xref: /netbsd/sys/arch/bebox/stand/boot/fd.c (revision bf9ec67e)
1 /*	$NetBSD: fd.c,v 1.4 2001/08/31 04:44:58 simonb Exp $	*/
2 
3 /*-
4  * Copyright (C) 1997-1998 Kazuki Sakamoto (sakamoto@netbsd.org)
5  * All rights reserved.
6  *
7  * Floppy Disk Drive standalone device driver
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Kazuki Sakamoto.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/param.h>
36 #include <stand.h>
37 #include "boot.h"
38 
39 /*---------------------------------------------------------------------------*
40  *			Floppy Disk Controller Define			     *
41  *---------------------------------------------------------------------------*/
42 /* Floppy Disk Controller Registers */
43 int FDC_PORT[] = {				/* fdc base I/O port */
44 		0x3f0, /* primary */
45 		};
46 #define	FDC_DOR(x)	(FDC_PORT[x] + 0x2)	/* motor drive control bits */
47 #define	FDC_STATUS(x)	(FDC_PORT[x] + 0x4)	/* fdc main status register */
48 #define	FDC_DATA(x)	(FDC_PORT[x] + 0x5)	/* fdc data register */
49 #define	FDC_RATE(x)	(FDC_PORT[x] + 0x7)	/* transfer rate register */
50 
51 #define	FDC_IRQ		6
52 #define	FD_DMA_CHAN	2
53 
54 /* fdc main status register */
55 #define	RQM	  0x80	/* the host can transfer data if set */
56 #define	DIO	  0x40	/* direction of data transfer. write required if set */
57 #define	NON_DMA   0x20  /* fdc have date for transfer in non dma mode */
58 #define	CMD_BUSY  0x10	/* command busy if set */
59 
60 /* fdc result status */
61 #define	ST0_IC_MASK	0xc0	/* interrupt code  00:normal terminate */
62 #define	ST1_EN		0x80	/* end of cylinder */
63 
64 /* fdc digtal output register */
65 #define	DOR_DMAEN	0x08	/* DRQ, nDACK, TC and FINTR output enable */
66 #define	DOR_RESET	0x04	/* fdc software reset */
67 
68 /* fdc command */
69 #define	CMD_RECALIBRATE	0x07	/* recalibrate */
70 #define	CMD_SENSE_INT	0x08	/* sense interrupt status */
71 #define	CMD_DRV_SENSE	0x04	/* sense drive status */
72 #define	CMD_SEEK	0x0f	/* seek */
73 #define	CMD_FORMAT	0x4d	/* format */
74 #define	CMD_READ	0x46	/* read e6 */
75 #define	CMD_WRITE	0xc5	/* write */
76 #define	CMD_VERIFY	0xf6	/* verify */
77 #define	CMD_READID	0x4a	/* readID */
78 #define	CMD_SPECIFY	0x03	/* specify */
79 #define	CMD_CONFIG	0x13	/* config */
80 #define	CMD_VERSION	0x10	/* version */
81 
82 /* command specify value */
83 #define	SPECIFY1	((0x0d<<4)|0x0f)
84 #define	SPECIFY2	((0x01<<1)|0)	/* DMA MODE */
85 
86 /* fdc result */
87 #define	STATUS_MAX	16	/* result status max number */
88 #define	RESULT_VERSION	0x90	/* enhanced controller */
89 #define	RESULT_SEEK	0x20	/* seek & recalibrate complete flag on status0 */
90 
91 /*---------------------------------------------------------------------------*
92  *			     Floppy Disk Type Define	 		     *
93  *---------------------------------------------------------------------------*/
94 struct	fdd_type {
95 	int	seccount;	/* sector per track */
96 	int	secsize;	/* byte per sector (uPD765 paramater) */
97 	int	datalen;	/* data length */
98 	int	gap;		/* gap */
99 	int	gaplen;		/* gap length */
100 	int	cylinder;	/* track per media */
101 	int	maxseccount;	/* media max sector count */
102 	int	step;		/* seek step */
103 	int	rate;		/* drive rate (250 or 500kbps) */
104 	int	heads;		/* heads */
105 	int	f_gap;		/* format gap */
106 	int	mselect;	/* drive mode select */
107 	char	*type_name;	/* media type name */
108 };
109 typedef struct	fdd_type FDDTYPE;
110 
111 #define	FDTYPE_MAX	5
112 FDDTYPE fdd_types[FDTYPE_MAX] = {
113 	{ 18,2,0xff,0x1b,0x54,80,2880,1,0,2,0x6c,0,"2HQ" }, /* 2HD (PC/AT) */
114 	{  8,3,0xff,0x35,0x74,77,1232,1,0,2,0x54,1,"2HD" }, /* 2HD (98) */
115 	{ 15,2,0xff,0x1b,0x54,80,2400,1,0,2,0x54,1,"2HC" }, /* 2HC */
116 	{  9,2,0xff,0x23,0x50,80,1440,1,2,2,0x50,1,"2DD9" },/* 2DD 9 sector */
117 	{  8,2,0xff,0x3a,0x50,80,1280,1,2,2,0x50,1,"2DD8" },/* 2DD 8 sector */
118 };
119 
120 int	fdsectors[] = {128, 256, 512, 1024, 2048, 4096};
121 #define	SECTOR_MAX	4096
122 #define	FDBLK	(fdsectors[un->un_type->secsize])
123 
124 #define	START_CYL	0
125 #define	START_SECTOR	1
126 
127 #define	DELAY(x)	delay(100000 * x)		/* about 100ms */
128 #define	INT_TIMEOUT	3000000
129 
130 /*---------------------------------------------------------------------------*
131  *			FDC Device Driver Define			     *
132  *---------------------------------------------------------------------------*/
133 #define	CTLR_MAX	1
134 #define	UNIT_MAX	2
135 
136 struct	fd_unit {
137 	int	ctlr;
138 	int	unit;
139 	int	part;
140 	u_int	un_flags;		/* unit status flag */
141 	int	stat[STATUS_MAX];	/* result code */
142 	FDDTYPE	*un_type;		/* floppy type (pointer) */
143 };
144 typedef	struct fd_unit FD_UNIT;
145 FD_UNIT	fd_unit[CTLR_MAX][UNIT_MAX];
146 
147 /*
148  *	un_flags flags
149  */
150 #define	INT_ALIVE	0x00000001	/* Device is Alive and Available */
151 #define	INT_READY	0x00000002	/* Device is Ready */
152 #define	INT_BUSY	0x00000004	/* Device is busy */
153 
154 /*---------------------------------------------------------------------------*
155  *				Misc define				     *
156  *---------------------------------------------------------------------------*/
157 #define	TIMEOUT		10000000
158 #define	ND_TIMEOUT	10000000
159 
160 #define	SUCCESS		0
161 #define	FAIL		-1
162 
163 /*
164  *	function declaration
165  */
166 int fdc_out __P((int, int));
167 int fdc_in __P((int, u_char *));
168 int fdc_intr_wait __P((void));
169 int fd_check __P((FD_UNIT *));
170 void motor_on __P((int, int));
171 void motor_off __P((int, int));
172 void fdReset __P((int));
173 void fdRecalibrate __P((int, int));
174 void fdSpecify __P((int));
175 void fdDriveStatus __P((int, int, int, int *));
176 int fdSeek __P((int, int, int));
177 int fdSenseInt __P((int, int *));
178 int fdReadWrite __P((FD_UNIT *, int, int, int, int, u_char *));
179 void irq_init __P((void));
180 int irq_polling __P((int, int));
181 void dma_setup __P((u_char *, int, int, int));
182 int dma_finished __P((int));
183 
184 /*===========================================================================*
185  *				   fdinit				     *
186  *===========================================================================*/
187 int
188 fdinit(un)
189 	FD_UNIT	*un;
190 {
191 	int ctlr = un->ctlr;
192 	u_char result;
193 
194 #if 0
195 	irq_init();
196 #endif
197 	fdReset(ctlr);
198 
199 	if (fdc_out(ctlr, CMD_VERSION) != SUCCESS) {  /* version check */
200 		printf ("fdc%d:fatal error: CMD_VERSION cmd fail\n", ctlr);
201 		return (FAIL);
202 	}
203 	if (fdc_in(ctlr, &result) != SUCCESS) {
204 		printf ("fdc%d:fatal error: CMD_VERSION exec fail\n", ctlr);
205 		return (FAIL);
206 	}
207 	if (result != (u_char)RESULT_VERSION) {
208 		printf ("fdc%d:fatal error: unknown version fdc\n", ctlr);
209 		return (FAIL);
210 	}
211 
212 	un->un_flags = INT_ALIVE;
213 	return (SUCCESS);
214 }
215 
216 /*===========================================================================*
217  *				   fdopen				     *
218  *===========================================================================*/
219 int
220 fdopen(f, ctlr, unit, part)
221 	struct open_file *f;
222 	int ctlr, unit, part;
223 {
224 	FD_UNIT	*un;
225 	int *stat = un->stat;
226 
227 	if (ctlr >= CTLR_MAX)
228 		return (ENXIO);
229 	if (unit >= UNIT_MAX)
230 		return (ENXIO);
231 	un = &fd_unit[ctlr][unit];
232 
233 	if (!(un->un_flags & INT_ALIVE)) {
234 		if (fdinit(un) != SUCCESS)
235 			return (ENXIO);
236 	}
237 
238 	motor_on(ctlr, unit);
239 
240 	fdRecalibrate(ctlr, unit);
241 	fdSenseInt(ctlr, stat);
242 	if (stat[1] != START_CYL) {
243 		printf("fdc%d: unit:%d recalibrate failed. status:0x%x cyl:%d\n",
244 			ctlr, unit, stat[0], stat[1]);
245 		motor_off(ctlr, unit);
246 		return (EIO);
247 	}
248 
249 	if (fd_check(un) != SUCCESS)	/* research disk type */
250 		return (EIO);
251 
252 	f->f_devdata = (void *)un;
253 	return (SUCCESS);
254 }
255 
256 /*===========================================================================*
257  *				   fdclose				     *
258  *===========================================================================*/
259 int
260 fdclose(f)
261 	struct open_file *f;
262 {
263 	FD_UNIT *un = f->f_devdata;
264 
265 	fdRecalibrate(un->ctlr, un->unit);
266 	fdSenseInt(un->ctlr, un->stat);
267 	motor_off(un->ctlr, un->unit);
268 	un->un_flags = 0;
269 	return (SUCCESS);
270 }
271 
272 /*===========================================================================*
273  *				   fdioctl				     *
274  *===========================================================================*/
275 int
276 fdioctl(f, cmd, arg)
277 	struct open_file *f;
278 	u_long cmd;
279 	void *arg;
280 {
281 	switch (cmd) {
282 	default:
283 		return (EIO);
284 	}
285 
286 	return (SUCCESS);
287 }
288 
289 /*===========================================================================*
290  *				   fdstrategy				     *
291  *===========================================================================*/
292 int
293 fdstrategy(devdata, func, blk, size, buf, rsize)
294 	void *devdata;	/* device uniq data */
295 	int func;	/* function (read or write) */
296 	daddr_t blk;	/* block number */
297 	size_t size;	/* request size in bytes */
298 	void *buf;	/* buffer */
299 	size_t *rsize;	/* bytes transferred */
300 {
301 	int sectrac, cyl, head, sec;
302 	FD_UNIT *un = devdata;
303 	int ctlr = un->ctlr;
304 	int unit = un->unit;
305 	int *stat = un->stat;
306 	long nblock, blknum;
307 	int fd_skip = 0;
308 	char *cbuf = (char *)buf;
309 
310 	if (un->un_flags & INT_BUSY) {
311 		return (ENXIO);
312 	}
313 	fdDriveStatus(ctlr, unit, 0, stat);
314 
315 	nblock = un->un_type->maxseccount;
316 	sectrac = un->un_type->seccount;	/* sector per track */
317 	*rsize = 0;
318 
319 	while (fd_skip < size) {
320 		blknum = (u_long)blk * DEV_BSIZE/FDBLK + fd_skip/FDBLK;
321 		cyl = blknum / (sectrac * 2);
322 		fdSeek(ctlr, unit, cyl);
323 		fdSenseInt(ctlr, stat);
324 		if (!(stat[0] & RESULT_SEEK)) {
325 			printf("fdc%d: unit:%d seek failed."
326 				"status:0x%x cyl:%d pcyl:%d\n",
327 				ctlr, unit, stat[0], cyl, stat[1]);
328 			goto bad;
329 		}
330 
331 		sec = blknum % (sectrac * 2);
332 		head = sec / sectrac;
333 		sec = sec % sectrac + 1;
334 
335 		if (fdReadWrite(un, func, cyl, head, sec, cbuf) == FAIL) {
336 			printf("fdc%d: unit%d fdReadWrite error [%s]\n",
337 			    ctlr, unit, (func==F_READ?"READ":"WRITE"));
338 			goto bad;
339 		}
340 
341 		*rsize += FDBLK;
342 		cbuf += FDBLK;
343 		fd_skip += FDBLK;
344 	}
345 	return (SUCCESS);
346 
347 bad:
348 	return (FAIL);
349 }
350 
351 /*===========================================================================*
352  *				   fd_check				     *
353  *===========================================================================*/
354 /*
355  *	this function is Check floppy disk Type
356  */
357 int
358 fd_check(un)
359 	FD_UNIT	*un;
360 {
361 	int ctlr = un->ctlr;
362 	int unit = un->unit;
363 	int *stat = un->stat;
364 	int type;
365 	static u_char sec_buff[SECTOR_MAX];
366 
367 	un->un_type = (FDDTYPE *)FAIL;
368 	for (type = 0; type < FDTYPE_MAX; type++) {
369 		un->un_type = &fdd_types[type];
370 
371 		/* try read start sector */
372 		outb(FDC_RATE(ctlr), un->un_type->rate);   /* rate set */
373 		fdSpecify(ctlr);
374 		fdSeek(ctlr, unit, START_CYL);
375 		fdSenseInt(ctlr, stat);
376 		if (!(stat[0] & RESULT_SEEK) || stat[1] != START_CYL) {
377 			printf("fdc%d: unit:%d seek failed. status:0x%x\n",
378 				ctlr, unit, stat[0]);
379 			goto bad;
380 		}
381 		if (fdReadWrite(un, F_READ,
382 		    START_CYL, 0, START_SECTOR, sec_buff) == FAIL) {
383 			continue;	/* bad disk type */
384 		}
385 		break;
386 	}
387 	if (un->un_type == (FDDTYPE *)FAIL) {
388 		printf("fdc%d: unit:%d check disk type failed.\n",
389 		ctlr, unit);
390 		goto bad;
391 	}
392 	return (SUCCESS);
393 bad:
394 	return (FAIL);
395 }
396 
397 /*
398  * for FDC routines.
399  */
400 /*===========================================================================*
401  *				fdc_out					     *
402  *===========================================================================*/
403 int
404 fdc_out(ctlr, cmd)
405 	int ctlr;	/* controller no */
406 	int cmd;	/* cmd */
407 {
408 	volatile int status;
409 	int time_out;
410 
411 	time_out = TIMEOUT;
412 	while (((status = inb(FDC_STATUS(ctlr))) & (RQM | DIO))
413 		!= (RQM | 0) && time_out-- > 0);
414 	if (time_out <= 0) {
415 		printf("fdc_out: timeout  status = 0x%x\n", status);
416 		return (FAIL);
417 	}
418 
419 	outb(FDC_DATA(ctlr), cmd);
420 
421 	return (SUCCESS);
422 }
423 
424 /*===========================================================================*
425  *				fdc_in					     *
426  *===========================================================================*/
427 int
428 fdc_in(ctlr, data)
429 	int ctlr;	/* controller no */
430 	u_char *data;
431 {
432 	volatile int status;
433 	int time_out;
434 
435 	time_out = TIMEOUT;
436 	while ((status = inb(FDC_STATUS(ctlr)) & (RQM | DIO))
437 	    != (RQM | DIO) && time_out-- > 0) {
438 		if (status == RQM) {
439 			printf("fdc_in:error:ready for output\n");
440 			return (FAIL);
441 		}
442 	}
443 
444 	if (time_out <= 0) {
445 		printf("fdc_in:input ready timeout\n");
446 		return (FAIL);
447 	}
448 
449 	if (data) *data = (u_char)inb(FDC_DATA(ctlr));
450 
451 	return (SUCCESS);
452 }
453 
454 /*===========================================================================*
455  *                              fdc_intr_wait                                *
456  *===========================================================================*/
457 int
458 fdc_intr_wait()
459 {
460 	return (irq_polling(FDC_IRQ, INT_TIMEOUT));	/* wait interrupt */
461 }
462 
463 /*===========================================================================*
464  *		   	     fdc command function	 	    	     *
465  *===========================================================================*/
466 void
467 motor_on(ctlr, unit)
468 	int ctlr;
469 	int unit;
470 {
471 	outb(FDC_DOR(ctlr), DOR_RESET | DOR_DMAEN | unit
472 		| (1 << (unit + 4)));	/* reset & unit motor on */
473 	DELAY(1);		/* wait 100msec */
474 }
475 
476 void
477 motor_off(ctlr, unit)
478 	int ctlr;
479 	int unit;
480 {
481         outb(FDC_DOR(ctlr), DOR_RESET);		/* reset & motor off */
482 	if (fdc_intr_wait() == FAIL)		/* wait interrupt */
483 		printf("fdc: motor off failed.\n");
484 }
485 
486 void
487 fdReset(ctlr)
488 {
489 	outb(FDC_DOR(ctlr), 0); /* fdc reset */
490 	DELAY(3);
491 	outb(FDC_DOR(ctlr), DOR_RESET);
492 	DELAY(8);
493 }
494 
495 void
496 fdRecalibrate(ctlr, unit)
497 	int ctlr;
498 	int unit;
499 {
500 	fdc_out(ctlr, CMD_RECALIBRATE);
501 	fdc_out(ctlr, unit);
502 
503 	if (fdc_intr_wait() == FAIL)   /* wait interrupt */
504 		printf("fdc: recalibrate Timeout\n");
505 }
506 
507 void
508 fdSpecify(ctlr)
509 	int	ctlr;
510 {
511 	fdc_out(ctlr, CMD_SPECIFY);
512 	fdc_out(ctlr, SPECIFY1);
513 	fdc_out(ctlr, SPECIFY2);
514 }
515 
516 void
517 fdDriveStatus(ctlr, unit, head, stat)
518 	int	ctlr;
519 	register int	unit, head;
520 	register int	*stat;
521 {
522 	u_char result;
523 
524 	fdc_out(ctlr, CMD_DRV_SENSE);
525 	fdc_out(ctlr, (head << 2) | unit);
526 	fdc_in(ctlr, &result);
527 	*stat = (int)(result & 0xff);
528 }
529 
530 int
531 fdSeek(ctlr, unit, cyl)
532 	int ctlr;
533 	int unit;
534 	int cyl;
535 {
536 	int ret_val = 0;
537 
538 	fdc_out(ctlr, CMD_SEEK);
539 	fdc_out(ctlr, unit);
540 	fdc_out(ctlr, cyl);
541 
542         if (fdc_intr_wait() == FAIL) {		/* wait interrupt */
543 		printf("fdc: fdSeek Timeout\n");
544 		ret_val = FAIL;
545 	}
546 
547 	return(ret_val);
548 }
549 
550 int
551 fdSenseInt(ctlr, stat)
552 	int ctlr;
553 	int *stat;
554 {
555 	u_char result;
556 
557 	fdc_out(ctlr, CMD_SENSE_INT);
558 
559 	fdc_in(ctlr, &result);
560 	*stat++ = (int)(result & 0xff);
561 	fdc_in(ctlr, &result);
562 	*stat++ = (int)(result & 0xff);
563 
564 	return (0);
565 }
566 
567 int
568 fdReadWrite(un, func, cyl, head, sec, adrs)
569 	FD_UNIT	*un;
570 	int func;
571 	int cyl;
572 	int head;
573 	int sec;
574 	u_char *adrs;
575 {
576 	int i;
577 	int ctlr = un->ctlr;
578 	int unit = un->unit;
579 	int *stat = un->stat;
580 	u_char result;
581 
582 #if 0
583 printf("%s:", (func == F_READ ? "READ" : "WRITE"));
584 printf("cyl = %d", cyl);
585 printf("head = %d", head);
586 printf("sec = %d", sec);
587 printf("secsize = %d", un->un_type->secsize);
588 printf("seccount = %d", un->un_type->seccount);
589 printf("gap = %d", un->un_type->gap);
590 printf("datalen = %d\n", un->un_type->datalen);
591 #endif
592 
593 	dma_setup(adrs, FDBLK, func, FD_DMA_CHAN);
594 	fdc_out(ctlr, (func == F_READ ? CMD_READ : CMD_WRITE));
595 	fdc_out(ctlr, (head<<2) | unit);
596 	fdc_out(ctlr, cyl);			/* cyl */
597 	fdc_out(ctlr, head);			/* head */
598 	fdc_out(ctlr, sec);			/* sec */
599 	fdc_out(ctlr, un->un_type->secsize);	/* secsize */
600 	fdc_out(ctlr, un->un_type->seccount);	/* EOT (end of track) */
601 	fdc_out(ctlr, un->un_type->gap);	/* GAP3 */
602 	fdc_out(ctlr, un->un_type->datalen);	/* DTL (data length) */
603 
604 	if (fdc_intr_wait() == FAIL) {  /* wait interrupt */
605 		printf("fdc: DMA transfer Timeout\n");
606 		return (FAIL);
607 	}
608 
609 	for (i = 0; i < 7; i++) {
610 		fdc_in(ctlr, &result);
611 		stat[i] = (int)(result & 0xff);
612 	}
613 	if (stat[0] & ST0_IC_MASK) {	/* not normal terminate */
614 		if ((stat[1] & ~ST1_EN) || stat[2])
615 		goto bad;
616 	}
617 	if (!dma_finished(FD_DMA_CHAN)) {
618 		printf("DMA not finished\n");
619 		goto bad;
620 	}
621 	return (SUCCESS);
622 
623 bad:
624 	printf("       func: %s\n", (func == F_READ ? "F_READ" : "F_WRITE"));
625 	printf("	st0 = 0x%x\n", stat[0]);
626 	printf("	st1 = 0x%x\n", stat[1]);
627 	printf("	st2 = 0x%x\n", stat[2]);
628 	printf("	  c = 0x%x\n", stat[3]);
629 	printf("	  h = 0x%x\n", stat[4]);
630 	printf("	  r = 0x%x\n", stat[5]);
631 	printf("	  n = 0x%x\n", stat[6]);
632 	return (FAIL);
633 }
634 
635 /*-----------------------------------------------------------------------
636  * Interrupt Controller Operation Functions
637  *-----------------------------------------------------------------------
638  */
639 
640 /* 8259A interrupt controller register */
641 #define	INT_CTL0	0x20
642 #define	INT_CTL1	0x21
643 #define	INT2_CTL0	0xA0
644 #define	INT2_CTL1	0xA1
645 
646 #define	CASCADE_IRQ	2
647 
648 #define	ICW1_AT		0x11    /* edge triggered, cascade, need ICW4 */
649 #define	ICW4_AT		0x01    /* not SFNM, not buffered, normal EOI, 8086 */
650 #define	OCW3_PL		0x0e	/* polling mode */
651 #define	OCW2_CLEAR	0x20	/* interrupt clear */
652 
653 /*
654  * IRC programing sequence
655  *
656  * after reset
657  * 1.	ICW1 (write port:INT_CTL0 data:bit4=1)
658  * 2.	ICW2 (write port:INT_CTL1)
659  * 3.	ICW3 (write port:INT_CTL1)
660  * 4.	ICW4 (write port:INT_CTL1)
661  *
662  * after ICW
663  *	OCW1 (write port:INT_CTL1)
664  *	OCW2 (write port:INT_CTL0 data:bit3=0,bit4=0)
665  *	OCW3 (write port:INT_CTL0 data:bit3=1,bit4=0)
666  *
667  *	IMR  (read port:INT_CTL1)
668  *	IRR  (read port:INT_CTL0)	OCW3(bit1=1,bit0=0)
669  *	ISR  (read port:INT_CTL0)	OCW3(bit1=1,bit0=1)
670  *	PL   (read port:INT_CTL0)	OCW3(bit2=1,bit1=1)
671  */
672 
673 u_int INT_MASK;
674 u_int INT2_MASK;
675 
676 /*===========================================================================*
677  *                             irq initialize                                *
678  *===========================================================================*/
679 void
680 irq_init()
681 {
682 	outb(INT_CTL0, ICW1_AT);		/* ICW1 */
683 	outb(INT_CTL1, 0);			/* ICW2 for master */
684 	outb(INT_CTL1, (1 << CASCADE_IRQ));	/* ICW3 tells slaves */
685 	outb(INT_CTL1, ICW4_AT);		/* ICW4 */
686 
687 	outb(INT_CTL1, (INT_MASK = ~(1 << CASCADE_IRQ)));
688 				/* IRQ mask(exclusive of cascade) */
689 
690 	outb(INT2_CTL0, ICW1_AT);		/* ICW1 */
691 	outb(INT2_CTL1, 8); 			/* ICW2 for slave */
692 	outb(INT2_CTL1, CASCADE_IRQ);		/* ICW3 is slave nr */
693 	outb(INT2_CTL1, ICW4_AT);		/* ICW4 */
694 
695 	outb(INT2_CTL1, (INT2_MASK = ~0));	/* IRQ 8-15 mask */
696 }
697 
698 /*===========================================================================*
699  *                           irq polling check                               *
700  *===========================================================================*/
701 int
702 irq_polling(irq_no, timeout)
703 	int	irq_no;
704 	int	timeout;
705 {
706 	int	irc_no;
707 	int	data;
708 	int	ret;
709 
710 	if (irq_no > 8) irc_no = 1;
711 		else irc_no = 0;
712 
713 	outb(irc_no ? INT2_CTL1 : INT_CTL1, ~(1 << (irq_no >> (irc_no * 3))));
714 
715 	while (--timeout > 0) {
716 		outb(irc_no ? INT2_CTL0 : INT_CTL0, OCW3_PL);
717 						/* set polling mode */
718 		data = inb(irc_no ? INT2_CTL0 : INT_CTL0);
719 		if (data & 0x80) {	/* if interrupt request */
720 			if ((irq_no >> (irc_no * 3)) == (data & 0x7)) {
721 				ret = SUCCESS;
722 				break;
723 			}
724 		}
725 	}
726 	if (!timeout) ret = FAIL;
727 
728 	if (irc_no) {				/* interrupt clear */
729 		outb(INT2_CTL0, OCW2_CLEAR | (irq_no >> 3));
730 		outb(INT_CTL0, OCW2_CLEAR | CASCADE_IRQ);
731 	} else {
732 		outb(INT_CTL0, OCW2_CLEAR | irq_no);
733 	}
734 
735 	outb(INT_CTL1, INT_MASK);
736 	outb(INT2_CTL1, INT2_MASK);
737 
738 	return (ret);
739 }
740 
741 /*---------------------------------------------------------------------------*
742  *			DMA Controller Define			 	     *
743  *---------------------------------------------------------------------------*/
744 /* DMA Controller Registers */
745 #define	DMA_ADDR	0x004    /* port for low 16 bits of DMA address */
746 #define	DMA_LTOP	0x081    /* port for top low 8bit DMA addr(ch2) */
747 #define	DMA_HTOP	0x481    /* port for top high 8bit DMA addr(ch2) */
748 #define	DMA_COUNT	0x005    /* port for DMA count (count =  bytes - 1) */
749 #define	DMA_DEVCON	0x008    /* DMA device control register */
750 #define	DMA_SR		0x008    /* DMA status register */
751 #define	DMA_RESET	0x00D    /* DMA software reset register */
752 #define	DMA_FLIPFLOP	0x00C    /* DMA byte pointer flip-flop */
753 #define	DMA_MODE	0x00B    /* DMA mode port */
754 #define	DMA_INIT	0x00A    /* DMA init port */
755 
756 #define	DMA_RESET_VAL	0x06
757 /* DMA channel commands. */
758 #define	DMA_READ	0x46    /* DMA read opcode */
759 #define	DMA_WRITE	0x4A    /* DMA write opcode */
760 
761 /*===========================================================================*
762  *				dma_setup				     *
763  *===========================================================================*/
764 void
765 dma_setup(buf, size, func, chan)
766 	u_char *buf;
767 	int size;
768 	int func;
769 	int chan;
770 {
771 	u_long pbuf = local_to_PCI((u_long)buf);
772 
773 #if 0
774 	outb(DMA_RESET, 0);
775 	DELAY(1);
776 	outb(DMA_DEVCON, 0x00);
777 	outb(DMA_INIT, DMA_RESET_VAL);	/* reset the dma controller */
778 #endif
779 	outb(DMA_MODE, func == F_READ ? DMA_READ : DMA_WRITE);
780 	outb(DMA_FLIPFLOP, 0);		/* write anything to reset it */
781 
782 	outb(DMA_ADDR, (int)pbuf >>  0);
783 	outb(DMA_ADDR, (int)pbuf >>  8);
784 	outb(DMA_LTOP, (int)pbuf >> 16);
785 	outb(DMA_HTOP, (int)pbuf >> 24);
786 
787 	outb(DMA_COUNT, (size - 1) >> 0);
788 	outb(DMA_COUNT, (size - 1) >> 8);
789 	outb(DMA_INIT, chan);		/* some sort of enable */
790 }
791 
792 int
793 dma_finished(chan)
794 	int chan;
795 {
796 	return ((inb(DMA_SR) & 0x0f) == (1 << chan));
797 }
798