should NOT be pmap_kernel()
3606  * => pmap should be locked
3607  */
3608 
3609 static struct vm_page *
3610 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3611 {
3612 	struct vm_page *ptp;
3613 	pd_entry_t	*pde;
3614 
3615 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
3616 
3617 	pde = pmap_pde(pmap, va);
3618 	if (pmap_pde_v(pde)) {
3619 		/* valid... check hint (saves us a PA->PG lookup) */
3620 		if (pmap->pm_ptphint &&
3621 		    ((*pde) & L2_S_FRAME) ==
3622 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3623 			return (pmap->pm_ptphint);
3624 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
3625 #ifdef DIAGNOSTIC
3626 		if (ptp == NULL)
3627 			panic("pmap_get_ptp: unmanaged user PTP");
3628 #endif
3629 		pmap->pm_ptphint = ptp;
3630 		return(ptp);
3631 	}
3632 
3633 	/* allocate a new PTP (updates ptphint) */
3634 	return (pmap_alloc_ptp(pmap, va));
3635 }
3636 
3637 /*
3638  * pmap_alloc_ptp: allocate a PTP for a PMAP
3639  *
3640  * => pmap should already be locked by caller
3641  * => we use the ptp's wire_count to count the number of active mappings
3642  *	in the PTP (we start it at one to prevent any chance this PTP
3643  *	will ever leak onto the active/inactive queues)
3644  */
3645 
3646 /*__inline */ static struct vm_page *
3647 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3648 {
3649 	struct vm_page *ptp;
3650 
3651 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
3652 
3653 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3654 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3655 	if (ptp == NULL)
3656 		return (NULL);
3657 
3658 	/* got one! */
3659 	ptp->flags &= ~PG_BUSY;	/* never busy */
3660 	ptp->wire_count = 1;	/* no mappings yet */
3661 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
3662 	    PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3663 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
3664 	pmap->pm_ptphint = ptp;
3665 	return (ptp);
3666 }
3667 
3668 vaddr_t
3669 pmap_growkernel(vaddr_t maxkvaddr)
3670 {
3671 	struct pmap *kpm = pmap_kernel(), *pm;
3672 	int s;
3673 	paddr_t ptaddr;
3674 	struct vm_page *ptp;
3675 
3676 	if (maxkvaddr <= pmap_curmaxkvaddr)
3677 		goto out;		/* we are OK */
3678 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3679 		    pmap_curmaxkvaddr, maxkvaddr));
3680 
3681 	/*
3682 	 * whoops!   we need to add kernel PTPs
3683 	 */
3684 
3685 	s = splhigh();	/* to be safe */
3686 	simple_lock(&kpm->pm_obj.vmobjlock);
3687 	/* due to the way the arm pmap works we map 4MB at a time */
3688 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3689 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3690 
3691 		if (uvm.page_init_done == FALSE) {
3692 
3693 			/*
3694 			 * we're growing the kernel pmap early (from
3695 			 * uvm_pageboot_alloc()).  this case must be
3696 			 * handled a little differently.
3697 			 */
3698 
3699 			if (uvm_page_physget(&ptaddr) == FALSE)
3700 				panic("pmap_growkernel: out of memory");
3701 			pmap_zero_page(ptaddr);
3702 
3703 			/* map this page in */
3704 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
3705 			    PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3706 
3707 			/* count PTP as resident */
3708 			kpm->pm_stats.resident_count++;
3709 			continue;
3710 		}
3711 
3712 		/*
3713 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3714 		 * pmap_initialized == FALSE CASE!  WE MAY BE
3715 		 * INVOKED WHILE pmap_init() IS RUNNING!
3716 		 */
3717 
3718 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3719 			panic("pmap_growkernel: alloc ptp failed");
3720 
3721 		/* distribute new kernel PTP to all active pmaps */
3722 		simple_lock(&pmaps_lock);
3723 		LIST_FOREACH(pm, &pmaps, pm_list) {
3724 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3725 			    VM_PAGE_TO_PHYS(ptp),
3726 			    PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3727 		}
3728 
3729 		/* Invalidate the PTPT cache. */
3730 		pool_cache_invalidate(&pmap_ptpt_cache);
3731 		pmap_ptpt_cache_generation++;
3732 
3733 		simple_unlock(&pmaps_lock);
3734 	}
3735 
3736 	/*
3737 	 * flush out the cache, expensive but growkernel will happen so
3738 	 * rarely
3739 	 */
3740 	cpu_tlb_flushD();
3741 	cpu_cpwait();
3742 
3743 	simple_unlock(&kpm->pm_obj.vmobjlock);
3744 	splx(s);
3745 
3746 out:
3747 	return (pmap_curmaxkvaddr);
3748 }
3749 
3750 /************************ Utility routines ****************************/
3751 
3752 /*
3753  * vector_page_setprot:
3754  *
3755  *	Manipulate the protection of the vector page.
3756  */
3757 void
3758 vector_page_setprot(int prot)
3759 {
3760 	pt_entry_t *pte;
3761 
3762 	pte = vtopte(vector_page);
3763 
3764 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3765 	PTE_SYNC(pte);
3766 	cpu_tlb_flushD_SE(vector_page);
3767 	cpu_cpwait();
3768 }
3769 
3770 /************************ Bootstrapping routines ****************************/
3771 
3772 /*
3773  * This list exists for the benefit of pmap_map_chunk().  It keeps track
3774  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3775  * find them as necessary.
3776  *
3777  * Note that the data on this list is not valid after initarm() returns.
3778  */
3779 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3780 
3781 static vaddr_t
3782 kernel_pt_lookup(paddr_t pa)
3783 {
3784 	pv_addr_t *pv;
3785 
3786 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3787 		if (pv->pv_pa == pa)
3788 			return (pv->pv_va);
3789 	}
3790 	return (0);
3791 }
3792 
3793 /*
3794  * pmap_map_section:
3795  *
3796  *	Create a single section mapping.
3797  */
3798 void
3799 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3800 {
3801 	pd_entry_t *pde = (pd_entry_t *) l1pt;
3802 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3803 
3804 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3805 
3806 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3807 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
3808 }
3809 
3810 /*
3811  * pmap_map_entry:
3812  *
3813  *	Create a single page mapping.
3814  */
3815 void
3816 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3817 {
3818 	pd_entry_t *pde = (pd_entry_t *) l1pt;
3819 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3820 	pt_entry_t *pte;
3821 
3822 	KASSERT(((va | pa) & PGOFSET) == 0);
3823 
3824 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3825 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3826 
3827 	pte = (pt_entry_t *)
3828 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3829 	if (pte == NULL)
3830 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3831 
3832 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3833 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
3834 }
3835 
3836 /*
3837  * pmap_link_l2pt:
3838  *
3839  *	Link the L2 page table specified by "pa" into the L1
3840  *	page table at the slot for "va".
3841  */
3842 void
3843 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3844 {
3845 	pd_entry_t *pde = (pd_entry_t *) l1pt;
3846 	u_int slot = va >> L1_S_SHIFT;
3847 
3848 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3849 
3850 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3851 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3852 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3853 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3854 
3855 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3856 }
3857 
3858 /*
3859  * pmap_map_chunk:
3860  *
3861  *	Map a chunk of memory using the most efficient mappings
3862  *	possible (section, large page, small page) into the
3863  *	provided L1 and L2 tables at the specified virtual address.
3864  */
3865 vsize_t
3866 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3867     int prot, int cache)
3868 {
3869 	pd_entry_t *pde = (pd_entry_t *) l1pt;
3870 	pt_entry_t *pte, fl;
3871 	vsize_t resid;
3872 	int i;
3873 
3874 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3875 
3876 	if (l1pt == 0)
3877 		panic("pmap_map_chunk: no L1 table provided");
3878 
3879 #ifdef VERBOSE_INIT_ARM
3880 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3881 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3882 #endif
3883 
3884 	size = resid;
3885 
3886 	while (resid > 0) {
3887 		/* See if we can use a section mapping. */
3888 		if (((pa | va) & L1_S_OFFSET) == 0 &&
3889 		    resid >= L1_S_SIZE) {
3890 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3891 #ifdef VERBOSE_INIT_ARM
3892 			printf("S");
3893 #endif
3894 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3895 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
3896 			va += L1_S_SIZE;
3897 			pa += L1_S_SIZE;
3898 			resid -= L1_S_SIZE;
3899 			continue;
3900 		}
3901 
3902 		/*
3903 		 * Ok, we're going to use an L2 table.  Make sure
3904 		 * one is actually in the corresponding L1 slot
3905 		 * for the current VA.
3906 		 */
3907 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3908 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3909 
3910 		pte = (pt_entry_t *)
3911 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3912 		if (pte == NULL)
3913 			panic("pmap_map_chunk: can't find L2 table for VA"
3914 			    "0x%08lx", va);
3915 
3916 		/* See if we can use a L2 large page mapping. */
3917 		if (((pa | va) & L2_L_OFFSET) == 0 &&
3918 		    resid >= L2_L_SIZE) {
3919 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3920 #ifdef VERBOSE_INIT_ARM
3921 			printf("L");
3922 #endif
3923 			for (i = 0; i < 16; i++) {
3924 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
3925 				    L2_L_PROTO | pa |
3926 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
3927 			}
3928 			va += L2_L_SIZE;
3929 			pa += L2_L_SIZE;
3930 			resid -= L2_L_SIZE;
3931 			continue;
3932 		}
3933 
3934 		/* Use a small page mapping. */
3935 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3936 #ifdef VERBOSE_INIT_ARM
3937 		printf("P");
3938 #endif
3939 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3940 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
3941 		va += NBPG;
3942 		pa += NBPG;
3943 		resid -= NBPG;
3944 	}
3945 #ifdef VERBOSE_INIT_ARM
3946 	printf("\n");
3947 #endif
3948 	return (size);
3949 }
3950 
3951 /********************** PTE initialization routines **************************/
3952 
3953 /*
3954  * These routines are called when the CPU type is identified to set up
3955  * the PTE prototypes, cache modes, etc.
3956  *
3957  * The variables are always here, just in case LKMs need to reference
3958  * them (though, they shouldn't).
3959  */
3960 
3961 pt_entry_t	pte_l1_s_cache_mode;
3962 pt_entry_t	pte_l1_s_cache_mask;
3963 
3964 pt_entry_t	pte_l2_l_cache_mode;
3965 pt_entry_t	pte_l2_l_cache_mask;
3966 
3967 pt_entry_t	pte_l2_s_cache_mode;
3968 pt_entry_t	pte_l2_s_cache_mask;
3969 
3970 pt_entry_t	pte_l2_s_prot_u;
3971 pt_entry_t	pte_l2_s_prot_w;
3972 pt_entry_t	pte_l2_s_prot_mask;
3973 
3974 pt_entry_t	pte_l1_s_proto;
3975 pt_entry_t	pte_l1_c_proto;
3976 pt_entry_t	pte_l2_s_proto;
3977 
3978 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
3979 void		(*pmap_zero_page_func)(paddr_t);
3980 
3981 #if ARM_MMU_GENERIC == 1
3982 void
3983 pmap_pte_init_generic(void)
3984 {
3985 
3986 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3987 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3988 
3989 	pte_l2_l_cache_mode = L2_B|L2_C;
3990 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3991 
3992 	pte_l2_s_cache_mode = L2_B|L2_C;
3993 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3994 
3995 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
3996 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
3997 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3998 
3999 	pte_l1_s_proto = L1_S_PROTO_generic;
4000 	pte_l1_c_proto = L1_C_PROTO_generic;
4001 	pte_l2_s_proto = L2_S_PROTO_generic;
4002 
4003 	pmap_copy_page_func = pmap_copy_page_generic;
4004 	pmap_zero_page_func = pmap_zero_page_generic;
4005 }
4006 
4007 #if defined(CPU_ARM9)
4008 void
4009 pmap_pte_init_arm9(void)
4010 {
4011 
4012 	/*
4013 	 * ARM9 is compatible with generic, but we want to use
4014 	 * write-through caching for now.
4015 	 */
4016 	pmap_pte_init_generic();
4017 
4018 	pte_l1_s_cache_mode = L1_S_C;
4019 	pte_l2_l_cache_mode = L2_C;
4020 	pte_l2_s_cache_mode = L2_C;
4021 }
4022 #endif /* CPU_ARM9 */
4023 #endif /* ARM_MMU_GENERIC == 1 */
4024 
4025 #if ARM_MMU_XSCALE == 1
4026 void
4027 pmap_pte_init_xscale(void)
4028 {
4029 	uint32_t auxctl;
4030 
4031 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4032 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4033 
4034 	pte_l2_l_cache_mode = L2_B|L2_C;
4035 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4036 
4037 	pte_l2_s_cache_mode = L2_B|L2_C;
4038 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4039 
4040 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4041 	/*
4042 	 * The XScale core has an enhanced mode where writes that
4043 	 * miss the cache cause a cache line to be allocated.  This
4044 	 * is significantly faster than the traditional, write-through
4045 	 * behavior of this case.
4046 	 *
4047 	 * However, there is a bug lurking in this pmap module, or in
4048 	 * other parts of the VM system, or both, which causes corruption
4049 	 * of NFS-backed files when this cache mode is used.  We have
4050 	 * an ugly work-around for this problem (disable r/w-allocate
4051 	 * for managed kernel mappings), but the bug is still evil enough
4052 	 * to consider this cache mode "experimental".
4053 	 */
4054 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4055 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4056 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4057 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4058 
4059 #ifdef XSCALE_CACHE_WRITE_THROUGH
4060 	/*
4061 	 * Some versions of the XScale core have various bugs in
4062 	 * their cache units, the work-around for which is to run
4063 	 * the cache in write-through mode.  Unfortunately, this
4064 	 * has a major (negative) impact on performance.  So, we
4065 	 * go ahead and run fast-and-loose, in the hopes that we
4066 	 * don't line up the planets in a way that will trip the
4067 	 * bugs.
4068 	 *
4069 	 * However, we give you the option to be slow-but-correct.
4070 	 */
4071 	pte_l1_s_cache_mode = L1_S_C;
4072 	pte_l2_l_cache_mode = L2_C;
4073 	pte_l2_s_cache_mode = L2_C;
4074 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4075 
4076 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4077 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4078 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4079 
4080 	pte_l1_s_proto = L1_S_PROTO_xscale;
4081 	pte_l1_c_proto = L1_C_PROTO_xscale;
4082 	pte_l2_s_proto = L2_S_PROTO_xscale;
4083 
4084 	pmap_copy_page_func = pmap_copy_page_xscale;
4085 	pmap_zero_page_func = pmap_zero_page_xscale;
4086 
4087 	/*
4088 	 * Disable ECC protection of page table access, for now.
4089 	 */
4090 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4091 		: "=r" (auxctl));
4092 	auxctl &= ~XSCALE_AUXCTL_P;
4093 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4094 		:
4095 		: "r" (auxctl));
4096 }
4097 
4098 /*
4099  * xscale_setup_minidata:
4100  *
4101  *	Set up the mini-data cache clean area.  We require the
4102  *	caller to allocate the right amount of physically and
4103  *	virtually contiguous space.
4104  */
4105 void
4106 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4107 {
4108 	extern vaddr_t xscale_minidata_clean_addr;
4109 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
4110 	pd_entry_t *pde = (pd_entry_t *) l1pt;
4111 	pt_entry_t *pte;
4112 	vsize_t size;
4113 	uint32_t auxctl;
4114 
4115 	xscale_minidata_clean_addr = va;
4116 
4117 	/* Round it to page size. */
4118 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4119 
4120 	for (; size != 0;
4121 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4122 		pte = (pt_entry_t *)
4123 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4124 		if (pte == NULL)
4125 			panic("xscale_setup_minidata: can't find L2 table for "
4126 			    "VA 0x%08lx", va);
4127 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4128 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4129 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4130 	}
4131 
4132 	/*
4133 	 * Configure the mini-data cache for write-back with
4134 	 * read/write-allocate.
4135 	 *
4136 	 * NOTE: In order to reconfigure the mini-data cache, we must
4137 	 * make sure it contains no valid data!  In order to do that,
4138 	 * we must issue a global data cache invalidate command!
4139 	 *
4140 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4141 	 * THIS IS VERY IMPORTANT!
4142 	 */
4143 
4144 	/* Invalidate data and mini-data. */
4145 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4146 		:
4147 		: "r" (auxctl));
4148 
4149 
4150 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4151 		: "=r" (auxctl));
4152 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4153 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4154 		:
4155 		: "r" (auxctl));
4156 }
4157 #endif /* ARM_MMU_XSCALE == 1 */
4158