xref: /netbsd/sys/arch/arm/xscale/i80321_icu.c (revision bf9ec67e)
1 /*	$NetBSD: i80321_icu.c,v 1.2 2002/03/28 03:19:31 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Interrupt support for the Intel i80321 I/O Processor.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 
46 #include <uvm/uvm_extern.h>
47 
48 #include <machine/bus.h>
49 #include <machine/intr.h>
50 
51 #include <arm/cpufunc.h>
52 
53 #include <arm/xscale/i80321reg.h>
54 #include <arm/xscale/i80321var.h>
55 
56 /* Interrupt handler queues. */
57 struct intrq intrq[NIRQ];
58 
59 /* Interrupts to mask at each level. */
60 static int imask[NIPL];
61 
62 /* Current interrupt priority level. */
63 __volatile int current_spl_level;
64 
65 /* Interrupts pending. */
66 static __volatile int ipending;
67 
68 /* Software copy of the IRQs we have enabled. */
69 __volatile uint32_t intr_enabled;
70 
71 /* Mask if interrupts steered to FIQs. */
72 uint32_t intr_steer;
73 
74 /*
75  * Map a software interrupt queue index (to the unused bits in the
76  * ICU registers -- XXX will need to revisit this if those bits are
77  * ever used in future steppings).
78  */
79 static const uint32_t si_to_irqbit[SI_NQUEUES] = {
80 	ICU_INT_bit26,		/* SI_SOFT */
81 	ICU_INT_bit22,		/* SI_SOFTCLOCK */
82 	ICU_INT_bit5,		/* SI_SOFTNET */
83 	ICU_INT_bit4,		/* SI_SOFTSERIAL */
84 };
85 
86 #define	INT_SWMASK							\
87 	((1U << ICU_INT_bit26) | (1U << ICU_INT_bit22) |		\
88 	 (1U << ICU_INT_bit5)  | (1U << ICU_INT_bit4))
89 
90 #define	SI_TO_IRQBIT(si)	(1U << si_to_irqbit[(si)])
91 
92 /*
93  * Map a software interrupt queue to an interrupt priority level.
94  */
95 static const int si_to_ipl[SI_NQUEUES] = {
96 	IPL_SOFT,		/* SI_SOFT */
97 	IPL_SOFTCLOCK,		/* SI_SOFTCLOCK */
98 	IPL_SOFTNET,		/* SI_SOFTNET */
99 	IPL_SOFTSERIAL,		/* SI_SOFTSERIAL */
100 };
101 
102 void	i80321_intr_dispatch(struct clockframe *frame);
103 
104 static __inline uint32_t
105 i80321_iintsrc_read(void)
106 {
107 	uint32_t iintsrc;
108 
109 	__asm __volatile("mrc p6, 0, %0, c8, c0, 0"
110 		: "=r" (iintsrc));
111 
112 	/*
113 	 * The IINTSRC register shows bits that are active even
114 	 * if they are masked in INTCTL, so we have to mask them
115 	 * off with the interrupts we consider enabled.
116 	 */
117 	return (iintsrc & intr_enabled);
118 }
119 
120 static __inline void
121 i80321_set_intrmask(void)
122 {
123 
124 	__asm __volatile("mcr p6, 0, %0, c0, c0, 0"
125 		:
126 		: "r" (intr_enabled & ICU_INT_HWMASK));
127 }
128 
129 static __inline void
130 i80321_set_intrsteer(void)
131 {
132 
133 	__asm __volatile("mcr p6, 0, %0, c4, c0, 0"
134 		:
135 		: "r" (intr_steer & ICU_INT_HWMASK));
136 }
137 
138 static __inline void
139 i80321_enable_irq(int irq)
140 {
141 
142 	intr_enabled |= (1U << irq);
143 	i80321_set_intrmask();
144 }
145 
146 static __inline void
147 i80321_disable_irq(int irq)
148 {
149 
150 	intr_enabled &= ~(1U << irq);
151 	i80321_set_intrmask();
152 }
153 
154 /*
155  * NOTE: This routine must be called with interrupts disabled in the CPSR.
156  */
157 static void
158 i80321_intr_calculate_masks(void)
159 {
160 	struct intrq *iq;
161 	struct intrhand *ih;
162 	int irq, ipl;
163 
164 	/* First, figure out which IPLs each IRQ has. */
165 	for (irq = 0; irq < NIRQ; irq++) {
166 		int levels = 0;
167 		iq = &intrq[irq];
168 		i80321_disable_irq(irq);
169 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
170 		     ih = TAILQ_NEXT(ih, ih_list))
171 			levels |= (1U << ih->ih_ipl);
172 		iq->iq_levels = levels;
173 	}
174 
175 	/* Next, figure out which IRQs are used by each IPL. */
176 	for (ipl = 0; ipl < NIPL; ipl++) {
177 		int irqs = 0;
178 		for (irq = 0; irq < NIRQ; irq++) {
179 			if (intrq[irq].iq_levels & (1U << ipl))
180 				irqs |= (1U << irq);
181 		}
182 		imask[ipl] = irqs;
183 	}
184 
185 	imask[IPL_NONE] = 0;
186 
187 	/*
188 	 * Initialize the soft interrupt masks to block themselves.
189 	 */
190 	imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
191 	imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
192 	imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
193 	imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
194 
195 	/*
196 	 * splsoftclock() is the only interface that users of the
197 	 * generic software interrupt facility have to block their
198 	 * soft intrs, so splsoftclock() must also block IPL_SOFT.
199 	 */
200 	imask[IPL_SOFTCLOCK] |= imask[IPL_SOFT];
201 
202 	/*
203 	 * splsoftnet() must also block splsoftclock(), since we don't
204 	 * want timer-driven network events to occur while we're
205 	 * processing incoming packets.
206 	 */
207 	imask[IPL_SOFTNET] |= imask[IPL_SOFTCLOCK];
208 
209 	/*
210 	 * Enforce a heirarchy that gives "slow" device (or devices with
211 	 * limited input buffer space/"real-time" requirements) a better
212 	 * chance at not dropping data.
213 	 */
214 	imask[IPL_BIO] |= imask[IPL_SOFTNET];
215 	imask[IPL_NET] |= imask[IPL_BIO];
216 	imask[IPL_SOFTSERIAL] |= imask[IPL_NET];
217 	imask[IPL_TTY] |= imask[IPL_SOFTSERIAL];
218 
219 	/*
220 	 * splvm() blocks all interrupts that use the kernel memory
221 	 * allocation facilities.
222 	 */
223 	imask[IPL_IMP] |= imask[IPL_TTY];
224 
225 	/*
226 	 * Audio devices are not allowed to perform memory allocation
227 	 * in their interrupt routines, and they have fairly "real-time"
228 	 * requirements, so give them a high interrupt priority.
229 	 */
230 	imask[IPL_AUDIO] |= imask[IPL_IMP];
231 
232 	/*
233 	 * splclock() must block anything that uses the scheduler.
234 	 */
235 	imask[IPL_CLOCK] |= imask[IPL_AUDIO];
236 
237 	/*
238 	 * No separate statclock on the IQ80310.
239 	 */
240 	imask[IPL_STATCLOCK] |= imask[IPL_CLOCK];
241 
242 	/*
243 	 * splhigh() must block "everything".
244 	 */
245 	imask[IPL_HIGH] |= imask[IPL_STATCLOCK];
246 
247 	/*
248 	 * XXX We need serial drivers to run at the absolute highest priority
249 	 * in order to avoid overruns, so serial > high.
250 	 */
251 	imask[IPL_SERIAL] |= imask[IPL_HIGH];
252 
253 	/*
254 	 * Now compute which IRQs must be blocked when servicing any
255 	 * given IRQ.
256 	 */
257 	for (irq = 0; irq < NIRQ; irq++) {
258 		int irqs = (1U << irq);
259 		iq = &intrq[irq];
260 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
261 			i80321_enable_irq(irq);
262 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
263 		     ih = TAILQ_NEXT(ih, ih_list))
264 			irqs |= imask[ih->ih_ipl];
265 		iq->iq_mask = irqs;
266 	}
267 }
268 
269 static void
270 i80321_do_pending(void)
271 {
272 	static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
273 	int new, oldirqstate;
274 
275 	if (__cpu_simple_lock_try(&processing) == 0)
276 		return;
277 
278 	new = current_spl_level;
279 
280 	oldirqstate = disable_interrupts(I32_bit);
281 
282 #define	DO_SOFTINT(si)							\
283 	if ((ipending & ~new) & SI_TO_IRQBIT(si)) {			\
284 		ipending &= ~SI_TO_IRQBIT(si);				\
285 		current_spl_level |= imask[si_to_ipl[(si)]];		\
286 		restore_interrupts(oldirqstate);			\
287 		softintr_dispatch(si);					\
288 		oldirqstate = disable_interrupts(I32_bit);		\
289 		current_spl_level = new;				\
290 	}
291 
292 	DO_SOFTINT(SI_SOFTSERIAL);
293 	DO_SOFTINT(SI_SOFTNET);
294 	DO_SOFTINT(SI_SOFTCLOCK);
295 	DO_SOFTINT(SI_SOFT);
296 
297 	__cpu_simple_unlock(&processing);
298 
299 	restore_interrupts(oldirqstate);
300 }
301 
302 int
303 _splraise(int ipl)
304 {
305 	int old, oldirqstate;
306 
307 	oldirqstate = disable_interrupts(I32_bit);
308 	old = current_spl_level;
309 	current_spl_level |= imask[ipl];
310 
311 	restore_interrupts(oldirqstate);
312 
313 	return (old);
314 }
315 
316 __inline void
317 splx(int new)
318 {
319 	int oldirqstate, hwpend;
320 
321 	current_spl_level = new;
322 
323 	/*
324 	 * If there are pending HW interrupts which are being
325 	 * unmasked, then enable them in the INTCTL register.
326 	 * This will cause them to come flooding in.
327 	 */
328 	hwpend = (ipending & ICU_INT_HWMASK) & ~new;
329 	if (hwpend != 0) {
330 		oldirqstate = disable_interrupts(I32_bit);
331 		intr_enabled |= hwpend;
332 		i80321_set_intrmask();
333 		restore_interrupts(oldirqstate);
334 	}
335 
336 	/* If there are software interrupts to process, do it. */
337 	if ((ipending & INT_SWMASK) & ~new)
338 		i80321_do_pending();
339 }
340 
341 int
342 _spllower(int ipl)
343 {
344 	int old = current_spl_level;
345 
346 	splx(imask[ipl]);
347 	return (old);
348 }
349 
350 void
351 _setsoftintr(int si)
352 {
353 	int oldirqstate;
354 
355 	oldirqstate = disable_interrupts(I32_bit);
356 	ipending |= SI_TO_IRQBIT(si);
357 	restore_interrupts(oldirqstate);
358 
359 	/* Process unmasked pending soft interrupts. */
360 	if ((ipending & INT_SWMASK) & ~current_spl_level)
361 		i80321_do_pending();
362 }
363 
364 /*
365  * i80321_icu_init:
366  *
367  *	Initialize the i80321 ICU.  Called early in bootstrap
368  *	to make sure the ICU is in a pristine state.
369  */
370 void
371 i80321_icu_init(void)
372 {
373 
374 	intr_enabled = 0;	/* All interrupts disabled */
375 	i80321_set_intrmask();
376 
377 	intr_steer = 0;		/* All interrupts steered to IRQ */
378 	i80321_set_intrsteer();
379 }
380 
381 /*
382  * i80321_intr_init:
383  *
384  *	Initialize the rest of the interrupt subsystem, making it
385  *	ready to handle interrupts from devices.
386  */
387 void
388 i80321_intr_init(void)
389 {
390 	struct intrq *iq;
391 	int i;
392 
393 	intr_enabled = 0;
394 
395 	for (i = 0; i < NIRQ; i++) {
396 		iq = &intrq[i];
397 		TAILQ_INIT(&iq->iq_list);
398 
399 		sprintf(iq->iq_name, "irq %d", i);
400 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
401 		    NULL, "iop321", iq->iq_name);
402 	}
403 
404 	i80321_intr_calculate_masks();
405 
406 	/* Enable IRQs (don't yet use FIQs). */
407 	enable_interrupts(I32_bit);
408 }
409 
410 void *
411 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
412 {
413 	struct intrq *iq;
414 	struct intrhand *ih;
415 	u_int oldirqstate;
416 
417 	if (irq < 0 || irq > NIRQ)
418 		panic("i80321_intr_establish: IRQ %d out of range", irq);
419 
420 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
421 	if (ih == NULL)
422 		return (NULL);
423 
424 	ih->ih_func = func;
425 	ih->ih_arg = arg;
426 	ih->ih_ipl = ipl;
427 	ih->ih_irq = irq;
428 
429 	iq = &intrq[irq];
430 
431 	/* All IOP321 interrupts are level-triggered. */
432 	iq->iq_ist = IST_LEVEL;
433 
434 	oldirqstate = disable_interrupts(I32_bit);
435 
436 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
437 
438 	i80321_intr_calculate_masks();
439 
440 	restore_interrupts(oldirqstate);
441 
442 	return (ih);
443 }
444 
445 void
446 i80321_intr_disestablish(void *cookie)
447 {
448 	struct intrhand *ih = cookie;
449 	struct intrq *iq = &intrq[ih->ih_irq];
450 	int oldirqstate;
451 
452 	oldirqstate = disable_interrupts(I32_bit);
453 
454 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
455 
456 	i80321_intr_calculate_masks();
457 
458 	restore_interrupts(oldirqstate);
459 }
460 
461 void
462 i80321_intr_dispatch(struct clockframe *frame)
463 {
464 	struct intrq *iq;
465 	struct intrhand *ih;
466 	int oldirqstate, pcpl, irq, ibit, hwpend;
467 
468 	pcpl = current_spl_level;
469 
470 	hwpend = i80321_iintsrc_read();
471 
472 	/*
473 	 * Disable all the interrupts that are pending.  We will
474 	 * reenable them once they are processed and not masked.
475 	 */
476 	intr_enabled &= ~hwpend;
477 	i80321_set_intrmask();
478 
479 	while (hwpend != 0) {
480 		irq = ffs(hwpend) - 1;
481 		ibit = (1U << irq);
482 
483 		hwpend &= ~ibit;
484 
485 		if (pcpl & ibit) {
486 			/*
487 			 * IRQ is masked; mark it as pending and check
488 			 * the next one.  Note: the IRQ is already disabled.
489 			 */
490 			ipending |= ibit;
491 			continue;
492 		}
493 
494 		ipending &= ~ibit;
495 
496 		iq = &intrq[irq];
497 		iq->iq_ev.ev_count++;
498 		uvmexp.intrs++;
499 		current_spl_level |= iq->iq_mask;
500 		oldirqstate = enable_interrupts(I32_bit);
501 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
502 		     ih = TAILQ_NEXT(ih, ih_list)) {
503 			(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
504 		}
505 		restore_interrupts(oldirqstate);
506 
507 		current_spl_level = pcpl;
508 
509 		/* Re-enable this interrupt now that's it's cleared. */
510 		intr_enabled |= ibit;
511 		i80321_set_intrmask();
512 	}
513 
514 	/* Check for pendings soft intrs. */
515 	if ((ipending & INT_SWMASK) & ~current_spl_level) {
516 		oldirqstate = enable_interrupts(I32_bit);
517 		i80321_do_pending();
518 		restore_interrupts(oldirqstate);
519 	}
520 }
521