xref: /netbsd/sys/arch/arm/xscale/i80321_timer.c (revision c4a72b64)
1 /*	$NetBSD: i80321_timer.c,v 1.3 2002/10/08 23:59:41 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Timer/clock support for the Intel i80321 I/O processor.
40  */
41 
42 #include "opt_perfctrs.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/time.h>
48 
49 #include <machine/bus.h>
50 #include <arm/cpufunc.h>
51 
52 #include <arm/xscale/i80321reg.h>
53 #include <arm/xscale/i80321var.h>
54 
55 #include <arm/xscale/xscalevar.h>
56 
57 void	(*i80321_hardclock_hook)(void);
58 
59 #define	COUNTS_PER_SEC		200000000	/* 200MHz */
60 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
61 
62 static void *clock_ih;
63 
64 static uint32_t counts_per_hz;
65 
66 int	clockhandler(void *);
67 
68 static __inline uint32_t
69 tmr0_read(void)
70 {
71 	uint32_t rv;
72 
73 	__asm __volatile("mrc p6, 0, %0, c0, c1, 0"
74 		: "=r" (rv));
75 	return (rv);
76 }
77 
78 static __inline void
79 tmr0_write(uint32_t val)
80 {
81 
82 	__asm __volatile("mcr p6, 0, %0, c0, c1, 0"
83 		:
84 		: "r" (val));
85 }
86 
87 static __inline uint32_t
88 tcr0_read(void)
89 {
90 	uint32_t rv;
91 
92 	__asm __volatile("mrc p6, 0, %0, c2, c1, 0"
93 		: "=r" (rv));
94 	return (rv);
95 }
96 
97 static __inline void
98 tcr0_write(uint32_t val)
99 {
100 
101 	__asm __volatile("mcr p6, 0, %0, c2, c1, 0"
102 		:
103 		: "r" (val));
104 }
105 
106 static __inline void
107 trr0_write(uint32_t val)
108 {
109 
110 	__asm __volatile("mcr p6, 0, %0, c4, c1, 0"
111 		:
112 		: "r" (val));
113 }
114 
115 static __inline void
116 tisr_write(uint32_t val)
117 {
118 
119 	__asm __volatile("mcr p6, 0, %0, c6, c1, 0"
120 		:
121 		: "r" (val));
122 }
123 
124 /*
125  * i80321_calibrate_delay:
126  *
127  *	Calibrate the delay loop.
128  */
129 void
130 i80321_calibrate_delay(void)
131 {
132 
133 	/*
134 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
135 	 * in cpu_initclocks().
136 	 */
137 	counts_per_hz = COUNTS_PER_SEC / 100;
138 
139 	tmr0_write(0);			/* stop timer */
140 	tisr_write(TISR_TMR0);		/* clear interrupt */
141 	trr0_write(counts_per_hz);	/* reload value */
142 	tcr0_write(counts_per_hz);	/* current value */
143 
144 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
145 }
146 
147 /*
148  * cpu_initclocks:
149  *
150  *	Initialize the clock and get them going.
151  */
152 void
153 cpu_initclocks(void)
154 {
155 	u_int oldirqstate;
156 #if defined(PERFCTRS)
157 	void *pmu_ih;
158 #endif
159 
160 	if (hz < 50 || COUNTS_PER_SEC % hz) {
161 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
162 		hz = 100;
163 	}
164 	tick = 1000000 / hz;	/* number of microseconds between interrupts */
165 	tickfix = 1000000 - (hz * tick);
166 	if (tickfix) {
167 		int ftp;
168 
169 		ftp = min(ffs(tickfix), ffs(hz));
170 		tickfix >>= (ftp - 1);
171 		tickfixinterval = hz >> (ftp - 1);
172 	}
173 
174 	/*
175 	 * We only have one timer available; stathz and profhz are
176 	 * always left as 0 (the upper-layer clock code deals with
177 	 * this situation).
178 	 */
179 	if (stathz != 0)
180 		printf("Cannot get %d Hz statclock\n", stathz);
181 	stathz = 0;
182 
183 	if (profhz != 0)
184 		printf("Cannot get %d Hz profclock\n", profhz);
185 	profhz = 0;
186 
187 	/* Report the clock frequency. */
188 	printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
189 
190 	oldirqstate = disable_interrupts(I32_bit);
191 
192 	/* Hook up the clock interrupt handler. */
193 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
194 	    clockhandler, NULL);
195 	if (clock_ih == NULL)
196 		panic("cpu_initclocks: unable to register timer interrupt");
197 
198 #if defined(PERFCTRS)
199 	pmu_ih = i80321_intr_establish(ICU_INT_PMU, IPL_STATCLOCK,
200 	    xscale_pmc_dispatch, NULL);
201 	if (pmu_ih == NULL)
202 		panic("cpu_initclocks: unable to register timer interrupt");
203 #endif
204 
205 	/* Set up the new clock parameters. */
206 
207 	tmr0_write(0);			/* stop timer */
208 	tisr_write(TISR_TMR0);		/* clear interrupt */
209 
210 	counts_per_hz = COUNTS_PER_SEC / hz;
211 
212 	trr0_write(counts_per_hz);	/* reload value */
213 	tcr0_write(counts_per_hz);	/* current value */
214 
215 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
216 
217 	restore_interrupts(oldirqstate);
218 }
219 
220 /*
221  * setstatclockrate:
222  *
223  *	Set the rate of the statistics clock.
224  *
225  *	We assume that hz is either stathz or profhz, and that neither
226  *	will change after being set by cpu_initclocks().  We could
227  *	recalculate the intervals here, but that would be a pain.
228  */
229 void
230 setstatclockrate(int hz)
231 {
232 
233 	/*
234 	 * XXX Use TMR1?
235 	 */
236 }
237 
238 /*
239  * microtime:
240  *
241  *	Fill in the specified timeval struct with the current time
242  *	accurate to the microsecond.
243  */
244 void
245 microtime(struct timeval *tvp)
246 {
247 	static struct timeval lasttv;
248 	u_int oldirqstate;
249 	uint32_t counts;
250 
251 	oldirqstate = disable_interrupts(I32_bit);
252 
253 	counts = counts_per_hz - tcr0_read();
254 
255 	/* Fill in the timeval struct. */
256 	*tvp = time;
257 	tvp->tv_usec += (counts / COUNTS_PER_USEC);
258 
259 	/* Make sure microseconds doesn't overflow. */
260 	while (tvp->tv_usec >= 1000000) {
261 		tvp->tv_usec -= 1000000;
262 		tvp->tv_sec++;
263 	}
264 
265 	/* Make sure the time has advanced. */
266 	if (tvp->tv_sec == lasttv.tv_sec &&
267 	    tvp->tv_usec <= lasttv.tv_usec) {
268 		tvp->tv_usec = lasttv.tv_usec + 1;
269 		if (tvp->tv_usec >= 1000000) {
270 			tvp->tv_usec -= 1000000;
271 			tvp->tv_sec++;
272 		}
273 	}
274 
275 	lasttv = *tvp;
276 
277 	restore_interrupts(oldirqstate);
278 }
279 
280 /*
281  * delay:
282  *
283  *	Delay for at least N microseconds.
284  */
285 void
286 delay(u_int n)
287 {
288 	uint32_t cur, last, delta, usecs;
289 
290 	/*
291 	 * This works by polling the timer and counting the
292 	 * number of microseconds that go by.
293 	 */
294 	last = tcr0_read();
295 	delta = usecs = 0;
296 
297 	while (n > usecs) {
298 		cur = tcr0_read();
299 
300 		/* Check to see if the timer has wrapped around. */
301 		if (last < cur)
302 			delta += (last + (counts_per_hz - cur));
303 		else
304 			delta += (last - cur);
305 
306 		last = cur;
307 
308 		if (delta >= COUNTS_PER_USEC) {
309 			usecs += delta / COUNTS_PER_USEC;
310 			delta %= COUNTS_PER_USEC;
311 		}
312 	}
313 }
314 
315 /*
316  * inittodr:
317  *
318  *	Initialize time from the time-of-day register.
319  */
320 void
321 inittodr(time_t base)
322 {
323 
324 	time.tv_sec = base;
325 	time.tv_usec = 0;
326 }
327 
328 /*
329  * resettodr:
330  *
331  *	Reset the time-of-day register with the current time.
332  */
333 void
334 resettodr(void)
335 {
336 }
337 
338 /*
339  * clockhandler:
340  *
341  *	Handle the hardclock interrupt.
342  */
343 int
344 clockhandler(void *arg)
345 {
346 	struct clockframe *frame = arg;
347 
348 	tisr_write(TISR_TMR0);
349 
350 	hardclock(frame);
351 
352 	if (i80321_hardclock_hook != NULL)
353 		(*i80321_hardclock_hook)();
354 
355 	return (1);
356 }
357