1 /*	$NetBSD: footbridge_clock.c,v 1.15 2002/11/03 21:43:30 chris Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Mark Brinicombe.
5  * Copyright (c) 1997 Causality Limited.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Mark Brinicombe
19  *	for the NetBSD Project.
20  * 4. The name of the company nor the name of the author may be used to
21  *    endorse or promote products derived from this software without specific
22  *    prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /* Include header files */
38 
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/time.h>
44 #include <sys/device.h>
45 
46 #include <machine/intr.h>
47 
48 #include <arm/cpufunc.h>
49 
50 #include <arm/footbridge/dc21285reg.h>
51 #include <arm/footbridge/footbridgevar.h>
52 #include <arm/footbridge/footbridge.h>
53 
54 extern struct footbridge_softc *clock_sc;
55 extern u_int dc21285_fclk;
56 
57 int clockhandler __P((void *));
58 int statclockhandler __P((void *));
59 static int load_timer __P((int, int));
60 
61 /*
62  * Statistics clock variance, in usec.  Variance must be a
63  * power of two.  Since this gives us an even number, not an odd number,
64  * we discard one case and compensate.  That is, a variance of 1024 would
65  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
66  * This is symmetric about the point 512, or statvar/2, and thus averages
67  * to that value (assuming uniform random numbers).
68  */
69 const int statvar = 1024;
70 int statmin;			/* minimum stat clock count in ticks */
71 int statcountperusec;		/* number of ticks per usec at current stathz */
72 int statprev;			/* last value of we set statclock to */
73 
74 #if 0
75 static int clockmatch	__P((struct device *parent, struct cfdata *cf, void *aux));
76 static void clockattach	__P((struct device *parent, struct device *self, void *aux));
77 
78 CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
79     clockmatch, clockattach, NULL, NULL);
80 
81 /*
82  * int clockmatch(struct device *parent, void *match, void *aux)
83  *
84  * Just return ok for this if it is device 0
85  */
86 
87 static int
88 clockmatch(parent, cf, aux)
89 	struct device *parent;
90 	struct cfdata *cf;
91 	void *aux;
92 {
93 	union footbridge_attach_args *fba = aux;
94 
95 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
96 		return(1);
97 	return(0);
98 }
99 
100 
101 /*
102  * void clockattach(struct device *parent, struct device *dev, void *aux)
103  *
104  */
105 
106 static void
107 clockattach(parent, self, aux)
108 	struct device *parent;
109 	struct device *self;
110 	void *aux;
111 {
112 	struct clock_softc *sc = (struct clock_softc *)self;
113 	union footbridge_attach_args *fba = aux;
114 
115 	sc->sc_iot = fba->fba_ca.ca_iot;
116 	sc->sc_ioh = fba->fba_ca.ca_ioh;
117 
118 	clock_sc = sc;
119 
120 	/* Cannot do anything until cpu_initclocks() has been called */
121 
122 	printf("\n");
123 }
124 #endif
125 
126 /*
127  * int clockhandler(struct clockframe *frame)
128  *
129  * Function called by timer 1 interrupts.
130  * This just clears the interrupt condition and calls hardclock().
131  */
132 
133 int
134 clockhandler(aframe)
135 	void *aframe;
136 {
137 	struct clockframe *frame = aframe;
138 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
139 	    TIMER_1_CLEAR, 0);
140 	hardclock(frame);
141 	return(0);	/* Pass the interrupt on down the chain */
142 }
143 
144 /*
145  * int statclockhandler(struct clockframe *frame)
146  *
147  * Function called by timer 2 interrupts.
148  * This just clears the interrupt condition and calls statclock().
149  */
150 
151 int
152 statclockhandler(aframe)
153 	void *aframe;
154 {
155 	struct clockframe *frame = aframe;
156 	int newint, r;
157 	int currentclock ;
158 
159 	/* start the clock off again */
160 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
161 			TIMER_2_CLEAR, 0);
162 
163 	do {
164 		r = random() & (statvar-1);
165 	} while (r == 0);
166 	newint = statmin + (r * statcountperusec);
167 
168 	/* fetch the current count */
169 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
170 		    TIMER_2_VALUE);
171 
172 	/*
173 	 * work out how much time has run, add another usec for time spent
174 	 * here
175 	 */
176 	r = ((statprev - currentclock) + statcountperusec);
177 
178 	if (r < newint) {
179 		newint -= r;
180 		r = 0;
181 	}
182 	else
183 		printf("statclockhandler: Statclock overrun\n");
184 
185 
186 	/*
187 	 * update the clock to the new counter, this reloads the existing
188 	 * timer
189 	 */
190 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
191 	    		TIMER_2_LOAD, newint);
192 	statprev = newint;
193 	statclock(frame);
194 	if (r)
195 		/*
196 		 * We've completely overrun the previous interval,
197 		 * make sure we report the correct number of ticks.
198 		 */
199 		statclock(frame);
200 
201 	return(0);	/* Pass the interrupt on down the chain */
202 }
203 
204 static int
205 load_timer(base, hz)
206 	int base;
207 	int hz;
208 {
209 	unsigned int timer_count;
210 	int control;
211 
212 	timer_count = dc21285_fclk / hz;
213 	if (timer_count > TIMER_MAX * 16) {
214 		control = TIMER_FCLK_256;
215 		timer_count >>= 8;
216 	} else if (timer_count > TIMER_MAX) {
217 		control = TIMER_FCLK_16;
218 		timer_count >>= 4;
219 	} else
220 		control = TIMER_FCLK;
221 
222 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
223 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
224 	    base + TIMER_LOAD, timer_count);
225 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
226 	    base + TIMER_CONTROL, control);
227 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
228 	    base + TIMER_CLEAR, 0);
229 	return(timer_count);
230 }
231 
232 /*
233  * void setstatclockrate(int hz)
234  *
235  * Set the stat clock rate. The stat clock uses timer2
236  */
237 
238 void
239 setstatclockrate(hz)
240 	int hz;
241 {
242 	int statint;
243 	int countpersecond;
244 	int statvarticks;
245 
246 	/* statint == num in counter to drop by desired hz */
247 	statint = statprev = clock_sc->sc_statclock_count =
248 	    load_timer(TIMER_2_BASE, hz);
249 
250 	/* Get the total ticks a second */
251 	countpersecond = statint * hz;
252 
253 	/* now work out how many ticks per usec */
254 	statcountperusec = countpersecond / 1000000;
255 
256 	/* calculate a variance range of statvar */
257 	statvarticks = statcountperusec * statvar;
258 
259 	/* minimum is statint - 50% of variant */
260 	statmin = statint - (statvarticks / 2);
261 }
262 
263 /*
264  * void cpu_initclocks(void)
265  *
266  * Initialise the clocks.
267  *
268  * Timer 1 is used for the main system clock (hardclock)
269  * Timer 2 is used for the statistics clock (statclock)
270  */
271 
272 void
273 cpu_initclocks()
274 {
275 	/* stathz and profhz should be set to something, we have the timer */
276 	if (stathz == 0)
277 		stathz = hz;
278 
279 	if (profhz == 0)
280 		profhz = stathz * 5;
281 
282 	/* Report the clock frequencies */
283 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
284 
285 	/* Setup timer 1 and claim interrupt */
286 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
287 
288 	/*
289 	 * Use ticks per 256us for accuracy since ticks per us is often
290 	 * fractional e.g. @ 66MHz
291 	 */
292 	clock_sc->sc_clock_ticks_per_256us =
293 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
294 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
295 	    "tmr1 hard clk", clockhandler, 0);
296 
297 	if (clock_sc->sc_clockintr == NULL)
298 		panic("%s: Cannot install timer 1 interrupt handler",
299 		    clock_sc->sc_dev.dv_xname);
300 
301 	/* If stathz is non-zero then setup the stat clock */
302 	if (stathz) {
303 		/* Setup timer 2 and claim interrupt */
304 		setstatclockrate(stathz);
305        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
306        		    "tmr2 stat clk", statclockhandler, 0);
307 		if (clock_sc->sc_statclockintr == NULL)
308 			panic("%s: Cannot install timer 2 interrupt handler",
309 			    clock_sc->sc_dev.dv_xname);
310 	}
311 }
312 
313 
314 /*
315  * void microtime(struct timeval *tvp)
316  *
317  * Fill in the specified timeval struct with the current time
318  * accurate to the microsecond.
319  */
320 
321 void
322 microtime(tvp)
323 	struct timeval *tvp;
324 {
325 	int s;
326 	int tm;
327 	int deltatm;
328 	static struct timeval oldtv;
329 
330 	if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
331 		return;
332 
333 	s = splhigh();
334 
335 	tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
336 	    TIMER_1_VALUE);
337 
338 	deltatm = clock_sc->sc_clock_count - tm;
339 
340 #ifdef DIAGNOSTIC
341 	if (deltatm < 0)
342 		panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
343 #endif
344 
345 	/* Fill in the timeval struct */
346 	*tvp = time;
347 	tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
348 
349 	/* Make sure the micro seconds don't overflow. */
350 	while (tvp->tv_usec >= 1000000) {
351 		tvp->tv_usec -= 1000000;
352 		++tvp->tv_sec;
353 	}
354 
355 	/* Make sure the time has advanced. */
356 	if (tvp->tv_sec == oldtv.tv_sec &&
357 	    tvp->tv_usec <= oldtv.tv_usec) {
358 		tvp->tv_usec = oldtv.tv_usec + 1;
359 		if (tvp->tv_usec >= 1000000) {
360 			tvp->tv_usec -= 1000000;
361 			++tvp->tv_sec;
362 		}
363 	}
364 
365 	oldtv = *tvp;
366 	(void)splx(s);
367 }
368 
369 /*
370  * Use a timer to track microseconds, if the footbridge hasn't been setup we
371  * rely on an estimated loop, however footbridge is attached very early on.
372  */
373 
374 static int delay_clock_count = 0;
375 static int delay_count_per_usec = 0;
376 
377 void
378 calibrate_delay(void)
379 {
380      delay_clock_count = load_timer(TIMER_3_BASE, 100);
381      delay_count_per_usec = delay_clock_count/10000;
382 #ifdef VERBOSE_DELAY_CALIBRATION
383      printf("delay calibration: delay_cc = %d, delay_c/us=%d\n",
384 		     delay_clock_count, delay_count_per_usec);
385 
386      printf("0..");
387      delay(1000000);
388      printf("1..");
389      delay(1000000);
390      printf("2..");
391      delay(1000000);
392      printf("3..");
393      delay(1000000);
394      printf("4..");
395       delay(1000000);
396      printf("5..");
397       delay(1000000);
398      printf("6..");
399       delay(1000000);
400      printf("7..");
401       delay(1000000);
402      printf("8..");
403       delay(1000000);
404      printf("9..");
405       delay(1000000);
406      printf("10\n");
407 #endif
408 }
409 
410 int delaycount = 500;
411 
412 void
413 delay(n)
414 	u_int n;
415 {
416 	volatile u_int i;
417 	uint32_t cur, last, delta, usecs;
418 
419 	if (n == 0) return;
420 
421 
422 	// not calibrated the timer yet, so try to live with this horrible
423 	// loop!
424 	if (delay_clock_count == 0)
425 	{
426 	    while (n-- > 0) {
427 		for (i = delaycount; --i;);
428 	    }
429 	    return;
430 	}
431 
432 	/*
433 	 * read the current value (do not reset it as delay is reentrant)
434 	 */
435 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
436 		    TIMER_3_VALUE);
437 
438 	delta = usecs = 0;
439 
440 	while (n > usecs)
441 	{
442 	    cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
443 		    TIMER_3_VALUE);
444 	    if (last < cur)
445 		/* timer has wrapped */
446 		delta += ((delay_clock_count - cur) + last);
447 	    else
448 		delta += (last - cur);
449 
450 	    if (cur == 0)
451 	    {
452 		/*
453 		 * reset the timer, note that if something blocks us for more
454 		 * than 1/100s we may delay for too long, but I believe that
455 		 * is fairly unlikely.
456 		 */
457 		bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
458 			TIMER_3_CLEAR, 0);
459 	    }
460 	    last = cur;
461 
462 	    if (delta >= delay_count_per_usec)
463 	    {
464 		usecs += delta / delay_count_per_usec;
465 		delta %= delay_count_per_usec;
466 	    }
467 	}
468 }
469 
470 /* End of footbridge_clock.c */
471