xref: /netbsd/sys/arch/atari/dev/zs.c (revision c4a72b64)
1 /*	$NetBSD: zs.c,v 1.39 2002/10/23 09:10:54 jdolecek Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
86 
87 #define splzs	spl5
88 
89 /*
90  * Software state per found chip.
91  */
92 struct zs_softc {
93     struct	device		zi_dev;    /* base device		  */
94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96 };
97 
98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99 /*
100  * Define the registers for a closed port
101  */
102 static u_char zs_init_regs[16] = {
103 /*  0 */	0,
104 /*  1 */	0,
105 /*  2 */	0x60,
106 /*  3 */	0,
107 /*  4 */	0,
108 /*  5 */	0,
109 /*  6 */	0,
110 /*  7 */	0,
111 /*  8 */	0,
112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */	ZSWR10_NRZ,
114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */	0,
116 /* 13 */	0,
117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */	0
119 };
120 
121 /*
122  * Define the machine dependant clock frequencies
123  * If BRgen feeds sender/receiver we always use a
124  * divisor 16, therefor the division by 16 can as
125  * well be done here.
126  */
127 static u_long zs_freqs_tt[] = {
128 	/*
129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 	 * which is set to 307.2KHz during initialisation
131 	 * and never changed afterwards.
132 	 */
133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
135 	3672000,	/* RTxCA, from PCLK4		*/
136 	      0,	/* TRxCA, external		*/
137 
138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
141 	2457600		/* TRxCB, from BCLK		*/
142 };
143 
144 static u_long zs_freqs_falcon[] = {
145 	/*
146 	 * Atari Falcon, XXX no specs available, this might be wrong
147 	 */
148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
150 	3672000,	/* RTxCA, ???			*/
151 	      0,	/* TRxCA, external		*/
152 
153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
155 	3672000,	/* RTxCB, ???			*/
156 	2457600		/* TRxCB, ???			*/
157 };
158 
159 static u_long zs_freqs_hades[] = {
160 	/*
161 	 * XXX: Channel-A unchecked!!!!!
162 	 */
163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
165 	3672000,	/* RTxCA, from PCLK4		*/
166 	      0,	/* TRxCA, external		*/
167 
168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
170 	3768800,	/* RTxCB, 3.7688MHz		*/
171 	3768800		/* TRxCB, 3.7688MHz		*/
172 };
173 
174 static u_long zs_freqs_generic[] = {
175 	/*
176 	 * other machines, assume only PCLK is available
177 	 */
178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179 	      0,	/* BRgen, RTxCA, divisor 16	*/
180 	      0,	/* RTxCA, unknown		*/
181 	      0,	/* TRxCA, unknown		*/
182 
183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184 	      0,	/* BRgen, RTxCB, divisor 16	*/
185 	      0,	/* RTxCB, unknown		*/
186 	      0		/* TRxCB, unknown		*/
187 };
188 static u_long *zs_frequencies;
189 
190 /* Definition of the driver for autoconfig. */
191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
192 static void	zsattach __P((struct device *, struct device *, void *));
193 
194 CFATTACH_DECL(zs, sizeof(struct zs_softc),
195     zsmatch, zsattach, NULL, NULL);
196 
197 extern struct cfdriver zs_cd;
198 
199 /* {b,c}devsw[] function prototypes */
200 dev_type_open(zsopen);
201 dev_type_close(zsclose);
202 dev_type_read(zsread);
203 dev_type_write(zswrite);
204 dev_type_ioctl(zsioctl);
205 dev_type_stop(zsstop);
206 dev_type_tty(zstty);
207 dev_type_poll(zspoll);
208 
209 const struct cdevsw zs_cdevsw = {
210 	zsopen, zsclose, zsread, zswrite, zsioctl,
211 	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
212 };
213 
214 /* Interrupt handlers. */
215 int		zshard __P((long));
216 static int	zssoft __P((long));
217 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
218 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
219 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
220 
221 static struct zs_chanstate *zslist;
222 
223 /* Routines called from other code. */
224 static void	zsstart __P((struct tty *));
225 
226 /* Routines purely local to this driver. */
227 static void	zsoverrun __P((int, long *, char *));
228 static int	zsparam __P((struct tty *, struct termios *));
229 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
230 static int	zs_modem __P((struct zs_chanstate *, int, int));
231 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
232 static void	zs_shutdown __P((struct zs_chanstate *));
233 
234 static int zsshortcuts;	/* number of "shortcut" software interrupts */
235 
236 static int
237 zsmatch(pdp, cfp, auxp)
238 struct device	*pdp;
239 struct cfdata	*cfp;
240 void		*auxp;
241 {
242 	static int	zs_matched = 0;
243 
244 	if(strcmp("zs", auxp) || zs_matched)
245 		return(0);
246 	zs_matched = 1;
247 	return(1);
248 }
249 
250 /*
251  * Attach a found zs.
252  */
253 static void
254 zsattach(parent, dev, aux)
255 struct device	*parent;
256 struct device	*dev;
257 void		*aux;
258 {
259 	register struct zs_softc		*zi;
260 	register struct zs_chanstate		*cs;
261 	register volatile struct zsdevice	*addr;
262 		 char				tmp;
263 
264 	addr      = (struct zsdevice *)AD_SCC;
265 	zi        = (struct zs_softc *)dev;
266 	zi->zi_zs = addr;
267 	cs        = zi->zi_cs;
268 
269 	/*
270 	 * Get the command register into a known state.
271 	 */
272 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
273 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
274 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
275 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
276 
277 	/*
278 	 * Do a hardware reset.
279 	 */
280 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
281 	delay(50000);	/*enough ? */
282 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
283 
284 	/*
285 	 * Initialize both channels
286 	 */
287 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
288 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
289 
290 	if(machineid & ATARI_TT) {
291 		/*
292 		 * ininitialise TT-MFP timer C: 307200Hz
293 		 * timer C and D share one control register:
294 		 *	bits 0-2 control timer D
295 		 *	bits 4-6 control timer C
296 		 */
297 		int cr = MFP2->mf_tcdcr & 7;
298 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
299 		MFP2->mf_tcdr  = 1;		/* counter 1     */
300 		cr |= T_Q004 << 4;		/* divisor 4     */
301 		MFP2->mf_tcdcr = cr;		/* start timer C */
302 		/*
303 		 * enable scc related interrupts
304 		 */
305 		SCU->vme_mask |= SCU_SCC;
306 
307 		zs_frequencies = zs_freqs_tt;
308 	} else if (machineid & ATARI_FALCON) {
309 		zs_frequencies = zs_freqs_falcon;
310 	} else if (machineid & ATARI_HADES) {
311 		zs_frequencies = zs_freqs_hades;
312 	} else {
313 		zs_frequencies = zs_freqs_generic;
314 	}
315 
316 	/* link into interrupt list with order (A,B) (B=A+1) */
317 	cs[0].cs_next = &cs[1];
318 	cs[1].cs_next = zslist;
319 	zslist        = cs;
320 
321 	cs->cs_unit  = 0;
322 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
323 	cs++;
324 	cs->cs_unit  = 1;
325 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
326 
327 	printf(": serial2 on channel a and modem2 on channel b\n");
328 }
329 
330 /*
331  * Open a zs serial port.
332  */
333 int
334 zsopen(dev, flags, mode, p)
335 dev_t		dev;
336 int		flags;
337 int		mode;
338 struct proc	*p;
339 {
340 	register struct tty		*tp;
341 	register struct zs_chanstate	*cs;
342 		 struct zs_softc	*zi;
343 		 int			unit = ZS_UNIT(dev);
344 		 int			zs = unit >> 1;
345 		 int			error, s;
346 
347 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
348 		return (ENXIO);
349 	cs = &zi->zi_cs[unit & 1];
350 
351 	/*
352 	 * When port A (ser02) is selected on the TT, make sure
353 	 * the port is enabled.
354 	 */
355 	if((machineid & ATARI_TT) && !(unit & 1))
356 		ym2149_ser2(1);
357 
358 	if (cs->cs_rbuf == NULL) {
359 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
360 								   M_WAITOK);
361 	}
362 
363 	tp = cs->cs_ttyp;
364 	if(tp == NULL) {
365 		cs->cs_ttyp = tp = ttymalloc();
366 		tty_attach(tp);
367 		tp->t_dev   = dev;
368 		tp->t_oproc = zsstart;
369 		tp->t_param = zsparam;
370 	}
371 
372 	if ((tp->t_state & TS_ISOPEN) &&
373 	    (tp->t_state & TS_XCLUDE) &&
374 	    p->p_ucred->cr_uid != 0)
375 		return (EBUSY);
376 
377 	s  = spltty();
378 
379 	/*
380 	 * Do the following iff this is a first open.
381 	 */
382 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
383 		if(tp->t_ispeed == 0) {
384 			tp->t_iflag = TTYDEF_IFLAG;
385 			tp->t_oflag = TTYDEF_OFLAG;
386 			tp->t_cflag = TTYDEF_CFLAG;
387 			tp->t_lflag = TTYDEF_LFLAG;
388 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
389 		}
390 		ttychars(tp);
391 		ttsetwater(tp);
392 
393 		(void)zsparam(tp, &tp->t_termios);
394 
395 		/*
396 		 * Turn on DTR.  We must always do this, even if carrier is not
397 		 * present, because otherwise we'd have to use TIOCSDTR
398 		 * immediately after setting CLOCAL, which applications do not
399 		 * expect.  We always assert DTR while the device is open
400 		 * unless explicitly requested to deassert it.
401 		 */
402 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
403 		/* May never get a status intr. if DCD already on. -gwr */
404 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
405 			tp->t_state |= TS_CARR_ON;
406 		if(cs->cs_softcar)
407 			tp->t_state |= TS_CARR_ON;
408 	}
409 
410 	splx(s);
411 
412 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
413 	if (error)
414 		goto bad;
415 
416 	error = tp->t_linesw->l_open(dev, tp);
417 	if(error)
418 		goto bad;
419 	return (0);
420 
421 bad:
422 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
423 		/*
424 		 * We failed to open the device, and nobody else had it opened.
425 		 * Clean up the state as appropriate.
426 		 */
427 		zs_shutdown(cs);
428 	}
429 	return(error);
430 }
431 
432 /*
433  * Close a zs serial port.
434  */
435 int
436 zsclose(dev, flags, mode, p)
437 dev_t		dev;
438 int		flags;
439 int		mode;
440 struct proc	*p;
441 {
442 	register struct zs_chanstate	*cs;
443 	register struct tty		*tp;
444 		 struct zs_softc	*zi;
445 		 int			unit = ZS_UNIT(dev);
446 
447 	zi = zs_cd.cd_devs[unit >> 1];
448 	cs = &zi->zi_cs[unit & 1];
449 	tp = cs->cs_ttyp;
450 
451 	tp->t_linesw->l_close(tp, flags);
452 	ttyclose(tp);
453 
454 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
455 		/*
456 		 * Although we got a last close, the device may still be in
457 		 * use; e.g. if this was the dialout node, and there are still
458 		 * processes waiting for carrier on the non-dialout node.
459 		 */
460 		zs_shutdown(cs);
461 	}
462 	return (0);
463 }
464 
465 /*
466  * Read/write zs serial port.
467  */
468 int
469 zsread(dev, uio, flags)
470 dev_t		dev;
471 struct uio	*uio;
472 int		flags;
473 {
474 	register struct zs_chanstate	*cs;
475 	register struct zs_softc	*zi;
476 	register struct tty		*tp;
477 		 int			unit;
478 
479 	unit = ZS_UNIT(dev);
480 	zi   = zs_cd.cd_devs[unit >> 1];
481 	cs   = &zi->zi_cs[unit & 1];
482 	tp   = cs->cs_ttyp;
483 
484 	return(tp->t_linesw->l_read(tp, uio, flags));
485 }
486 
487 int
488 zswrite(dev, uio, flags)
489 dev_t		dev;
490 struct uio	*uio;
491 int		flags;
492 {
493 	register struct zs_chanstate	*cs;
494 	register struct zs_softc	*zi;
495 	register struct tty		*tp;
496 		 int			unit;
497 
498 	unit = ZS_UNIT(dev);
499 	zi   = zs_cd.cd_devs[unit >> 1];
500 	cs   = &zi->zi_cs[unit & 1];
501 	tp   = cs->cs_ttyp;
502 
503 	return(tp->t_linesw->l_write(tp, uio, flags));
504 }
505 
506 int
507 zspoll(dev, events, p)
508 dev_t		dev;
509 int		events;
510 struct proc	*p;
511 {
512 	register struct zs_chanstate	*cs;
513 	register struct zs_softc	*zi;
514 	register struct tty		*tp;
515 		 int			unit;
516 
517 	unit = ZS_UNIT(dev);
518 	zi   = zs_cd.cd_devs[unit >> 1];
519 	cs   = &zi->zi_cs[unit & 1];
520 	tp   = cs->cs_ttyp;
521 
522 	return ((*tp->t_linesw->l_poll)(tp, events, p));
523 }
524 
525 struct tty *
526 zstty(dev)
527 dev_t	dev;
528 {
529 	register struct zs_chanstate	*cs;
530 	register struct zs_softc	*zi;
531 		 int			unit;
532 
533 	unit = ZS_UNIT(dev);
534 	zi   = zs_cd.cd_devs[unit >> 1];
535 	cs   = &zi->zi_cs[unit & 1];
536 	return(cs->cs_ttyp);
537 }
538 
539 /*
540  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
541  * channels are kept in (A,B) pairs.
542  *
543  * Do just a little, then get out; set a software interrupt if more
544  * work is needed.
545  *
546  * We deliberately ignore the vectoring Zilog gives us, and match up
547  * only the number of `reset interrupt under service' operations, not
548  * the order.
549  */
550 
551 int
552 zshard(sr)
553 long sr;
554 {
555 	register struct zs_chanstate	*a;
556 #define	b (a + 1)
557 	register volatile struct zschan *zc;
558 	register int			rr3, intflags = 0, v, i;
559 
560 	do {
561 	    intflags &= ~4;
562 	    for(a = zslist; a != NULL; a = b->cs_next) {
563 		rr3 = ZS_READ(a->cs_zc, 3);
564 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
565 			intflags |= 4|2;
566 			zc = a->cs_zc;
567 			i  = a->cs_rbput;
568 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
569 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
570 				intflags |= 1;
571 			}
572 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
573 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 				intflags |= 1;
575 			}
576 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
577 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578 				intflags |= 1;
579 			}
580 			a->cs_rbput = i;
581 		}
582 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
583 			intflags |= 4|2;
584 			zc = b->cs_zc;
585 			i  = b->cs_rbput;
586 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
587 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
588 				intflags |= 1;
589 			}
590 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
591 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 				intflags |= 1;
593 			}
594 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
595 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596 				intflags |= 1;
597 			}
598 			b->cs_rbput = i;
599 		}
600 	    }
601 	} while(intflags & 4);
602 #undef b
603 
604 	if(intflags & 1) {
605 		if(BASEPRI(sr)) {
606 			spl1();
607 			zsshortcuts++;
608 			return(zssoft(sr));
609 		}
610 		else if(!cb_scheduled) {
611 			cb_scheduled++;
612 			add_sicallback((si_farg)zssoft, 0, 0);
613 		}
614 	}
615 	return(intflags & 2);
616 }
617 
618 static int
619 zsrint(cs, zc)
620 register struct zs_chanstate	*cs;
621 register volatile struct zschan	*zc;
622 {
623 	register int c;
624 
625 	/*
626 	 * First read the status, because read of the received char
627 	 * destroy the status of this char.
628 	 */
629 	c = ZS_READ(zc, 1);
630 	c |= (zc->zc_data << 8);
631 
632 	/* clear receive error & interrupt condition */
633 	zc->zc_csr = ZSWR0_RESET_ERRORS;
634 	zc->zc_csr = ZSWR0_CLR_INTR;
635 
636 	return(ZRING_MAKE(ZRING_RINT, c));
637 }
638 
639 static int
640 zsxint(cs, zc)
641 register struct zs_chanstate	*cs;
642 register volatile struct zschan	*zc;
643 {
644 	register int i = cs->cs_tbc;
645 
646 	if(i == 0) {
647 		zc->zc_csr = ZSWR0_RESET_TXINT;
648 		zc->zc_csr = ZSWR0_CLR_INTR;
649 		return(ZRING_MAKE(ZRING_XINT, 0));
650 	}
651 	cs->cs_tbc = i - 1;
652 	zc->zc_data = *cs->cs_tba++;
653 	zc->zc_csr = ZSWR0_CLR_INTR;
654 	return (0);
655 }
656 
657 static int
658 zssint(cs, zc)
659 register struct zs_chanstate	*cs;
660 register volatile struct zschan	*zc;
661 {
662 	register int rr0;
663 
664 	rr0 = zc->zc_csr;
665 	zc->zc_csr = ZSWR0_RESET_STATUS;
666 	zc->zc_csr = ZSWR0_CLR_INTR;
667 	/*
668 	 * The chip's hardware flow control is, as noted in zsreg.h,
669 	 * busted---if the DCD line goes low the chip shuts off the
670 	 * receiver (!).  If we want hardware CTS flow control but do
671 	 * not have it, and carrier is now on, turn HFC on; if we have
672 	 * HFC now but carrier has gone low, turn it off.
673 	 */
674 	if(rr0 & ZSRR0_DCD) {
675 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
676 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
677 			cs->cs_creg[3] |= ZSWR3_HFC;
678 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
679 		}
680 	}
681 	else {
682 		if (cs->cs_creg[3] & ZSWR3_HFC) {
683 			cs->cs_creg[3] &= ~ZSWR3_HFC;
684 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
685 		}
686 	}
687 	return(ZRING_MAKE(ZRING_SINT, rr0));
688 }
689 
690 /*
691  * Print out a ring or fifo overrun error message.
692  */
693 static void
694 zsoverrun(unit, ptime, what)
695 int	unit;
696 long	*ptime;
697 char	*what;
698 {
699 
700 	if(*ptime != time.tv_sec) {
701 		*ptime = time.tv_sec;
702 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
703 		    (unit & 1) + 'a', what);
704 	}
705 }
706 
707 /*
708  * ZS software interrupt.  Scan all channels for deferred interrupts.
709  */
710 int
711 zssoft(sr)
712 long sr;
713 {
714     register struct zs_chanstate	*cs;
715     register volatile struct zschan	*zc;
716     register struct linesw		*line;
717     register struct tty			*tp;
718     register int			get, n, c, cc, unit, s;
719  	     int			retval = 0;
720 
721     cb_scheduled = 0;
722     s = spltty();
723     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
724 	get = cs->cs_rbget;
725 again:
726 	n = cs->cs_rbput;	/* atomic			*/
727 	if(get == n)		/* nothing more on this line	*/
728 		continue;
729 	retval = 1;
730 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
731 	zc     = cs->cs_zc;
732 	tp     = cs->cs_ttyp;
733 	line   = tp->t_linesw;
734 	/*
735 	 * Compute the number of interrupts in the receive ring.
736 	 * If the count is overlarge, we lost some events, and
737 	 * must advance to the first valid one.  It may get
738 	 * overwritten if more data are arriving, but this is
739 	 * too expensive to check and gains nothing (we already
740 	 * lost out; all we can do at this point is trade one
741 	 * kind of loss for another).
742 	 */
743 	n -= get;
744 	if(n > ZLRB_RING_SIZE) {
745 		zsoverrun(unit, &cs->cs_rotime, "ring");
746 		get += n - ZLRB_RING_SIZE;
747 		n    = ZLRB_RING_SIZE;
748 	}
749 	while(--n >= 0) {
750 		/* race to keep ahead of incoming interrupts */
751 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
752 		switch (ZRING_TYPE(c)) {
753 
754 		case ZRING_RINT:
755 			c = ZRING_VALUE(c);
756 			if(c & ZSRR1_DO)
757 				zsoverrun(unit, &cs->cs_fotime, "fifo");
758 			cc = c >> 8;
759 			if(c & ZSRR1_FE)
760 				cc |= TTY_FE;
761 			if(c & ZSRR1_PE)
762 				cc |= TTY_PE;
763 			line->l_rint(cc, tp);
764 			break;
765 
766 		case ZRING_XINT:
767 			/*
768 			 * Transmit done: change registers and resume,
769 			 * or clear BUSY.
770 			 */
771 			if(cs->cs_heldchange) {
772 				int sps;
773 
774 				sps = splzs();
775 				c = zc->zc_csr;
776 				if((c & ZSRR0_DCD) == 0)
777 					cs->cs_preg[3] &= ~ZSWR3_HFC;
778 				bcopy((caddr_t)cs->cs_preg,
779 				    (caddr_t)cs->cs_creg, 16);
780 				zs_loadchannelregs(zc, cs->cs_creg);
781 				splx(sps);
782 				cs->cs_heldchange = 0;
783 				if(cs->cs_heldtbc
784 					&& (tp->t_state & TS_TTSTOP) == 0) {
785 					cs->cs_tbc = cs->cs_heldtbc - 1;
786 					zc->zc_data = *cs->cs_tba++;
787 					goto again;
788 				}
789 			}
790 			tp->t_state &= ~TS_BUSY;
791 			if(tp->t_state & TS_FLUSH)
792 				tp->t_state &= ~TS_FLUSH;
793 			else ndflush(&tp->t_outq,cs->cs_tba
794 						- (caddr_t)tp->t_outq.c_cf);
795 			line->l_start(tp);
796 			break;
797 
798 		case ZRING_SINT:
799 			/*
800 			 * Status line change.  HFC bit is run in
801 			 * hardware interrupt, to avoid locking
802 			 * at splzs here.
803 			 */
804 			c = ZRING_VALUE(c);
805 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
806 				cc = (c & ZSRR0_DCD) != 0;
807 				if(line->l_modem(tp, cc) == 0)
808 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
809 							cc ? DMBIS : DMBIC);
810 			}
811 			cs->cs_rr0 = c;
812 			break;
813 
814 		default:
815 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
816 			    unit >> 1, (unit & 1) + 'a', c);
817 			break;
818 		}
819 	}
820 	cs->cs_rbget = get;
821 	goto again;
822     }
823     splx(s);
824     return (retval);
825 }
826 
827 int
828 zsioctl(dev, cmd, data, flag, p)
829 dev_t		dev;
830 u_long		cmd;
831 caddr_t		data;
832 int		flag;
833 struct proc	*p;
834 {
835 		 int			unit = ZS_UNIT(dev);
836 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
837 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
838 	register int			error, s;
839 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
840 
841 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
842 	if(error != EPASSTHROUGH)
843 		return(error);
844 
845 	error = ttioctl(tp, cmd, data, flag, p);
846 	if(error !=EPASSTHROUGH)
847 		return (error);
848 
849 	switch (cmd) {
850 	case TIOCSBRK:
851 		s = splzs();
852 		cs->cs_preg[5] |= ZSWR5_BREAK;
853 		cs->cs_creg[5] |= ZSWR5_BREAK;
854 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
855 		splx(s);
856 		break;
857 	case TIOCCBRK:
858 		s = splzs();
859 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
860 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
861 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
862 		splx(s);
863 		break;
864 	case TIOCGFLAGS: {
865 		int bits = 0;
866 
867 		if(cs->cs_softcar)
868 			bits |= TIOCFLAG_SOFTCAR;
869 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
870 			bits |= TIOCFLAG_CLOCAL;
871 		if(cs->cs_creg[3] & ZSWR3_HFC)
872 			bits |= TIOCFLAG_CRTSCTS;
873 		*(int *)data = bits;
874 		break;
875 	}
876 	case TIOCSFLAGS: {
877 		int userbits = 0;
878 
879 		error = suser(p->p_ucred, &p->p_acflag);
880 		if(error != 0)
881 			return (EPERM);
882 
883 		userbits = *(int *)data;
884 
885 		/*
886 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
887 		 # defaulting to software flow control.
888 		 */
889 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
890 			return(EINVAL);
891 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
892 			return(ENODEV);
893 
894 		s = splzs();
895 		if((userbits & TIOCFLAG_SOFTCAR)) {
896 			cs->cs_softcar = 1;	/* turn on softcar */
897 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
898 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
899 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
900 		}
901 		else if(userbits & TIOCFLAG_CLOCAL) {
902 			cs->cs_softcar = 0; 	/* turn off softcar */
903 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
904 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
905 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
906 			tp->t_termios.c_cflag |= CLOCAL;
907 		}
908 		if(userbits & TIOCFLAG_CRTSCTS) {
909 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
910 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
911 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
912 			cs->cs_preg[3] |= ZSWR3_HFC;
913 			cs->cs_creg[3] |= ZSWR3_HFC;
914 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
915 			tp->t_termios.c_cflag |= CRTSCTS;
916 		}
917 		else {
918 			/* no mdmbuf, so we must want software flow control */
919 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
920 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
921 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
922 			cs->cs_preg[3] &= ~ZSWR3_HFC;
923 			cs->cs_creg[3] &= ~ZSWR3_HFC;
924 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
925 			tp->t_termios.c_cflag &= ~CRTSCTS;
926 		}
927 		splx(s);
928 		break;
929 	}
930 	case TIOCSDTR:
931 		zs_modem(cs, ZSWR5_DTR, DMBIS);
932 		break;
933 	case TIOCCDTR:
934 		zs_modem(cs, ZSWR5_DTR, DMBIC);
935 		break;
936 	case TIOCMGET:
937 		zs_modem(cs, 0, DMGET);
938 		break;
939 	case TIOCMSET:
940 	case TIOCMBIS:
941 	case TIOCMBIC:
942 	default:
943 		return (EPASSTHROUGH);
944 	}
945 	return (0);
946 }
947 
948 /*
949  * Start or restart transmission.
950  */
951 static void
952 zsstart(tp)
953 register struct tty *tp;
954 {
955 	register struct zs_chanstate	*cs;
956 	register int			s, nch;
957 		 int			unit = ZS_UNIT(tp->t_dev);
958 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
959 
960 	cs = &zi->zi_cs[unit & 1];
961 	s  = spltty();
962 
963 	/*
964 	 * If currently active or delaying, no need to do anything.
965 	 */
966 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
967 		goto out;
968 
969 	/*
970 	 * If there are sleepers, and output has drained below low
971 	 * water mark, awaken.
972 	 */
973 	if(tp->t_outq.c_cc <= tp->t_lowat) {
974 		if(tp->t_state & TS_ASLEEP) {
975 			tp->t_state &= ~TS_ASLEEP;
976 			wakeup((caddr_t)&tp->t_outq);
977 		}
978 		selwakeup(&tp->t_wsel);
979 	}
980 
981 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
982 	if(nch) {
983 		register char *p = tp->t_outq.c_cf;
984 
985 		/* mark busy, enable tx done interrupts, & send first byte */
986 		tp->t_state |= TS_BUSY;
987 		(void) splzs();
988 		cs->cs_preg[1] |= ZSWR1_TIE;
989 		cs->cs_creg[1] |= ZSWR1_TIE;
990 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
991 		cs->cs_zc->zc_data = *p;
992 		cs->cs_tba = p + 1;
993 		cs->cs_tbc = nch - 1;
994 	} else {
995 		/*
996 		 * Nothing to send, turn off transmit done interrupts.
997 		 * This is useful if something is doing polled output.
998 		 */
999 		(void) splzs();
1000 		cs->cs_preg[1] &= ~ZSWR1_TIE;
1001 		cs->cs_creg[1] &= ~ZSWR1_TIE;
1002 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1003 	}
1004 out:
1005 	splx(s);
1006 }
1007 
1008 /*
1009  * Stop output, e.g., for ^S or output flush.
1010  */
1011 void
1012 zsstop(tp, flag)
1013 register struct tty	*tp;
1014 	 int		flag;
1015 {
1016 	register struct zs_chanstate	*cs;
1017 	register int			s, unit = ZS_UNIT(tp->t_dev);
1018 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1019 
1020 	cs = &zi->zi_cs[unit & 1];
1021 	s  = splzs();
1022 	if(tp->t_state & TS_BUSY) {
1023 		/*
1024 		 * Device is transmitting; must stop it.
1025 		 */
1026 		cs->cs_tbc = 0;
1027 		if ((tp->t_state & TS_TTSTOP) == 0)
1028 			tp->t_state |= TS_FLUSH;
1029 	}
1030 	splx(s);
1031 }
1032 
1033 static void
1034 zs_shutdown(cs)
1035 	struct zs_chanstate	*cs;
1036 {
1037 	struct tty	*tp = cs->cs_ttyp;
1038 	int		s;
1039 
1040 	s = splzs();
1041 
1042 	/*
1043 	 * Hang up if necessary.  Wait a bit, so the other side has time to
1044 	 * notice even if we immediately open the port again.
1045 	 */
1046 	if(tp->t_cflag & HUPCL) {
1047 		zs_modem(cs, 0, DMSET);
1048 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1049 	}
1050 
1051 	/* Clear any break condition set with TIOCSBRK. */
1052 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1053 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1054 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1055 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1056 	}
1057 
1058 	/*
1059 	 * Drop all lines and cancel interrupts
1060 	 */
1061 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1062 	splx(s);
1063 }
1064 
1065 /*
1066  * Set ZS tty parameters from termios.
1067  *
1068  * This routine makes use of the fact that only registers
1069  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1070  */
1071 static int
1072 zsparam(tp, t)
1073 register struct tty	*tp;
1074 register struct termios	*t;
1075 {
1076 		 int			unit = ZS_UNIT(tp->t_dev);
1077 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1078 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1079 		 int			cdiv, clkm, brgm, tcon;
1080 	register int			tmp, tmp5, cflag, s;
1081 
1082 	tmp  = t->c_ospeed;
1083 	tmp5 = t->c_ispeed;
1084 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1085 		return(EINVAL);
1086 	if(tmp == 0) {
1087 		/* stty 0 => drop DTR and RTS */
1088 		zs_modem(cs, 0, DMSET);
1089 		return(0);
1090 	}
1091 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1092 	if (tmp < 0)
1093 		return(EINVAL);
1094 	tp->t_ispeed = tp->t_ospeed = tmp;
1095 
1096 	cflag = tp->t_cflag = t->c_cflag;
1097 	if (cflag & CSTOPB)
1098 		cdiv |= ZSWR4_TWOSB;
1099 	else
1100 		cdiv |= ZSWR4_ONESB;
1101 	if (!(cflag & PARODD))
1102 		cdiv |= ZSWR4_EVENP;
1103 	if (cflag & PARENB)
1104 		cdiv |= ZSWR4_PARENB;
1105 
1106 	switch(cflag & CSIZE) {
1107 	case CS5:
1108 		tmp  = ZSWR3_RX_5;
1109 		tmp5 = ZSWR5_TX_5;
1110 		break;
1111 	case CS6:
1112 		tmp  = ZSWR3_RX_6;
1113 		tmp5 = ZSWR5_TX_6;
1114 		break;
1115 	case CS7:
1116 		tmp  = ZSWR3_RX_7;
1117 		tmp5 = ZSWR5_TX_7;
1118 		break;
1119 	case CS8:
1120 	default:
1121 		tmp  = ZSWR3_RX_8;
1122 		tmp5 = ZSWR5_TX_8;
1123 		break;
1124 	}
1125 	tmp  |= ZSWR3_RX_ENABLE;
1126 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1127 
1128 	/*
1129 	 * Block interrupts so that state will not
1130 	 * be altered until we are done setting it up.
1131 	 */
1132 	s = splzs();
1133 	cs->cs_preg[4]  = cdiv;
1134 	cs->cs_preg[11] = clkm;
1135 	cs->cs_preg[12] = tcon;
1136 	cs->cs_preg[13] = tcon >> 8;
1137 	cs->cs_preg[14] = brgm;
1138 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1139 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1140 	cs->cs_preg[10] = ZSWR10_NRZ;
1141 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1142 
1143 	/*
1144 	 * Output hardware flow control on the chip is horrendous: if
1145 	 * carrier detect drops, the receiver is disabled.  Hence we
1146 	 * can only do this when the carrier is on.
1147 	 */
1148 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1149 		tmp |= ZSWR3_HFC;
1150 	cs->cs_preg[3] = tmp;
1151 	cs->cs_preg[5] = tmp5;
1152 
1153 	/*
1154 	 * If nothing is being transmitted, set up new current values,
1155 	 * else mark them as pending.
1156 	 */
1157 	if(cs->cs_heldchange == 0) {
1158 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1159 			cs->cs_heldtbc = cs->cs_tbc;
1160 			cs->cs_tbc = 0;
1161 			cs->cs_heldchange = 1;
1162 		} else {
1163 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1164 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1165 		}
1166 	}
1167 	splx(s);
1168 	return (0);
1169 }
1170 
1171 /*
1172  * search for the best matching baudrate
1173  */
1174 static int
1175 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1176 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1177 {
1178 	int	bestdiff, bestbps, source;
1179 
1180 	bestdiff = bestbps = 0;
1181 	unit = (unit & 1) << 2;
1182 	for (source = 0; source < 4; ++source) {
1183 		long	freq = zs_frequencies[unit + source];
1184 		int	diff, bps, div, clkm, brgm, tcon;
1185 
1186 		bps = div = clkm = brgm = tcon = 0;
1187 		switch (source) {
1188 			case 0:	/* BRgen, PCLK */
1189 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1190 				break;
1191 			case 1:	/* BRgen, RTxC */
1192 				brgm = ZSWR14_BAUD_ENA;
1193 				break;
1194 			case 2: /* RTxC */
1195 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1196 				break;
1197 			case 3: /* TRxC */
1198 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1199 				break;
1200 		}
1201 		switch (source) {
1202 			case 0:
1203 			case 1:
1204 				div  = ZSWR4_CLK_X16;
1205 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1206 				tcon = BPS_TO_TCONST(freq, wanted);
1207 				if (tcon < 0)
1208 					tcon = 0;
1209 				bps  = TCONST_TO_BPS(freq, tcon);
1210 				break;
1211 			case 2:
1212 			case 3:
1213 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1214 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1215 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1216 
1217 				if (d1 < d2 && d1 < d3) {
1218 					div = ZSWR4_CLK_X16;
1219 					bps = b1;
1220 				} else if (d2 < d3 && d2 < d1) {
1221 					div = ZSWR4_CLK_X32;
1222 					bps = b2;
1223 				} else {
1224 					div = ZSWR4_CLK_X64;
1225 					bps = b3;
1226 				}
1227 				brgm = tcon = 0;
1228 				break;
1229 			}
1230 		}
1231 		diff = abs(bps - wanted);
1232 		if (!source || diff < bestdiff) {
1233 			*divisor   = div;
1234 			*clockmode = clkm;
1235 			*brgenmode = brgm;
1236 			*timeconst = tcon;
1237 			bestbps    = bps;
1238 			bestdiff   = diff;
1239 			if (diff == 0)
1240 				break;
1241 		}
1242 	}
1243 	/* Allow deviations upto 5% */
1244 	if (20 * bestdiff > wanted)
1245 		return -1;
1246 	return bestbps;
1247 }
1248 
1249 /*
1250  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1251  * in transmission, the change is deferred.
1252  */
1253 static int
1254 zs_modem(cs, bits, how)
1255 struct zs_chanstate	*cs;
1256 int			bits, how;
1257 {
1258 	int s, mbits;
1259 
1260 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1261 
1262 	s = splzs();
1263 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1264 
1265 	switch(how) {
1266 		case DMSET:
1267 				mbits  = bits;
1268 				break;
1269 		case DMBIS:
1270 				mbits |= bits;
1271 				break;
1272 		case DMBIC:
1273 				mbits &= ~bits;
1274 				break;
1275 		case DMGET:
1276 				splx(s);
1277 				return(mbits);
1278 	}
1279 
1280 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1281 	if(cs->cs_heldchange == 0) {
1282 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1283 			cs->cs_heldtbc = cs->cs_tbc;
1284 			cs->cs_tbc = 0;
1285 			cs->cs_heldchange = 1;
1286 		}
1287 		else {
1288 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1289 		}
1290 	}
1291 	splx(s);
1292 	return(0);
1293 }
1294 
1295 /*
1296  * Write the given register set to the given zs channel in the proper order.
1297  * The channel must not be transmitting at the time.  The receiver will
1298  * be disabled for the time it takes to write all the registers.
1299  */
1300 static void
1301 zs_loadchannelregs(zc, reg)
1302 volatile struct zschan	*zc;
1303 u_char			*reg;
1304 {
1305 	int i;
1306 
1307 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1308 	i = zc->zc_data;		/* drain fifo */
1309 	i = zc->zc_data;
1310 	i = zc->zc_data;
1311 	ZS_WRITE(zc,  4, reg[4]);
1312 	ZS_WRITE(zc, 10, reg[10]);
1313 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1314 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1315 	ZS_WRITE(zc,  1, reg[1]);
1316 	ZS_WRITE(zc,  9, reg[9]);
1317 	ZS_WRITE(zc, 11, reg[11]);
1318 	ZS_WRITE(zc, 12, reg[12]);
1319 	ZS_WRITE(zc, 13, reg[13]);
1320 	ZS_WRITE(zc, 14, reg[14]);
1321 	ZS_WRITE(zc, 15, reg[15]);
1322 	ZS_WRITE(zc,  3, reg[3]);
1323 	ZS_WRITE(zc,  5, reg[5]);
1324 }
1325 #endif /* NZS > 1 */
1326