xref: /netbsd/sys/arch/atari/vme/if_le_vme.c (revision bf9ec67e)
1 /*	$NetBSD: if_le_vme.c,v 1.13 2001/07/26 15:05:09 wiz Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 maximum entropy.  All rights reserved.
5  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
6  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
7  * Copyright (c) 1992, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * Ralph Campbell and Rick Macklem.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
42  */
43 
44 #include "opt_inet.h"
45 #include "bpfilter.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/mbuf.h>
50 #include <sys/syslog.h>
51 #include <sys/socket.h>
52 #include <sys/device.h>
53 
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/if_inarp.h>
61 #endif
62 
63 #include <machine/cpu.h>
64 #include <machine/bus.h>
65 #include <machine/iomap.h>
66 #include <machine/scu.h>
67 
68 #include <atari/atari/device.h>
69 #include <atari/atari/intr.h>
70 
71 #include <dev/ic/lancereg.h>
72 #include <dev/ic/lancevar.h>
73 #include <dev/ic/am7990reg.h>
74 #include <dev/ic/am7990var.h>
75 
76 #include <atari/vme/vmevar.h>
77 #include <atari/vme/if_levar.h>
78 
79 /*
80  * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
81  * area between the offsets 0xee70-0xeec0 is used to store config data.
82  */
83 struct le_addresses {
84 	u_long	reg_addr;
85 	u_long	mem_addr;
86 	int	irq;
87 	int	reg_size;
88 	int	mem_size;
89 	int	type_hint;
90 } lestd[] = {
91 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
92 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
93 	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
94 				LE_PAM },		     /* PAM	*/
95 	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
96 				LE_ROTHRON },		     /* Rhotron	*/
97 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
98 				LE_BVME410 }		     /* BVME410 */
99 };
100 
101 #define	NLESTD	(sizeof(lestd) / sizeof(lestd[0]))
102 
103 /*
104  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
105  * are the manufacturer id.
106  */
107 static u_char riebl_def_mac[] = {
108 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
109 };
110 
111 static int le_intr __P((struct le_softc *, int));
112 static void lepseudointr __P((struct le_softc *, void *));
113 static int le_vme_match __P((struct device *, struct cfdata *, void *));
114 static void le_vme_attach __P((struct device *, struct device *, void *));
115 static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
116 				bus_space_handle_t *, bus_space_handle_t *));
117 static void riebl_skip_reserved_area __P((struct lance_softc *));
118 static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
119 static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
120 static int bvme410_mem_size __P((bus_space_tag_t, u_long));
121 static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
122 static void bvme410_zerobuf __P((struct lance_softc *, int, int));
123 
124 struct cfattach le_vme_ca = {
125 	sizeof(struct le_softc), le_vme_match, le_vme_attach
126 };
127 
128 #if defined(_KERNEL_OPT)
129 #include "opt_ddb.h"
130 #endif
131 
132 #ifdef DDB
133 #define	integrate
134 #define hide
135 #else
136 #define	integrate	static __inline
137 #define hide		static
138 #endif
139 
140 hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
141 hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
142 
143 hide void
144 lewrcsr(sc, port, val)
145 	struct lance_softc	*sc;
146 	u_int16_t		port, val;
147 {
148 	struct le_softc		*lesc = (struct le_softc *)sc;
149 	int			s;
150 
151 	s = splhigh();
152 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
153 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
154 	splx(s);
155 }
156 
157 hide u_int16_t
158 lerdcsr(sc, port)
159 	struct lance_softc	*sc;
160 	u_int16_t		port;
161 {
162 	struct le_softc		*lesc = (struct le_softc *)sc;
163 	u_int16_t		val;
164 	int			s;
165 
166 	s = splhigh();
167 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
168 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
169 	splx(s);
170 
171 	return (val);
172 }
173 
174 static int
175 le_vme_match(parent, cfp, aux)
176 	struct device	*parent;
177 	struct cfdata	*cfp;
178 	void		*aux;
179 {
180 	struct vme_attach_args	*va = aux;
181 	int			i;
182 	bus_space_tag_t		iot;
183 	bus_space_tag_t		memt;
184 	bus_space_handle_t	ioh;
185 	bus_space_handle_t	memh;
186 
187 	iot  = va->va_iot;
188 	memt = va->va_memt;
189 
190 	for (i = 0; i < NLESTD; i++) {
191 		struct le_addresses	*le_ap = &lestd[i];
192 		int			found  = 0;
193 
194 		if ((va->va_iobase != IOBASEUNK)
195 		     && (va->va_iobase != le_ap->reg_addr))
196 			continue;
197 
198 		if ((va->va_maddr != MADDRUNK)
199 		     && (va->va_maddr != le_ap->mem_addr))
200 			continue;
201 
202 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
203 			continue;
204 
205 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
206 			printf("leprobe: cannot map io-area\n");
207 			return (0);
208 		}
209 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
210 			if (bvme410_probe(iot, ioh)) {
211 				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
212 				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
213 			}
214 		}
215 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
216 			bus_space_unmap(iot, ioh, le_ap->reg_size);
217 			continue;
218 		}
219 
220 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
221 			bus_space_unmap(iot, ioh, le_ap->reg_size);
222 			printf("leprobe: cannot map memory-area\n");
223 			return (0);
224 		}
225 		found = probe_addresses(&iot, &memt, &ioh, &memh);
226 		bus_space_unmap(iot, ioh, le_ap->reg_size);
227 		bus_space_unmap(memt, memh, le_ap->mem_size);
228 
229 		if (found) {
230 			va->va_iobase = le_ap->reg_addr;
231 			va->va_iosize = le_ap->reg_size;
232 			va->va_maddr  = le_ap->mem_addr;
233 			va->va_msize  = le_ap->mem_size;
234 			va->va_aux    = le_ap;
235 			if (va->va_irq == IRQUNK)
236 				va->va_irq = le_ap->irq;
237 			return 1;
238 		}
239     }
240     return (0);
241 }
242 
243 static int
244 probe_addresses(iot, memt, ioh, memh)
245 bus_space_tag_t		*iot;
246 bus_space_tag_t		*memt;
247 bus_space_handle_t	*ioh;
248 bus_space_handle_t	*memh;
249 {
250 	/*
251 	 * Test accesibility of register and memory area
252 	 */
253 	if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
254 		return 0;
255 	if(!bus_space_peek_1(*memt, *memh, 0))
256 		return 0;
257 
258 	/*
259 	 * Test for writable memory
260 	 */
261 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
262 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
263 		return 0;
264 
265 	/*
266 	 * Test writability of selector port.
267 	 */
268 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
269 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
270 		return 0;
271 
272 	/*
273 	 * Do a small register test
274 	 */
275 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
276 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
277 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
278 		return 0;
279 
280 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
281 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
282 		return 0;
283 
284 	return 1;
285 }
286 
287 /*
288  * Interrupt mess. Because the card's interrupt is hardwired to either
289  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
290  * (it kills the serial at the least), we use a 2-level interrupt scheme. The
291  * card interrupt is routed to 'le_intr'. If the previous ipl was below
292  * splnet, just call the mi-function. If not, save the interrupt status,
293  * turn off card interrupts (the card is *very* persistent) and arrange
294  * for a softint 'callback' through 'lepseudointr'.
295  */
296 static int
297 le_intr(lesc, sr)
298 	struct le_softc	*lesc;
299 	int		 sr;
300 {
301 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
302 	u_int16_t		csr0;
303 
304 	if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
305 		am7990_intr(sc);
306 	else {
307 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
308 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
309 		add_sicallback((si_farg)lepseudointr, lesc, sc);
310 	}
311 	return 1;
312 }
313 
314 
315 static void
316 lepseudointr(lesc, sc)
317 struct le_softc	*lesc;
318 void		*sc;
319 {
320 	int	s;
321 
322 	s = splx(lesc->sc_splval);
323 	am7990_intr(sc);
324 	splx(s);
325 }
326 
327 static void
328 le_vme_attach(parent, self, aux)
329 	struct device *parent, *self;
330 	void *aux;
331 {
332 	struct le_softc		*lesc = (struct le_softc *)self;
333 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
334 	struct vme_attach_args	*va = aux;
335 	bus_space_handle_t	ioh;
336 	bus_space_handle_t	memh;
337 	struct le_addresses	*le_ap;
338 	int			i;
339 
340 	printf("\n%s: ", sc->sc_dev.dv_xname);
341 
342 	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
343 		panic("leattach: cannot map io-area\n");
344 	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
345 		panic("leattach: cannot map mem-area\n");
346 
347 	lesc->sc_iot    = va->va_iot;
348 	lesc->sc_ioh    = ioh;
349 	lesc->sc_memt   = va->va_memt;
350 	lesc->sc_memh   = memh;
351 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
352 	le_ap           = (struct le_addresses *)va->va_aux;
353 
354 	/*
355 	 * Go on to find board type
356 	 */
357 	if ((le_ap->type_hint & LE_PAM)
358 		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
359 		printf("PAM card");
360 		lesc->sc_type = LE_PAM;
361 		bus_space_read_1(va->va_iot, ioh, LER_MEME);
362 	}
363 	else if((le_ap->type_hint & LE_BVME410)
364 		&& bvme410_probe(va->va_iot, ioh)) {
365 		printf("BVME410");
366 		lesc->sc_type = LE_BVME410;
367 	}
368 	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
369 		printf("Riebl card");
370 		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
371 								== RIEBL_MAGIC)
372 			lesc->sc_type = LE_NEW_RIEBL;
373 		else {
374 			printf("(without battery) ");
375 			lesc->sc_type = LE_OLD_RIEBL;
376 		}
377 	}
378 	else printf("le_vme_attach: Unsupported card!");
379 
380 	switch (lesc->sc_type) {
381 	    case LE_BVME410:
382 		sc->sc_copytodesc   = bvme410_copytobuf;
383 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
384 		sc->sc_copytobuf    = bvme410_copytobuf;
385 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
386 		sc->sc_zerobuf      = bvme410_zerobuf;
387 		break;
388 	    default:
389 		sc->sc_copytodesc   = lance_copytobuf_contig;
390 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
391 		sc->sc_copytobuf    = lance_copytobuf_contig;
392 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
393 		sc->sc_zerobuf      = lance_zerobuf_contig;
394 		break;
395 	}
396 
397 	sc->sc_rdcsr   = lerdcsr;
398 	sc->sc_wrcsr   = lewrcsr;
399 	sc->sc_hwinit  = NULL;
400 	sc->sc_conf3   = LE_C3_BSWP;
401 	sc->sc_addr    = 0;
402 	sc->sc_memsize = va->va_msize;
403 	sc->sc_mem     = (void *)memh; /* XXX */
404 
405 	/*
406 	 * Get MAC address
407 	 */
408 	switch (lesc->sc_type) {
409 	    case LE_OLD_RIEBL:
410 		bcopy(riebl_def_mac, sc->sc_enaddr,
411 					sizeof(sc->sc_enaddr));
412 		break;
413 	    case LE_NEW_RIEBL:
414 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
415 		    sc->sc_enaddr[i] =
416 			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
417 			break;
418 	    case LE_PAM:
419 		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
420 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
421 		    sc->sc_enaddr[i] =
422 			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
423 			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
424 		}
425 		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
426 		break;
427 	    case LE_BVME410:
428 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
429 		    u_int16_t tmp;
430 
431 		    tmp = nm93c06_read(va->va_iot, ioh, i);
432 		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
433 		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
434 		}
435 		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
436 	}
437 
438 	am7990_config(&lesc->sc_am7990);
439 
440 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
441 		riebl_skip_reserved_area(sc);
442 
443 	/*
444 	 * XXX: We always use uservector 64....
445 	 */
446 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
447 				(hw_ifun_t)le_intr, lesc)) == NULL) {
448 		printf("le_vme_attach: Can't establish interrupt\n");
449 		return;
450 	}
451 
452 	/*
453 	 * Notify the card of the vector
454 	 */
455 	switch (lesc->sc_type) {
456 		case LE_OLD_RIEBL:
457 		case LE_NEW_RIEBL:
458 			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
459 								64 + 64);
460 			break;
461 		case LE_PAM:
462 			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
463 			break;
464 		case LE_BVME410:
465 			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
466 			break;
467 	}
468 
469 	/*
470 	 * Unmask the VME-interrupt we're on
471 	 */
472 	if (machineid & ATARI_TT)
473 		SCU->vme_mask |= 1 << va->va_irq;
474 }
475 
476 /*
477  * True if 'addr' containe within [start,len]
478  */
479 #define WITHIN(start, len, addr)	\
480 		((addr >= start) && ((addr) <= ((start) + (len))))
481 static void
482 riebl_skip_reserved_area(sc)
483 	struct lance_softc	*sc;
484 {
485 	int	offset = 0;
486 	int	i;
487 
488 	for(i = 0; i < sc->sc_nrbuf; i++) {
489 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
490 		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
491 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
492 		}
493 		sc->sc_rbufaddr[i] += offset;
494 	}
495 
496 	for(i = 0; i < sc->sc_ntbuf; i++) {
497 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
498 		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
499 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
500 		}
501 		sc->sc_tbufaddr[i] += offset;
502 	}
503 }
504 
505 static int
506 nm93c06_read(iot, ioh, nm93c06reg)
507 	bus_space_tag_t iot;
508 	bus_space_handle_t ioh;
509 	int nm93c06reg;
510 {
511 	int bar;
512 	int shift;
513 	int bits = 0x180 | (nm93c06reg & 0xf);
514 	int data = 0;
515 
516 	bar = 1<<BVME410_CS_SHIFT;
517 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
518 	delay(1); /* tCSS = 1 us */
519 	for (shift = 9; shift >= 0; shift--) {
520 		if (((bits >> shift) & 1) == 1)
521 			bar |= 1<<BVME410_DIN_SHIFT;
522 		else
523 			bar &= ~(1<<BVME410_DIN_SHIFT);
524 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
525 		delay(1); /* tDIS = 0.4 us */
526 		bar |= 1<<BVME410_CLK_SHIFT;
527 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
528 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
529 		bar &= ~(1<<BVME410_CLK_SHIFT);
530 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
531 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
532 	}
533 	bar &= ~(1<<BVME410_DIN_SHIFT);
534 	for (shift = 15; shift >= 0; shift--) {
535 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
536 		bar |= 1<<BVME410_CLK_SHIFT;
537 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
538 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
539 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
540 		bar &= ~(1<<BVME410_CLK_SHIFT);
541 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
542 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
543 	}
544 	bar &= ~(1<<BVME410_CS_SHIFT);
545 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
546 	delay(1); /* tCS = 1 us */
547 	return data;
548 }
549 
550 static int
551 bvme410_probe(iot, ioh)
552 	bus_space_tag_t iot;
553 	bus_space_handle_t ioh;
554 {
555 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
556 		return 0;
557 
558 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
559 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
560 		return 0;
561 
562 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
563 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
564 		return 0;
565 
566 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
567 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
568 		return 0;
569 
570 	return 1;
571 }
572 
573 static int
574 bvme410_mem_size(memt, mem_addr)
575 	bus_space_tag_t memt;
576 	u_long mem_addr;
577 {
578 	bus_space_handle_t memh;
579 	int r;
580 
581 	if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
582 		return VMECF_MEMSIZ_DEFAULT;
583 	if (!bus_space_peek_1(memt, memh, 0)) {
584 		bus_space_unmap(memt, memh, 256*1024);
585 		return VMECF_MEMSIZ_DEFAULT;
586 	}
587 	bus_space_write_1(memt, memh, 0, 128);
588 	bus_space_write_1(memt, memh, 64*1024, 32);
589 	bus_space_write_1(memt, memh, 32*1024, 8);
590 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
591 	bus_space_unmap(memt, memh, 256*1024);
592 	return r;
593 }
594 
595 /*
596  * Need to be careful when writing to the bvme410 dual port memory.
597  * Continue writing each byte until it reads back the same.
598  */
599 
600 static void
601 bvme410_copytobuf(sc, from, boff, len)
602 	struct lance_softc *sc;
603 	void *from;
604 	int boff, len;
605 {
606 	volatile char *buf = (volatile char *) sc->sc_mem;
607 	char *f = (char *) from;
608 
609 	for (buf += boff; len; buf++,f++,len--)
610 		do {
611  			*buf = *f;
612 		} while (*buf != *f);
613 }
614 
615 static void
616 bvme410_zerobuf(sc, boff, len)
617 	struct lance_softc *sc;
618 	int boff, len;
619 {
620 	volatile char *buf = (volatile char *)sc->sc_mem;
621 
622 	for (buf += boff; len; buf++,len--)
623 		do {
624  			*buf = '\0';
625 		} while (*buf != '\0');
626 }
627 
628