xref: /netbsd/sys/arch/atari/vme/if_le_vme.c (revision c4a72b64)
1 /*	$NetBSD: if_le_vme.c,v 1.16 2002/10/02 05:04:27 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 maximum entropy.  All rights reserved.
5  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
6  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
7  * Copyright (c) 1992, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * Ralph Campbell and Rick Macklem.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
42  */
43 
44 #include "opt_inet.h"
45 #include "bpfilter.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/mbuf.h>
50 #include <sys/syslog.h>
51 #include <sys/socket.h>
52 #include <sys/device.h>
53 
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/if_inarp.h>
61 #endif
62 
63 #include <machine/cpu.h>
64 #include <machine/bus.h>
65 #include <machine/iomap.h>
66 #include <machine/scu.h>
67 
68 #include <atari/atari/device.h>
69 #include <atari/atari/intr.h>
70 
71 #include <dev/ic/lancereg.h>
72 #include <dev/ic/lancevar.h>
73 #include <dev/ic/am7990reg.h>
74 #include <dev/ic/am7990var.h>
75 
76 #include <atari/vme/vmevar.h>
77 #include <atari/vme/if_levar.h>
78 
79 /*
80  * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
81  * area between the offsets 0xee70-0xeec0 is used to store config data.
82  */
83 struct le_addresses {
84 	u_long	reg_addr;
85 	u_long	mem_addr;
86 	int	irq;
87 	int	reg_size;
88 	int	mem_size;
89 	int	type_hint;
90 } lestd[] = {
91 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
92 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
93 	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
94 				LE_PAM },		     /* PAM	*/
95 	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
96 				LE_ROTHRON },		     /* Rhotron	*/
97 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
98 				LE_BVME410 }		     /* BVME410 */
99 };
100 
101 #define	NLESTD	(sizeof(lestd) / sizeof(lestd[0]))
102 
103 /*
104  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
105  * are the manufacturer id.
106  */
107 static u_char riebl_def_mac[] = {
108 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
109 };
110 
111 static int le_intr __P((struct le_softc *, int));
112 static void lepseudointr __P((struct le_softc *, void *));
113 static int le_vme_match __P((struct device *, struct cfdata *, void *));
114 static void le_vme_attach __P((struct device *, struct device *, void *));
115 static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
116 				bus_space_handle_t *, bus_space_handle_t *));
117 static void riebl_skip_reserved_area __P((struct lance_softc *));
118 static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
119 static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
120 static int bvme410_mem_size __P((bus_space_tag_t, u_long));
121 static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
122 static void bvme410_zerobuf __P((struct lance_softc *, int, int));
123 
124 CFATTACH_DECL(le_vme, sizeof(struct le_softc),
125     le_vme_match, le_vme_attach, NULL, NULL);
126 
127 #if defined(_KERNEL_OPT)
128 #include "opt_ddb.h"
129 #endif
130 
131 #ifdef DDB
132 #define	integrate
133 #define hide
134 #else
135 #define	integrate	static __inline
136 #define hide		static
137 #endif
138 
139 hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
140 hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
141 
142 hide void
143 lewrcsr(sc, port, val)
144 	struct lance_softc	*sc;
145 	u_int16_t		port, val;
146 {
147 	struct le_softc		*lesc = (struct le_softc *)sc;
148 	int			s;
149 
150 	s = splhigh();
151 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
152 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
153 	splx(s);
154 }
155 
156 hide u_int16_t
157 lerdcsr(sc, port)
158 	struct lance_softc	*sc;
159 	u_int16_t		port;
160 {
161 	struct le_softc		*lesc = (struct le_softc *)sc;
162 	u_int16_t		val;
163 	int			s;
164 
165 	s = splhigh();
166 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
167 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
168 	splx(s);
169 
170 	return (val);
171 }
172 
173 static int
174 le_vme_match(parent, cfp, aux)
175 	struct device	*parent;
176 	struct cfdata	*cfp;
177 	void		*aux;
178 {
179 	struct vme_attach_args	*va = aux;
180 	int			i;
181 	bus_space_tag_t		iot;
182 	bus_space_tag_t		memt;
183 	bus_space_handle_t	ioh;
184 	bus_space_handle_t	memh;
185 
186 	iot  = va->va_iot;
187 	memt = va->va_memt;
188 
189 	for (i = 0; i < NLESTD; i++) {
190 		struct le_addresses	*le_ap = &lestd[i];
191 		int			found  = 0;
192 
193 		if ((va->va_iobase != IOBASEUNK)
194 		     && (va->va_iobase != le_ap->reg_addr))
195 			continue;
196 
197 		if ((va->va_maddr != MADDRUNK)
198 		     && (va->va_maddr != le_ap->mem_addr))
199 			continue;
200 
201 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
202 			continue;
203 
204 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
205 			printf("leprobe: cannot map io-area\n");
206 			return (0);
207 		}
208 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
209 			if (bvme410_probe(iot, ioh)) {
210 				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
211 				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
212 			}
213 		}
214 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
215 			bus_space_unmap(iot, ioh, le_ap->reg_size);
216 			continue;
217 		}
218 
219 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
220 			bus_space_unmap(iot, ioh, le_ap->reg_size);
221 			printf("leprobe: cannot map memory-area\n");
222 			return (0);
223 		}
224 		found = probe_addresses(&iot, &memt, &ioh, &memh);
225 		bus_space_unmap(iot, ioh, le_ap->reg_size);
226 		bus_space_unmap(memt, memh, le_ap->mem_size);
227 
228 		if (found) {
229 			va->va_iobase = le_ap->reg_addr;
230 			va->va_iosize = le_ap->reg_size;
231 			va->va_maddr  = le_ap->mem_addr;
232 			va->va_msize  = le_ap->mem_size;
233 			va->va_aux    = le_ap;
234 			if (va->va_irq == IRQUNK)
235 				va->va_irq = le_ap->irq;
236 			return 1;
237 		}
238     }
239     return (0);
240 }
241 
242 static int
243 probe_addresses(iot, memt, ioh, memh)
244 bus_space_tag_t		*iot;
245 bus_space_tag_t		*memt;
246 bus_space_handle_t	*ioh;
247 bus_space_handle_t	*memh;
248 {
249 	/*
250 	 * Test accesibility of register and memory area
251 	 */
252 	if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
253 		return 0;
254 	if(!bus_space_peek_1(*memt, *memh, 0))
255 		return 0;
256 
257 	/*
258 	 * Test for writable memory
259 	 */
260 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
261 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
262 		return 0;
263 
264 	/*
265 	 * Test writability of selector port.
266 	 */
267 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
268 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
269 		return 0;
270 
271 	/*
272 	 * Do a small register test
273 	 */
274 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
275 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
276 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
277 		return 0;
278 
279 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
280 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
281 		return 0;
282 
283 	return 1;
284 }
285 
286 /*
287  * Interrupt mess. Because the card's interrupt is hardwired to either
288  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
289  * (it kills the serial at the least), we use a 2-level interrupt scheme. The
290  * card interrupt is routed to 'le_intr'. If the previous ipl was below
291  * splnet, just call the mi-function. If not, save the interrupt status,
292  * turn off card interrupts (the card is *very* persistent) and arrange
293  * for a softint 'callback' through 'lepseudointr'.
294  */
295 static int
296 le_intr(lesc, sr)
297 	struct le_softc	*lesc;
298 	int		 sr;
299 {
300 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
301 	u_int16_t		csr0;
302 
303 	if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
304 		am7990_intr(sc);
305 	else {
306 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
307 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
308 		add_sicallback((si_farg)lepseudointr, lesc, sc);
309 	}
310 	return 1;
311 }
312 
313 
314 static void
315 lepseudointr(lesc, sc)
316 struct le_softc	*lesc;
317 void		*sc;
318 {
319 	int	s;
320 
321 	s = splx(lesc->sc_splval);
322 	am7990_intr(sc);
323 	splx(s);
324 }
325 
326 static void
327 le_vme_attach(parent, self, aux)
328 	struct device *parent, *self;
329 	void *aux;
330 {
331 	struct le_softc		*lesc = (struct le_softc *)self;
332 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
333 	struct vme_attach_args	*va = aux;
334 	bus_space_handle_t	ioh;
335 	bus_space_handle_t	memh;
336 	struct le_addresses	*le_ap;
337 	int			i;
338 
339 	printf("\n%s: ", sc->sc_dev.dv_xname);
340 
341 	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
342 		panic("leattach: cannot map io-area");
343 	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
344 		panic("leattach: cannot map mem-area");
345 
346 	lesc->sc_iot    = va->va_iot;
347 	lesc->sc_ioh    = ioh;
348 	lesc->sc_memt   = va->va_memt;
349 	lesc->sc_memh   = memh;
350 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
351 	le_ap           = (struct le_addresses *)va->va_aux;
352 
353 	/*
354 	 * Go on to find board type
355 	 */
356 	if ((le_ap->type_hint & LE_PAM)
357 		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
358 		printf("PAM card");
359 		lesc->sc_type = LE_PAM;
360 		bus_space_read_1(va->va_iot, ioh, LER_MEME);
361 	}
362 	else if((le_ap->type_hint & LE_BVME410)
363 		&& bvme410_probe(va->va_iot, ioh)) {
364 		printf("BVME410");
365 		lesc->sc_type = LE_BVME410;
366 	}
367 	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
368 		printf("Riebl card");
369 		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
370 								== RIEBL_MAGIC)
371 			lesc->sc_type = LE_NEW_RIEBL;
372 		else {
373 			printf("(without battery) ");
374 			lesc->sc_type = LE_OLD_RIEBL;
375 		}
376 	}
377 	else printf("le_vme_attach: Unsupported card!");
378 
379 	switch (lesc->sc_type) {
380 	    case LE_BVME410:
381 		sc->sc_copytodesc   = bvme410_copytobuf;
382 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
383 		sc->sc_copytobuf    = bvme410_copytobuf;
384 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
385 		sc->sc_zerobuf      = bvme410_zerobuf;
386 		break;
387 	    default:
388 		sc->sc_copytodesc   = lance_copytobuf_contig;
389 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
390 		sc->sc_copytobuf    = lance_copytobuf_contig;
391 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
392 		sc->sc_zerobuf      = lance_zerobuf_contig;
393 		break;
394 	}
395 
396 	sc->sc_rdcsr   = lerdcsr;
397 	sc->sc_wrcsr   = lewrcsr;
398 	sc->sc_hwinit  = NULL;
399 	sc->sc_conf3   = LE_C3_BSWP;
400 	sc->sc_addr    = 0;
401 	sc->sc_memsize = va->va_msize;
402 	sc->sc_mem     = (void *)memh; /* XXX */
403 
404 	/*
405 	 * Get MAC address
406 	 */
407 	switch (lesc->sc_type) {
408 	    case LE_OLD_RIEBL:
409 		bcopy(riebl_def_mac, sc->sc_enaddr,
410 					sizeof(sc->sc_enaddr));
411 		break;
412 	    case LE_NEW_RIEBL:
413 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
414 		    sc->sc_enaddr[i] =
415 			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
416 			break;
417 	    case LE_PAM:
418 		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
419 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
420 		    sc->sc_enaddr[i] =
421 			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
422 			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
423 		}
424 		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
425 		break;
426 	    case LE_BVME410:
427 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
428 		    u_int16_t tmp;
429 
430 		    tmp = nm93c06_read(va->va_iot, ioh, i);
431 		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
432 		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
433 		}
434 		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
435 	}
436 
437 	am7990_config(&lesc->sc_am7990);
438 
439 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
440 		riebl_skip_reserved_area(sc);
441 
442 	/*
443 	 * XXX: We always use uservector 64....
444 	 */
445 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
446 				(hw_ifun_t)le_intr, lesc)) == NULL) {
447 		printf("le_vme_attach: Can't establish interrupt\n");
448 		return;
449 	}
450 
451 	/*
452 	 * Notify the card of the vector
453 	 */
454 	switch (lesc->sc_type) {
455 		case LE_OLD_RIEBL:
456 		case LE_NEW_RIEBL:
457 			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
458 								64 + 64);
459 			break;
460 		case LE_PAM:
461 			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
462 			break;
463 		case LE_BVME410:
464 			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
465 			break;
466 	}
467 
468 	/*
469 	 * Unmask the VME-interrupt we're on
470 	 */
471 	if (machineid & ATARI_TT)
472 		SCU->vme_mask |= 1 << va->va_irq;
473 }
474 
475 /*
476  * True if 'addr' containe within [start,len]
477  */
478 #define WITHIN(start, len, addr)	\
479 		((addr >= start) && ((addr) <= ((start) + (len))))
480 static void
481 riebl_skip_reserved_area(sc)
482 	struct lance_softc	*sc;
483 {
484 	int	offset = 0;
485 	int	i;
486 
487 	for(i = 0; i < sc->sc_nrbuf; i++) {
488 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
489 		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
490 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
491 		}
492 		sc->sc_rbufaddr[i] += offset;
493 	}
494 
495 	for(i = 0; i < sc->sc_ntbuf; i++) {
496 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
497 		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
498 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
499 		}
500 		sc->sc_tbufaddr[i] += offset;
501 	}
502 }
503 
504 static int
505 nm93c06_read(iot, ioh, nm93c06reg)
506 	bus_space_tag_t iot;
507 	bus_space_handle_t ioh;
508 	int nm93c06reg;
509 {
510 	int bar;
511 	int shift;
512 	int bits = 0x180 | (nm93c06reg & 0xf);
513 	int data = 0;
514 
515 	bar = 1<<BVME410_CS_SHIFT;
516 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
517 	delay(1); /* tCSS = 1 us */
518 	for (shift = 9; shift >= 0; shift--) {
519 		if (((bits >> shift) & 1) == 1)
520 			bar |= 1<<BVME410_DIN_SHIFT;
521 		else
522 			bar &= ~(1<<BVME410_DIN_SHIFT);
523 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
524 		delay(1); /* tDIS = 0.4 us */
525 		bar |= 1<<BVME410_CLK_SHIFT;
526 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
527 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
528 		bar &= ~(1<<BVME410_CLK_SHIFT);
529 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
530 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
531 	}
532 	bar &= ~(1<<BVME410_DIN_SHIFT);
533 	for (shift = 15; shift >= 0; shift--) {
534 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
535 		bar |= 1<<BVME410_CLK_SHIFT;
536 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
537 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
538 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
539 		bar &= ~(1<<BVME410_CLK_SHIFT);
540 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
541 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
542 	}
543 	bar &= ~(1<<BVME410_CS_SHIFT);
544 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
545 	delay(1); /* tCS = 1 us */
546 	return data;
547 }
548 
549 static int
550 bvme410_probe(iot, ioh)
551 	bus_space_tag_t iot;
552 	bus_space_handle_t ioh;
553 {
554 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
555 		return 0;
556 
557 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
558 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
559 		return 0;
560 
561 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
562 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
563 		return 0;
564 
565 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
566 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
567 		return 0;
568 
569 	return 1;
570 }
571 
572 static int
573 bvme410_mem_size(memt, mem_addr)
574 	bus_space_tag_t memt;
575 	u_long mem_addr;
576 {
577 	bus_space_handle_t memh;
578 	int r;
579 
580 	if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
581 		return VMECF_MEMSIZ_DEFAULT;
582 	if (!bus_space_peek_1(memt, memh, 0)) {
583 		bus_space_unmap(memt, memh, 256*1024);
584 		return VMECF_MEMSIZ_DEFAULT;
585 	}
586 	bus_space_write_1(memt, memh, 0, 128);
587 	bus_space_write_1(memt, memh, 64*1024, 32);
588 	bus_space_write_1(memt, memh, 32*1024, 8);
589 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
590 	bus_space_unmap(memt, memh, 256*1024);
591 	return r;
592 }
593 
594 /*
595  * Need to be careful when writing to the bvme410 dual port memory.
596  * Continue writing each byte until it reads back the same.
597  */
598 
599 static void
600 bvme410_copytobuf(sc, from, boff, len)
601 	struct lance_softc *sc;
602 	void *from;
603 	int boff, len;
604 {
605 	volatile char *buf = (volatile char *) sc->sc_mem;
606 	char *f = (char *) from;
607 
608 	for (buf += boff; len; buf++,f++,len--)
609 		do {
610  			*buf = *f;
611 		} while (*buf != *f);
612 }
613 
614 static void
615 bvme410_zerobuf(sc, boff, len)
616 	struct lance_softc *sc;
617 	int boff, len;
618 {
619 	volatile char *buf = (volatile char *)sc->sc_mem;
620 
621 	for (buf += boff; len; buf++,len--)
622 		do {
623  			*buf = '\0';
624 		} while (*buf != '\0');
625 }
626 
627