xref: /netbsd/sys/arch/arm/xscale/ixp425_if_npe.c (revision 6550d01e)
1 /*	$NetBSD: ixp425_if_npe.c,v 1.19 2010/04/05 07:19:29 joerg Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.19 2010/04/05 07:19:29 joerg Exp $");
32 
33 /*
34  * Intel XScale NPE Ethernet driver.
35  *
36  * This driver handles the two ports present on the IXP425.
37  * Packet processing is done by the Network Processing Engines
38  * (NPE's) that work together with a MAC and PHY. The MAC
39  * is also mapped to the XScale cpu; the PHY is accessed via
40  * the MAC. NPE-XScale communication happens through h/w
41  * queues managed by the Q Manager block.
42  *
43  * The code here replaces the ethAcc, ethMii, and ethDB classes
44  * in the Intel Access Library (IAL) and the OS-specific driver.
45  *
46  * XXX add vlan support
47  * XXX NPE-C port doesn't work yet
48  */
49 
50 #include "rnd.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/device.h>
56 #include <sys/callout.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/endian.h>
61 #include <sys/ioctl.h>
62 #include <sys/syslog.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_ether.h>
70 
71 #include <net/bpf.h>
72 
73 #if NRND > 0
74 #include <sys/rnd.h>
75 #endif
76 
77 #include <arm/xscale/ixp425reg.h>
78 #include <arm/xscale/ixp425var.h>
79 #include <arm/xscale/ixp425_qmgr.h>
80 #include <arm/xscale/ixp425_npevar.h>
81 #include <arm/xscale/ixp425_if_npereg.h>
82 
83 #include <dev/mii/miivar.h>
84 
85 #include "locators.h"
86 
87 struct npebuf {
88 	struct npebuf	*ix_next;	/* chain to next buffer */
89 	void		*ix_m;		/* backpointer to mbuf */
90 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
91 	struct npehwbuf	*ix_hw;		/* associated h/w block */
92 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
93 };
94 
95 struct npedma {
96 	const char*	name;
97 	int		nbuf;		/* # npebuf's allocated */
98 	bus_dmamap_t	m_map;
99 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
100 	bus_dmamap_t	buf_map;
101 	bus_addr_t	buf_phys;	/* phys addr of buffers */
102 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
103 };
104 
105 struct npe_softc {
106 	struct device	sc_dev;
107 	struct ethercom	sc_ethercom;
108 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
109 	struct mii_data	sc_mii;
110 	bus_space_tag_t	sc_iot;
111 	bus_dma_tag_t	sc_dt;
112 	bus_space_handle_t sc_ioh;	/* MAC register window */
113 	bus_space_handle_t sc_miih;	/* MII register window */
114 	struct ixpnpe_softc *sc_npe;	/* NPE support */
115 	int		sc_unit;
116 	int		sc_phy;
117 	struct callout	sc_tick_ch;	/* Tick callout */
118 	struct npedma	txdma;
119 	struct npebuf	*tx_free;	/* list of free tx buffers */
120 	struct npedma	rxdma;
121 	int		rx_qid;		/* rx qid */
122 	int		rx_freeqid;	/* rx free buffers qid */
123 	int		tx_qid;		/* tx qid */
124 	int		tx_doneqid;	/* tx completed qid */
125 	struct npestats	*sc_stats;
126 	bus_dmamap_t	sc_stats_map;
127 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
128 	int		sc_if_flags;	/* keep last if_flags */
129 #if NRND > 0
130 	rndsource_element_t rnd_source; /* random source */
131 #endif
132 };
133 
134 /*
135  * Per-unit static configuration for IXP425.  The tx and
136  * rx free Q id's are fixed by the NPE microcode.  The
137  * rx Q id's are programmed to be separate to simplify
138  * multi-port processing.  It may be better to handle
139  * all traffic through one Q (as done by the Intel drivers).
140  *
141  * Note that the PHY's are accessible only from MAC A
142  * on the IXP425.  This and other platform-specific
143  * assumptions probably need to be handled through hints.
144  */
145 static const struct {
146 	const char	*desc;		/* device description */
147 	int		npeid;		/* NPE assignment */
148 	int		macport;	/* Port number of the MAC */
149 	uint32_t	imageid;	/* NPE firmware image id */
150 	uint32_t	regbase;
151 	int		regsize;
152 	uint32_t	miibase;
153 	int		miisize;
154 	uint8_t		rx_qid;
155 	uint8_t		rx_freeqid;
156 	uint8_t		tx_qid;
157 	uint8_t		tx_doneqid;
158 } npeconfig[NPE_PORTS_MAX] = {
159 	{ .desc		= "IXP NPE-B",
160 	  .npeid	= NPE_B,
161 	  .macport	= 0x10,
162 	  .imageid	= IXP425_NPE_B_IMAGEID,
163 	  .regbase	= IXP425_MAC_A_HWBASE,
164 	  .regsize	= IXP425_MAC_A_SIZE,
165 	  .miibase	= IXP425_MAC_A_HWBASE,
166 	  .miisize	= IXP425_MAC_A_SIZE,
167 	  .rx_qid	= 4,
168 	  .rx_freeqid	= 27,
169 	  .tx_qid	= 24,
170 	  .tx_doneqid	= 31
171 	},
172 	{ .desc		= "IXP NPE-C",
173 	  .npeid	= NPE_C,
174 	  .macport	= 0x20,
175 	  .imageid	= IXP425_NPE_C_IMAGEID,
176 	  .regbase	= IXP425_MAC_B_HWBASE,
177 	  .regsize	= IXP425_MAC_B_SIZE,
178 	  .miibase	= IXP425_MAC_A_HWBASE,
179 	  .miisize	= IXP425_MAC_A_SIZE,
180 	  .rx_qid	= 12,
181 	  .rx_freeqid	= 28,
182 	  .tx_qid	= 25,
183 	  .tx_doneqid	= 31
184 	},
185 };
186 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
187 
188 static __inline uint32_t
189 RD4(struct npe_softc *sc, bus_size_t off)
190 {
191 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
192 }
193 
194 static __inline void
195 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
196 {
197 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
198 }
199 
200 static int	npe_activate(struct npe_softc *);
201 #if 0
202 static void	npe_deactivate(struct npe_softc *);
203 #endif
204 static void	npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
205 static void	npe_setmac(struct npe_softc *sc, const u_char *eaddr);
206 static void	npe_getmac(struct npe_softc *sc);
207 static void	npe_txdone(int qid, void *arg);
208 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
209 			struct mbuf *);
210 static void	npe_rxdone(int qid, void *arg);
211 static void	npeinit_macreg(struct npe_softc *);
212 static int	npeinit(struct ifnet *);
213 static void	npeinit_resetcb(void *);
214 static void	npeinit_locked(void *);
215 static void	npestart(struct ifnet *);
216 static void	npestop(struct ifnet *, int);
217 static void	npewatchdog(struct ifnet *);
218 static int	npeioctl(struct ifnet * ifp, u_long, void *);
219 
220 static int	npe_setrxqosentry(struct npe_softc *, int classix,
221 			int trafclass, int qid);
222 static int	npe_updatestats(struct npe_softc *);
223 #if 0
224 static int	npe_getstats(struct npe_softc *);
225 static uint32_t	npe_getimageid(struct npe_softc *);
226 static int	npe_setloopback(struct npe_softc *, int ena);
227 #endif
228 
229 static int	npe_miibus_readreg(struct device *, int, int);
230 static void	npe_miibus_writereg(struct device *, int, int, int);
231 static void	npe_miibus_statchg(struct device *);
232 
233 static int	npe_debug;
234 #define DPRINTF(sc, fmt, ...) do {			\
235 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
236 } while (0)
237 #define DPRINTFn(n, sc, fmt, ...) do {			\
238 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
239 } while (0)
240 
241 #define	NPE_TXBUF	128
242 #define	NPE_RXBUF	64
243 
244 #ifndef ETHER_ALIGN
245 #define	ETHER_ALIGN	2	/* XXX: Ditch this */
246 #endif
247 
248 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
249 				    + ((uint64_t)addr[1] << 32)	\
250 				    + ((uint64_t)addr[2] << 24)	\
251 				    + ((uint64_t)addr[3] << 16)	\
252 				    + ((uint64_t)addr[4] << 8)	\
253 				    + (uint64_t)addr[5])
254 
255 /* NB: all tx done processing goes through one queue */
256 static int tx_doneqid = -1;
257 
258 void (*npe_getmac_md)(int, uint8_t *);
259 
260 static int npe_match(struct device *, struct cfdata *, void *);
261 static void npe_attach(struct device *, struct device *, void *);
262 
263 CFATTACH_DECL(npe, sizeof(struct npe_softc),
264     npe_match, npe_attach, NULL, NULL);
265 
266 static int
267 npe_match(struct device *parent, struct cfdata *cf, void *arg)
268 {
269 	struct ixpnpe_attach_args *na = arg;
270 
271 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
272 }
273 
274 static void
275 npe_attach(struct device *parent, struct device *self, void *arg)
276 {
277 	struct npe_softc *sc = (void *)self;
278 	struct ixpnpe_attach_args *na = arg;
279 	struct ixpnpe_softc *isc = (struct ixpnpe_softc *)parent;
280 	struct ifnet *ifp;
281 
282 	aprint_naive("\n");
283 	aprint_normal(": Ethernet co-processor\n");
284 
285 	sc->sc_iot = na->na_iot;
286 	sc->sc_dt = na->na_dt;
287 	sc->sc_npe = na->na_npe;
288 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
289 	sc->sc_phy = na->na_phy;
290 
291 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
292 	memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
293 
294 	callout_init(&sc->sc_tick_ch, 0);
295 
296 	if (npe_activate(sc)) {
297 		aprint_error("%s: Failed to activate NPE (missing "
298 		    "microcode?)\n", sc->sc_dev.dv_xname);
299 		return;
300 	}
301 
302 	npe_getmac(sc);
303 	npeinit_macreg(sc);
304 
305 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
306 	    ether_sprintf(sc->sc_enaddr));
307 
308 	ifp = &sc->sc_ethercom.ec_if;
309 	sc->sc_mii.mii_ifp = ifp;
310 	sc->sc_mii.mii_readreg = npe_miibus_readreg;
311 	sc->sc_mii.mii_writereg = npe_miibus_writereg;
312 	sc->sc_mii.mii_statchg = npe_miibus_statchg;
313 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
314 
315 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
316 	    npe_ifmedia_status);
317 
318 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
319 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
320 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
321 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
322 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
323 	} else
324 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
325 
326 	ifp->if_softc = sc;
327 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
328 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
329 	ifp->if_start = npestart;
330 	ifp->if_ioctl = npeioctl;
331 	ifp->if_watchdog = npewatchdog;
332 	ifp->if_init = npeinit;
333 	ifp->if_stop = npestop;
334 	IFQ_SET_READY(&ifp->if_snd);
335 
336 	/* VLAN capable */
337 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
338 
339 	if_attach(ifp);
340 	ether_ifattach(ifp, sc->sc_enaddr);
341 #if NRND > 0
342 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
343 	    RND_TYPE_NET, 0);
344 #endif
345 
346 	/* callback function to reset MAC */
347 	isc->macresetcbfunc = npeinit_resetcb;
348 	isc->macresetcbarg = sc;
349 }
350 
351 /*
352  * Compute and install the multicast filter.
353  */
354 static void
355 npe_setmcast(struct npe_softc *sc)
356 {
357 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
358 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
359 	uint32_t reg;
360 	uint32_t msg[2];
361 	int i;
362 
363 	/* Always use filter. Is here a correct position? */
364 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
365 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
366 
367 	if (ifp->if_flags & IFF_PROMISC) {
368 		memset(mask, 0, ETHER_ADDR_LEN);
369 		memset(addr, 0, ETHER_ADDR_LEN);
370 	} else if (ifp->if_flags & IFF_ALLMULTI) {
371 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
372 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
373  all_multi:
374 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
375 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
376 	} else {
377 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
378 		struct ether_multistep step;
379 		struct ether_multi *enm;
380 
381 		memset(clr, 0, ETHER_ADDR_LEN);
382 		memset(set, 0xff, ETHER_ADDR_LEN);
383 
384 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
385 		while (enm != NULL) {
386 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
387 				ifp->if_flags |= IFF_ALLMULTI;
388 				goto all_multi;
389 			}
390 
391 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
392 				clr[i] |= enm->enm_addrlo[i];
393 				set[i] &= enm->enm_addrlo[i];
394 			}
395 
396 			ETHER_NEXT_MULTI(step, enm);
397 		}
398 
399 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
400 			mask[i] = set[i] | ~clr[i];
401 			addr[i] = set[i];
402 		}
403 	}
404 
405 	/*
406 	 * Write the mask and address registers.
407 	 */
408 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
409 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
410 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
411 	}
412 
413 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
414 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
415 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
416 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
417 	    | (addr[5] << 8) | mask[5];
418 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
419 }
420 
421 static int
422 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
423 	const char *name, int nbuf, int maxseg)
424 {
425 	bus_dma_segment_t seg;
426 	int rseg, error, i;
427 	void *hwbuf;
428 	size_t size;
429 
430 	memset(dma, 0, sizeof(*dma));
431 
432 	dma->name = name;
433 	dma->nbuf = nbuf;
434 
435 	size = nbuf * sizeof(struct npehwbuf);
436 
437 	/* XXX COHERENT for now */
438 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
439 	    1, &rseg, BUS_DMA_NOWAIT);
440 	if (error) {
441 		printf("%s: unable to allocate memory for %s h/w buffers, "
442 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
443 	}
444 
445 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
446 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
447 	if (error) {
448 		printf("%s: unable to map memory for %s h/w buffers, "
449 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
450  free_dmamem:
451 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
452 		return error;
453 	}
454 	dma->hwbuf = (void *)hwbuf;
455 
456 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
457 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
458 	if (error) {
459 		printf("%s: unable to create map for %s h/w buffers, "
460 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
461  unmap_dmamem:
462 		dma->hwbuf = NULL;
463 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
464 		goto free_dmamem;
465 	}
466 
467 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
468 	    BUS_DMA_NOWAIT);
469 	if (error) {
470 		printf("%s: unable to load map for %s h/w buffers, "
471 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
472  destroy_dmamap:
473 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
474 		goto unmap_dmamem;
475 	}
476 
477 	/* XXX M_TEMP */
478 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
479 	if (dma->buf == NULL) {
480 		printf("%s: unable to allocate memory for %s s/w buffers\n",
481 		    sc->sc_dev.dv_xname, dma->name);
482 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
483 		error = ENOMEM;
484 		goto destroy_dmamap;
485 	}
486 
487 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
488 	for (i = 0; i < dma->nbuf; i++) {
489 		struct npebuf *npe = &dma->buf[i];
490 		struct npehwbuf *hw = &dma->hwbuf[i];
491 
492 		/* calculate offset to shared area */
493 		npe->ix_neaddr = dma->buf_phys +
494 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
495 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
496 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
497 		    MCLBYTES, 0, 0, &npe->ix_map);
498 		if (error != 0) {
499 			printf("%s: unable to create dmamap for %s buffer %u, "
500 			    "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
501 			    error);
502 			/* XXXSCW: Free up maps... */
503 			return error;
504 		}
505 		npe->ix_hw = hw;
506 	}
507 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
508 	    BUS_DMASYNC_PREWRITE);
509 	return 0;
510 }
511 
512 #if 0
513 static void
514 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
515 {
516 	int i;
517 
518 /* XXXSCW: Clean this up */
519 
520 	if (dma->hwbuf != NULL) {
521 		for (i = 0; i < dma->nbuf; i++) {
522 			struct npebuf *npe = &dma->buf[i];
523 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
524 		}
525 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
526 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
527 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
528 	}
529 	if (dma->buf != NULL)
530 		free(dma->buf, M_TEMP);
531 	memset(dma, 0, sizeof(*dma));
532 }
533 #endif
534 
535 static int
536 npe_activate(struct npe_softc *sc)
537 {
538 	bus_dma_segment_t seg;
539 	int unit = sc->sc_unit;
540 	int error, i, rseg;
541 	void *statbuf;
542 
543 	/* load NPE firmware and start it running */
544 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
545 	if (error != 0)
546 		return error;
547 
548 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
549 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
550 		printf("%s: Cannot map registers 0x%x:0x%x\n",
551 		    sc->sc_dev.dv_xname, npeconfig[unit].regbase,
552 		    npeconfig[unit].regsize);
553 		return ENOMEM;
554 	}
555 
556 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
557 		/*
558 		 * The PHY's are only accessible from one MAC (it appears)
559 		 * so for other MAC's setup an additional mapping for
560 		 * frobbing the PHY registers.
561 		 */
562 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
563 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
564 			printf("%s: Cannot map MII registers 0x%x:0x%x\n",
565 			    sc->sc_dev.dv_xname, npeconfig[unit].miibase,
566 			    npeconfig[unit].miisize);
567 			return ENOMEM;
568 		}
569 	} else
570 		sc->sc_miih = sc->sc_ioh;
571 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
572 	if (error != 0)
573 		return error;
574 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
575 	if (error != 0)
576 		return error;
577 
578 	/* setup statistics block */
579 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
580 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
581 	if (error) {
582 		printf("%s: unable to allocate memory for stats block, "
583 		    "error %u\n", sc->sc_dev.dv_xname, error);
584 		return error;
585 	}
586 
587 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
588 	    &statbuf, BUS_DMA_NOWAIT);
589 	if (error) {
590 		printf("%s: unable to map memory for stats block, "
591 		    "error %u\n", sc->sc_dev.dv_xname, error);
592 		return error;
593 	}
594 	sc->sc_stats = (void *)statbuf;
595 
596 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
597 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
598 	    &sc->sc_stats_map);
599 	if (error) {
600 		printf("%s: unable to create map for stats block, "
601 		    "error %u\n", sc->sc_dev.dv_xname, error);
602 		return error;
603 	}
604 
605 	if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
606 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
607 		printf("%s: unable to load memory for stats block, error %u\n",
608 		    sc->sc_dev.dv_xname, error);
609 		return error;
610 	}
611 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
612 
613 	/* XXX disable half-bridge LEARNING+FILTERING feature */
614 
615 	/*
616 	 * Setup h/w rx/tx queues.  There are four q's:
617 	 *   rx		inbound q of rx'd frames
618 	 *   rx_free	pool of ixpbuf's for receiving frames
619 	 *   tx		outbound q of frames to send
620 	 *   tx_done	q of tx frames that have been processed
621 	 *
622 	 * The NPE handles the actual tx/rx process and the q manager
623 	 * handles the queues.  The driver just writes entries to the
624 	 * q manager mailbox's and gets callbacks when there are rx'd
625 	 * frames to process or tx'd frames to reap.  These callbacks
626 	 * are controlled by the q configurations; e.g. we get a
627 	 * callback when tx_done has 2 or more frames to process and
628 	 * when the rx q has at least one frame.  These setings can
629 	 * changed at the time the q is configured.
630 	 */
631 	sc->rx_qid = npeconfig[unit].rx_qid;
632 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
633 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
634 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
635 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
636 	/* tell the NPE to direct all traffic to rx_qid */
637 #if 0
638 	for (i = 0; i < 8; i++)
639 #else
640 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
641 	for (i = 0; i < 4; i++)
642 #endif
643 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
644 
645 	sc->tx_qid = npeconfig[unit].tx_qid;
646 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
647 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
648 	if (tx_doneqid == -1) {
649 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
650 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
651 		tx_doneqid = sc->tx_doneqid;
652 	}
653 
654 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
655 	npes[npeconfig[unit].npeid] = sc;
656 
657 	return 0;
658 }
659 
660 #if 0
661 static void
662 npe_deactivate(struct npe_softc *sc);
663 {
664 	int unit = sc->sc_unit;
665 
666 	npes[npeconfig[unit].npeid] = NULL;
667 
668 	/* XXX disable q's */
669 	if (sc->sc_npe != NULL)
670 		ixpnpe_stop(sc->sc_npe);
671 	if (sc->sc_stats != NULL) {
672 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
673 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
674 			sc->sc_stats_map);
675 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
676 	}
677 	if (sc->sc_stats_tag != NULL)
678 		bus_dma_tag_destroy(sc->sc_stats_tag);
679 	npe_dma_destroy(sc, &sc->txdma);
680 	npe_dma_destroy(sc, &sc->rxdma);
681 	bus_generic_detach(sc->sc_dev);
682 	if (sc->sc_mii)
683 		device_delete_child(sc->sc_dev, sc->sc_mii);
684 #if 0
685 	/* XXX sc_ioh and sc_miih */
686 	if (sc->mem_res)
687 		bus_release_resource(dev, SYS_RES_IOPORT,
688 		    rman_get_rid(sc->mem_res), sc->mem_res);
689 	sc->mem_res = 0;
690 #endif
691 }
692 #endif
693 
694 /*
695  * Notify the world which media we're using.
696  */
697 static void
698 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
699 {
700 	struct npe_softc *sc = ifp->if_softc;
701 
702 	mii_pollstat(&sc->sc_mii);
703 
704 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
705 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
706 }
707 
708 static void
709 npe_addstats(struct npe_softc *sc)
710 {
711 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 	struct npestats *ns = sc->sc_stats;
713 
714 	ifp->if_oerrors +=
715 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
716 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
717 		+ be32toh(ns->TxVLANIdFilterDiscards)
718 		;
719 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
720 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
721 		+ be32toh(ns->RxOverrunDiscards)
722 		+ be32toh(ns->RxUnderflowEntryDiscards)
723 		;
724 	ifp->if_collisions +=
725 		  be32toh(ns->dot3StatsSingleCollisionFrames)
726 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
727 		;
728 }
729 
730 static void
731 npe_tick(void *xsc)
732 {
733 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
734 	struct npe_softc *sc = xsc;
735 	uint32_t msg[2];
736 
737 	/*
738 	 * NB: to avoid sleeping with the softc lock held we
739 	 * split the NPE msg processing into two parts.  The
740 	 * request for statistics is sent w/o waiting for a
741 	 * reply and then on the next tick we retrieve the
742 	 * results.  This works because npe_tick is the only
743 	 * code that talks via the mailbox's (except at setup).
744 	 * This likely can be handled better.
745 	 */
746 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
747 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
748 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
749 		npe_addstats(sc);
750 	}
751 	npe_updatestats(sc);
752 	mii_tick(&sc->sc_mii);
753 
754 	/* schedule next poll */
755 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
756 #undef ACK
757 }
758 
759 static void
760 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
761 {
762 
763 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
764 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
765 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
766 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
767 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
768 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
769 }
770 
771 static void
772 npe_getmac(struct npe_softc *sc)
773 {
774 	uint8_t *eaddr = sc->sc_enaddr;
775 
776 	if (npe_getmac_md != NULL) {
777 		(*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
778 	} else {
779 		/*
780 		 * Some system's unicast address appears to be loaded from
781 		 * EEPROM on reset
782 		 */
783 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
784 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
785 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
786 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
787 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
788 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
789 	}
790 }
791 
792 struct txdone {
793 	struct npebuf *head;
794 	struct npebuf **tail;
795 	int count;
796 };
797 
798 static __inline void
799 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
800 {
801 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
802 
803 	*td->tail = sc->tx_free;
804 	sc->tx_free = td->head;
805 	/*
806 	 * We're no longer busy, so clear the busy flag and call the
807 	 * start routine to xmit more packets.
808 	 */
809 	ifp->if_opackets += td->count;
810 	ifp->if_flags &= ~IFF_OACTIVE;
811 	ifp->if_timer = 0;
812 	npestart(ifp);
813 }
814 
815 /*
816  * Q manager callback on tx done queue.  Reap mbufs
817  * and return tx buffers to the free list.  Finally
818  * restart output.  Note the microcode has only one
819  * txdone q wired into it so we must use the NPE ID
820  * returned with each npehwbuf to decide where to
821  * send buffers.
822  */
823 static void
824 npe_txdone(int qid, void *arg)
825 {
826 #define	P2V(a, dma) \
827 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
828 	struct npe_softc *sc;
829 	struct npebuf *npe;
830 	struct txdone *td, q[NPE_MAX];
831 	uint32_t entry;
832 
833 	/* XXX no NPE-A support */
834 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
835 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
836 	/* XXX max # at a time? */
837 	while (ixpqmgr_qread(qid, &entry) == 0) {
838 		sc = npes[NPE_QM_Q_NPE(entry)];
839 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
840 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
841 #if NRND > 0
842 		if (RND_ENABLED(&sc->rnd_source))
843 			rnd_add_uint32(&sc->rnd_source, entry);
844 #endif
845 
846 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
847 		m_freem(npe->ix_m);
848 		npe->ix_m = NULL;
849 
850 		td = &q[NPE_QM_Q_NPE(entry)];
851 		*td->tail = npe;
852 		td->tail = &npe->ix_next;
853 		td->count++;
854 	}
855 
856 	if (q[NPE_B].count)
857 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
858 	if (q[NPE_C].count)
859 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
860 #undef P2V
861 }
862 
863 static __inline struct mbuf *
864 npe_getcl(void)
865 {
866 	struct mbuf *m;
867 
868 	MGETHDR(m, M_DONTWAIT, MT_DATA);
869 	if (m != NULL) {
870 		MCLGET(m, M_DONTWAIT);
871 		if ((m->m_flags & M_EXT) == 0) {
872 			m_freem(m);
873 			m = NULL;
874 		}
875 	}
876 	return (m);
877 }
878 
879 static int
880 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
881 {
882 	struct npehwbuf *hw;
883 	int error;
884 
885 	if (m == NULL) {
886 		m = npe_getcl();
887 		if (m == NULL)
888 			return ENOBUFS;
889 	}
890 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
891 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
892 	/* backload payload and align ip hdr */
893 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
894 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
895 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
896 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
897 	if (error != 0) {
898 		m_freem(m);
899 		return error;
900 	}
901 	hw = npe->ix_hw;
902 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
903 	/* NB: NPE requires length be a multiple of 64 */
904 	/* NB: buffer length is shifted in word */
905 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
906 	hw->ix_ne[0].next = 0;
907 	npe->ix_m = m;
908 	/* Flush the memory in the mbuf */
909 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
910 	    BUS_DMASYNC_PREREAD);
911 	return 0;
912 }
913 
914 /*
915  * RX q processing for a specific NPE.  Claim entries
916  * from the hardware queue and pass the frames up the
917  * stack. Pass the rx buffers to the free list.
918  */
919 static void
920 npe_rxdone(int qid, void *arg)
921 {
922 #define	P2V(a, dma) \
923 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
924 	struct npe_softc *sc = arg;
925 	struct npedma *dma = &sc->rxdma;
926 	uint32_t entry;
927 
928 	while (ixpqmgr_qread(qid, &entry) == 0) {
929 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
930 		struct mbuf *m;
931 
932 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
933 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
934 #if NRND > 0
935 		if (RND_ENABLED(&sc->rnd_source))
936 			rnd_add_uint32(&sc->rnd_source, entry);
937 #endif
938 		/*
939 		 * Allocate a new mbuf to replenish the rx buffer.
940 		 * If doing so fails we drop the rx'd frame so we
941 		 * can reuse the previous mbuf.  When we're able to
942 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
943 		 * data up the stack and replace it with the newly
944 		 * allocated one.
945 		 */
946 		m = npe_getcl();
947 		if (m != NULL) {
948 			struct mbuf *mrx = npe->ix_m;
949 			struct npehwbuf *hw = npe->ix_hw;
950 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
951 
952 			/* Flush mbuf memory for rx'd data */
953 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
954 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
955 
956 			/* XXX flush hw buffer; works now 'cuz coherent */
957 			/* set m_len etc. per rx frame size */
958 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
959 			mrx->m_pkthdr.len = mrx->m_len;
960 			mrx->m_pkthdr.rcvif = ifp;
961 			/* Don't add M_HASFCS. See below */
962 
963 #if 1
964 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
965 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
966 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
967 				/* Back out "newly allocated" mbuf. */
968 				m_freem(m);
969 				ifp->if_ierrors++;
970 				goto fail;
971 			}
972 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
973 				struct ether_header *eh;
974 
975 				/*
976 				 * Workaround for "Non-Intel XScale Technology
977 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
978 				 * matches the filter (both unicast and
979 				 * multicast).
980 				 */
981 				eh = mtod(mrx, struct ether_header *);
982 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
983 					/* unicast */
984 
985 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
986 						/* discard it */
987 #if 0
988 						printf("discard it\n");
989 #endif
990 						/*
991 						 * Back out "newly allocated"
992 						 * mbuf.
993 						 */
994 						m_freem(m);
995 						goto fail;
996 					}
997 				} else if (memcmp(eh->ether_dhost,
998 					etherbroadcastaddr, 6) == 0) {
999 					/* Always accept broadcast packet*/
1000 				} else {
1001 					struct ethercom *ec = &sc->sc_ethercom;
1002 					struct ether_multi *enm;
1003 					struct ether_multistep step;
1004 					int match = 0;
1005 
1006 					/* multicast */
1007 
1008 					ETHER_FIRST_MULTI(step, ec, enm);
1009 					while (enm != NULL) {
1010 						uint64_t lowint, highint, dest;
1011 
1012 						lowint = MAC2UINT64(enm->enm_addrlo);
1013 						highint = MAC2UINT64(enm->enm_addrhi);
1014 						dest = MAC2UINT64(eh->ether_dhost);
1015 #if 0
1016 						printf("%llx\n", lowint);
1017 						printf("%llx\n", dest);
1018 						printf("%llx\n", highint);
1019 #endif
1020 						if ((lowint <= dest) && (dest <= highint)) {
1021 							match = 1;
1022 							break;
1023 						}
1024 						ETHER_NEXT_MULTI(step, enm);
1025 					}
1026 					if (match == 0) {
1027 						/* discard it */
1028 #if 0
1029 						printf("discard it(M)\n");
1030 #endif
1031 						/*
1032 						 * Back out "newly allocated"
1033 						 * mbuf.
1034 						 */
1035 						m_freem(m);
1036 						goto fail;
1037 					}
1038 				}
1039 			}
1040 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1041 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1042 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
1043 				/* Back out "newly allocated" mbuf. */
1044 				m_freem(m);
1045 				ifp->if_ierrors++;
1046 				goto fail;
1047 			}
1048 #endif
1049 
1050 			/*
1051 			 * Trim FCS!
1052 			 * NPE always adds the FCS by this driver's setting,
1053 			 * so we always trim it here and not add M_HASFCS.
1054 			 */
1055 			m_adj(mrx, -ETHER_CRC_LEN);
1056 
1057 			ifp->if_ipackets++;
1058 			/*
1059 			 * Tap off here if there is a bpf listener.
1060 			 */
1061 			bpf_mtap(ifp, mrx);
1062 			ifp->if_input(ifp, mrx);
1063 		} else {
1064 fail:
1065 			/* discard frame and re-use mbuf */
1066 			m = npe->ix_m;
1067 		}
1068 		if (npe_rxbuf_init(sc, npe, m) == 0) {
1069 			/* return npe buf to rx free list */
1070 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1071 		} else {
1072 			/* XXX should not happen */
1073 		}
1074 	}
1075 #undef P2V
1076 }
1077 
1078 static void
1079 npe_startxmit(struct npe_softc *sc)
1080 {
1081 	struct npedma *dma = &sc->txdma;
1082 	int i;
1083 
1084 	sc->tx_free = NULL;
1085 	for (i = 0; i < dma->nbuf; i++) {
1086 		struct npebuf *npe = &dma->buf[i];
1087 		if (npe->ix_m != NULL) {
1088 			/* NB: should not happen */
1089 			printf("%s: %s: free mbuf at entry %u\n",
1090 			    sc->sc_dev.dv_xname, __func__, i);
1091 			m_freem(npe->ix_m);
1092 		}
1093 		npe->ix_m = NULL;
1094 		npe->ix_next = sc->tx_free;
1095 		sc->tx_free = npe;
1096 	}
1097 }
1098 
1099 static void
1100 npe_startrecv(struct npe_softc *sc)
1101 {
1102 	struct npedma *dma = &sc->rxdma;
1103 	struct npebuf *npe;
1104 	int i;
1105 
1106 	for (i = 0; i < dma->nbuf; i++) {
1107 		npe = &dma->buf[i];
1108 		npe_rxbuf_init(sc, npe, npe->ix_m);
1109 		/* set npe buf on rx free list */
1110 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1111 	}
1112 }
1113 
1114 static void
1115 npeinit_macreg(struct npe_softc *sc)
1116 {
1117 
1118 	/*
1119 	 * Reset MAC core.
1120 	 */
1121 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1122 	DELAY(NPE_MAC_RESET_DELAY);
1123 	/* configure MAC to generate MDC clock */
1124 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1125 
1126 	/* disable transmitter and reciver in the MAC */
1127  	WR4(sc, NPE_MAC_RX_CNTRL1,
1128 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1129  	WR4(sc, NPE_MAC_TX_CNTRL1,
1130 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1131 
1132 	/*
1133 	 * Set the MAC core registers.
1134 	 */
1135 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
1136 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
1137 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
1138 	/* thresholds determined by NPE firmware FS */
1139 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
1140 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
1141 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1142 						/* tx fifo threshold (bytes) */
1143 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
1144 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
1145 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
1146 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
1147 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1148 						/* assumes MII mode */
1149 	WR4(sc, NPE_MAC_TX_CNTRL1,
1150 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
1151 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
1152 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
1153 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
1154 	/* XXX pad strip? */
1155 	WR4(sc, NPE_MAC_RX_CNTRL1,
1156 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
1157 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
1158 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1159 }
1160 
1161 static void
1162 npeinit_resetcb(void *xsc)
1163 {
1164 	struct npe_softc *sc = xsc;
1165 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1166 	uint32_t msg[2];
1167 
1168 	ifp->if_oerrors++;
1169 	npeinit_locked(sc);
1170 
1171 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1172 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1173 	msg[1] = 0;
1174 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1175 }
1176 
1177 /*
1178  * Reset and initialize the chip
1179  */
1180 static void
1181 npeinit_locked(void *xsc)
1182 {
1183 	struct npe_softc *sc = xsc;
1184 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1185 
1186 	/* Cancel any pending I/O. */
1187 	npestop(ifp, 0);
1188 
1189 	/* Reset the chip to a known state. */
1190 	npeinit_macreg(sc);
1191 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
1192 	ether_mediachange(ifp);
1193 	npe_setmcast(sc);
1194 
1195 	npe_startxmit(sc);
1196 	npe_startrecv(sc);
1197 
1198 	ifp->if_flags |= IFF_RUNNING;
1199 	ifp->if_flags &= ~IFF_OACTIVE;
1200 	ifp->if_timer = 0;		/* just in case */
1201 
1202 	/* enable transmitter and reciver in the MAC */
1203  	WR4(sc, NPE_MAC_RX_CNTRL1,
1204 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1205  	WR4(sc, NPE_MAC_TX_CNTRL1,
1206 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1207 
1208 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1209 }
1210 
1211 static int
1212 npeinit(struct ifnet *ifp)
1213 {
1214 	struct npe_softc *sc = ifp->if_softc;
1215 	int s;
1216 
1217 	s = splnet();
1218 	npeinit_locked(sc);
1219 	splx(s);
1220 
1221 	return (0);
1222 }
1223 
1224 /*
1225  * Defragment an mbuf chain, returning at most maxfrags separate
1226  * mbufs+clusters.  If this is not possible NULL is returned and
1227  * the original mbuf chain is left in it's present (potentially
1228  * modified) state.  We use two techniques: collapsing consecutive
1229  * mbufs and replacing consecutive mbufs by a cluster.
1230  */
1231 static __inline struct mbuf *
1232 npe_defrag(struct mbuf *m0)
1233 {
1234 	struct mbuf *m;
1235 
1236 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1237 	if (m == NULL)
1238 		return (NULL);
1239 	M_COPY_PKTHDR(m, m0);
1240 
1241 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1242 		MCLGET(m, M_DONTWAIT);
1243 		if ((m->m_flags & M_EXT) == 0) {
1244 			m_freem(m);
1245 			return (NULL);
1246 		}
1247 	}
1248 
1249 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1250 	m_freem(m0);
1251 
1252 	return (m);
1253 }
1254 
1255 /*
1256  * Dequeue packets and place on the h/w transmit queue.
1257  */
1258 static void
1259 npestart(struct ifnet *ifp)
1260 {
1261 	struct npe_softc *sc = ifp->if_softc;
1262 	struct npebuf *npe;
1263 	struct npehwbuf *hw;
1264 	struct mbuf *m, *n;
1265 	bus_dma_segment_t *segs;
1266 	int nseg, len, error, i;
1267 	uint32_t next;
1268 
1269 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1270 		return;
1271 
1272 	while (sc->tx_free != NULL) {
1273 		IFQ_DEQUEUE(&ifp->if_snd, m);
1274 		if (m == NULL)
1275 			break;
1276 		npe = sc->tx_free;
1277 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1278 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1279 		if (error == EFBIG) {
1280 			n = npe_defrag(m);
1281 			if (n == NULL) {
1282 				printf("%s: %s: too many fragments\n",
1283 				    sc->sc_dev.dv_xname, __func__);
1284 				m_freem(m);
1285 				return;	/* XXX? */
1286 			}
1287 			m = n;
1288 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1289 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1290 		}
1291 		if (error != 0) {
1292 			printf("%s: %s: error %u\n",
1293 			    sc->sc_dev.dv_xname, __func__, error);
1294 			m_freem(m);
1295 			return;	/* XXX? */
1296 		}
1297 		sc->tx_free = npe->ix_next;
1298 
1299 		/*
1300 		 * Tap off here if there is a bpf listener.
1301 		 */
1302 		bpf_mtap(ifp, m);
1303 
1304 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1305 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1306 
1307 		npe->ix_m = m;
1308 		hw = npe->ix_hw;
1309 		len = m->m_pkthdr.len;
1310 		nseg = npe->ix_map->dm_nsegs;
1311 		segs = npe->ix_map->dm_segs;
1312 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1313 		for (i = 0; i < nseg; i++) {
1314 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1315 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1316 			hw->ix_ne[i].next = htobe32(next);
1317 
1318 			len = 0;		/* zero for segments > 1 */
1319 			next += sizeof(hw->ix_ne[0]);
1320 		}
1321 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
1322 		/* XXX flush descriptor instead of using uncached memory */
1323 
1324 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1325 		    __func__, sc->tx_qid, npe->ix_neaddr,
1326 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
1327 		/* stick it on the tx q */
1328 		/* XXX add vlan priority */
1329 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1330 
1331 		ifp->if_timer = 5;
1332 	}
1333 	if (sc->tx_free == NULL)
1334 		ifp->if_flags |= IFF_OACTIVE;
1335 }
1336 
1337 static void
1338 npe_stopxmit(struct npe_softc *sc)
1339 {
1340 	struct npedma *dma = &sc->txdma;
1341 	int i;
1342 
1343 	/* XXX qmgr */
1344 	for (i = 0; i < dma->nbuf; i++) {
1345 		struct npebuf *npe = &dma->buf[i];
1346 
1347 		if (npe->ix_m != NULL) {
1348 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1349 			m_freem(npe->ix_m);
1350 			npe->ix_m = NULL;
1351 		}
1352 	}
1353 }
1354 
1355 static void
1356 npe_stoprecv(struct npe_softc *sc)
1357 {
1358 	struct npedma *dma = &sc->rxdma;
1359 	int i;
1360 
1361 	/* XXX qmgr */
1362 	for (i = 0; i < dma->nbuf; i++) {
1363 		struct npebuf *npe = &dma->buf[i];
1364 
1365 		if (npe->ix_m != NULL) {
1366 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1367 			m_freem(npe->ix_m);
1368 			npe->ix_m = NULL;
1369 		}
1370 	}
1371 }
1372 
1373 /*
1374  * Turn off interrupts, and stop the nic.
1375  */
1376 void
1377 npestop(struct ifnet *ifp, int disable)
1378 {
1379 	struct npe_softc *sc = ifp->if_softc;
1380 
1381 	/*  disable transmitter and reciver in the MAC  */
1382  	WR4(sc, NPE_MAC_RX_CNTRL1,
1383 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1384  	WR4(sc, NPE_MAC_TX_CNTRL1,
1385 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1386 
1387 	callout_stop(&sc->sc_tick_ch);
1388 
1389 	npe_stopxmit(sc);
1390 	npe_stoprecv(sc);
1391 	/* XXX go into loopback & drain q's? */
1392 	/* XXX but beware of disabling tx above */
1393 
1394 	/*
1395 	 * The MAC core rx/tx disable may leave the MAC hardware in an
1396 	 * unpredictable state. A hw reset is executed before resetting
1397 	 * all the MAC parameters to a known value.
1398 	 */
1399 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1400 	DELAY(NPE_MAC_RESET_DELAY);
1401 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1402 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1403 
1404 	ifp->if_timer = 0;
1405 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1406 }
1407 
1408 void
1409 npewatchdog(struct ifnet *ifp)
1410 {
1411 	struct npe_softc *sc = ifp->if_softc;
1412 	int s;
1413 
1414 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1415 	s = splnet();
1416 	ifp->if_oerrors++;
1417 	npeinit_locked(sc);
1418 	splx(s);
1419 }
1420 
1421 static int
1422 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1423 {
1424 	struct npe_softc *sc = ifp->if_softc;
1425 	struct ifreq *ifr = (struct ifreq *) data;
1426 	int s, error = 0;
1427 
1428 	s = splnet();
1429 
1430 	switch (cmd) {
1431 	case SIOCSIFMEDIA:
1432 	case SIOCGIFMEDIA:
1433 #if 0 /* not yet */
1434 		/* Flow control requires full-duplex mode. */
1435 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1436 		    (ifr->ifr_media & IFM_FDX) == 0)
1437 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1438 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1439 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1440 				/* We can do both TXPAUSE and RXPAUSE. */
1441 				ifr->ifr_media |=
1442 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1443 			}
1444 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1445 		}
1446 #endif
1447 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1448 		break;
1449 	case SIOCSIFFLAGS:
1450 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
1451 			/*
1452 			 * If interface is marked down and it is running,
1453 			 * then stop and disable it.
1454 			 */
1455 			(*ifp->if_stop)(ifp, 1);
1456 		} else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
1457 			/*
1458 			 * If interface is marked up and it is stopped, then
1459 			 * start it.
1460 			 */
1461 			error = (*ifp->if_init)(ifp);
1462 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1463 			int diff;
1464 
1465 			/* Up (AND RUNNING). */
1466 
1467 			diff = (ifp->if_flags ^ sc->sc_if_flags)
1468 			    & (IFF_PROMISC|IFF_ALLMULTI);
1469 			if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
1470 				/*
1471 				 * If the difference bettween last flag and
1472 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1473 				 * set multicast filter only (don't reset to
1474 				 * prevent link down).
1475 				 */
1476 				npe_setmcast(sc);
1477 			} else {
1478 				/*
1479 				 * Reset the interface to pick up changes in
1480 				 * any other flags that affect the hardware
1481 				 * state.
1482 				 */
1483 				error = (*ifp->if_init)(ifp);
1484 			}
1485 		}
1486 		sc->sc_if_flags = ifp->if_flags;
1487 		break;
1488 	default:
1489 		error = ether_ioctl(ifp, cmd, data);
1490 		if (error == ENETRESET) {
1491 			/*
1492 			 * Multicast list has changed; set the hardware filter
1493 			 * accordingly.
1494 			 */
1495 			npe_setmcast(sc);
1496 			error = 0;
1497 		}
1498 	}
1499 
1500 	npestart(ifp);
1501 
1502 	splx(s);
1503 	return error;
1504 }
1505 
1506 /*
1507  * Setup a traffic class -> rx queue mapping.
1508  */
1509 static int
1510 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1511 {
1512 	int npeid = npeconfig[sc->sc_unit].npeid;
1513 	uint32_t msg[2];
1514 
1515 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1516 	    | classix;
1517 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1518 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1519 }
1520 
1521 /*
1522  * Update and reset the statistics in the NPE.
1523  */
1524 static int
1525 npe_updatestats(struct npe_softc *sc)
1526 {
1527 	uint32_t msg[2];
1528 
1529 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1530 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1531 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
1532 }
1533 
1534 #if 0
1535 /*
1536  * Get the current statistics block.
1537  */
1538 static int
1539 npe_getstats(struct npe_softc *sc)
1540 {
1541 	uint32_t msg[2];
1542 
1543 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1544 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1545 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1546 }
1547 
1548 /*
1549  * Query the image id of the loaded firmware.
1550  */
1551 static uint32_t
1552 npe_getimageid(struct npe_softc *sc)
1553 {
1554 	uint32_t msg[2];
1555 
1556 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1557 	msg[1] = 0;
1558 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1559 }
1560 
1561 /*
1562  * Enable/disable loopback.
1563  */
1564 static int
1565 npe_setloopback(struct npe_softc *sc, int ena)
1566 {
1567 	uint32_t msg[2];
1568 
1569 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1570 	msg[1] = 0;
1571 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1572 }
1573 #endif
1574 
1575 /*
1576  * MII bus support routines.
1577  *
1578  * NB: ixp425 has one PHY per NPE
1579  */
1580 static uint32_t
1581 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1582 {
1583 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1584 	uint32_t v;
1585 
1586 	/* NB: registers are known to be sequential */
1587 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
1588 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1589 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1590 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1591 	return v;
1592 #undef MII_RD4
1593 }
1594 
1595 static void
1596 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1597 {
1598 #define	MII_WR4(sc, reg, v) \
1599 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1600 
1601 	/* NB: registers are known to be sequential */
1602 	MII_WR4(sc, reg+0, cmd & 0xff);
1603 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1604 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1605 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1606 #undef MII_WR4
1607 }
1608 
1609 static int
1610 npe_mii_mdio_wait(struct npe_softc *sc)
1611 {
1612 #define	MAXTRIES	100	/* XXX */
1613 	uint32_t v;
1614 	int i;
1615 
1616 	for (i = 0; i < MAXTRIES; i++) {
1617 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1618 		if ((v & NPE_MII_GO) == 0)
1619 			return 1;
1620 	}
1621 	return 0;		/* NB: timeout */
1622 #undef MAXTRIES
1623 }
1624 
1625 static int
1626 npe_miibus_readreg(struct device *self, int phy, int reg)
1627 {
1628 	struct npe_softc *sc = (void *)self;
1629 	uint32_t v;
1630 
1631 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1632 		return 0xffff;
1633 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1634 	  | NPE_MII_GO;
1635 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1636 	if (npe_mii_mdio_wait(sc))
1637 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1638 	else
1639 		v = 0xffff | NPE_MII_READ_FAIL;
1640 	return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1641 #undef MAXTRIES
1642 }
1643 
1644 static void
1645 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1646 {
1647 	struct npe_softc *sc = (void *)self;
1648 	uint32_t v;
1649 
1650 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1651 		return;
1652 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1653 	  | data | NPE_MII_WRITE
1654 	  | NPE_MII_GO;
1655 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1656 	/* XXX complain about timeout */
1657 	(void) npe_mii_mdio_wait(sc);
1658 }
1659 
1660 static void
1661 npe_miibus_statchg(struct device *self)
1662 {
1663 	struct npe_softc *sc = (void *)self;
1664 	uint32_t tx1, rx1;
1665 	uint32_t randoff;
1666 
1667 	/* sync MAC duplex state */
1668 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1669 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1670 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1671 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1672 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1673 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1674 	} else {
1675 		struct timeval now;
1676 		getmicrotime(&now);
1677 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1678 		    & 0x7f;
1679 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1680 		    + randoff);
1681 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
1682 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1683 	}
1684 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1685 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1686 }
1687