1 /*	$NetBSD: iq80310_machdep.c,v 1.40 2002/04/12 20:50:26 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1997,1998 Mark Brinicombe.
40  * Copyright (c) 1997,1998 Causality Limited.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  *	for the NetBSD Project.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
72  * boards using RedBoot firmware.
73  */
74 
75 #include "opt_ddb.h"
76 #include "opt_pmap_debug.h"
77 
78 #include <sys/param.h>
79 #include <sys/device.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/exec.h>
83 #include <sys/proc.h>
84 #include <sys/msgbuf.h>
85 #include <sys/reboot.h>
86 #include <sys/termios.h>
87 
88 #include <dev/cons.h>
89 
90 #include <machine/db_machdep.h>
91 #include <ddb/db_sym.h>
92 #include <ddb/db_extern.h>
93 
94 #include <machine/bootconfig.h>
95 #include <machine/bus.h>
96 #include <machine/cpu.h>
97 #include <machine/frame.h>
98 #include <arm/undefined.h>
99 
100 #include <arm/arm32/machdep.h>
101 
102 #include <arm/xscale/i80312reg.h>
103 #include <arm/xscale/i80312var.h>
104 
105 #include <dev/pci/ppbreg.h>
106 
107 #include <evbarm/iq80310/iq80310reg.h>
108 #include <evbarm/iq80310/iq80310var.h>
109 #include <evbarm/iq80310/obiovar.h>
110 
111 #include "opt_ipkdb.h"
112 
113 /*
114  * Address to call from cpu_reset() to reset the machine.
115  * This is machine architecture dependant as it varies depending
116  * on where the ROM appears when you turn the MMU off.
117  */
118 
119 u_int cpu_reset_address = 0;
120 
121 /* Define various stack sizes in pages */
122 #define IRQ_STACK_SIZE	1
123 #define ABT_STACK_SIZE	1
124 #ifdef IPKDB
125 #define UND_STACK_SIZE	2
126 #else
127 #define UND_STACK_SIZE	1
128 #endif
129 
130 BootConfig bootconfig;		/* Boot config storage */
131 char *boot_args = NULL;
132 char *boot_file = NULL;
133 
134 vm_offset_t physical_start;
135 vm_offset_t physical_freestart;
136 vm_offset_t physical_freeend;
137 vm_offset_t physical_end;
138 u_int free_pages;
139 vm_offset_t pagetables_start;
140 int physmem = 0;
141 
142 /*int debug_flags;*/
143 #ifndef PMAP_STATIC_L1S
144 int max_processes = 64;			/* Default number */
145 #endif	/* !PMAP_STATIC_L1S */
146 
147 /* Physical and virtual addresses for some global pages */
148 pv_addr_t systempage;
149 pv_addr_t irqstack;
150 pv_addr_t undstack;
151 pv_addr_t abtstack;
152 pv_addr_t kernelstack;
153 pv_addr_t minidataclean;
154 
155 vm_offset_t msgbufphys;
156 
157 extern u_int data_abort_handler_address;
158 extern u_int prefetch_abort_handler_address;
159 extern u_int undefined_handler_address;
160 
161 #ifdef PMAP_DEBUG
162 extern int pmap_debug_level;
163 #endif
164 
165 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
166 
167 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
168 #define	KERNEL_PT_KERNEL_NUM	2
169 
170 					/* L2 table for mapping i80312 */
171 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
172 
173 					/* L2 tables for mapping kernel VM */
174 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
175 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
176 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
177 
178 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
179 
180 struct user *proc0paddr;
181 
182 /* Prototypes */
183 
184 void	consinit(void);
185 
186 #include "com.h"
187 #if NCOM > 0
188 #include <dev/ic/comreg.h>
189 #include <dev/ic/comvar.h>
190 #endif
191 
192 /*
193  * Define the default console speed for the board.  This is generally
194  * what the firmware provided with the board defaults to.
195  */
196 #ifndef CONSPEED
197 #define CONSPEED B115200
198 #endif /* ! CONSPEED */
199 
200 #ifndef CONUNIT
201 #define	CONUNIT	0
202 #endif
203 
204 #ifndef CONMODE
205 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
206 #endif
207 
208 int comcnspeed = CONSPEED;
209 int comcnmode = CONMODE;
210 int comcnunit = CONUNIT;
211 
212 /*
213  * void cpu_reboot(int howto, char *bootstr)
214  *
215  * Reboots the system
216  *
217  * Deal with any syncing, unmounting, dumping and shutdown hooks,
218  * then reset the CPU.
219  */
220 void
221 cpu_reboot(int howto, char *bootstr)
222 {
223 #ifdef DIAGNOSTIC
224 	/* info */
225 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
226 #endif
227 
228 	/*
229 	 * If we are still cold then hit the air brakes
230 	 * and crash to earth fast
231 	 */
232 	if (cold) {
233 		doshutdownhooks();
234 		printf("The operating system has halted.\n");
235 		printf("Please press any key to reboot.\n\n");
236 		cngetc();
237 		printf("rebooting...\n");
238 		cpu_reset();
239 		/*NOTREACHED*/
240 	}
241 
242 	/* Disable console buffering */
243 
244 	/*
245 	 * If RB_NOSYNC was not specified sync the discs.
246 	 * Note: Unless cold is set to 1 here, syslogd will die during the
247 	 * unmount.  It looks like syslogd is getting woken up only to find
248 	 * that it cannot page part of the binary in as the filesystem has
249 	 * been unmounted.
250 	 */
251 	if (!(howto & RB_NOSYNC))
252 		bootsync();
253 
254 	/* Say NO to interrupts */
255 	splhigh();
256 
257 	/* Do a dump if requested. */
258 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
259 		dumpsys();
260 
261 	/* Run any shutdown hooks */
262 	doshutdownhooks();
263 
264 	/* Make sure IRQ's are disabled */
265 	IRQdisable;
266 
267 	if (howto & RB_HALT) {
268 		iq80310_7seg('.', '.');
269 		printf("The operating system has halted.\n");
270 		printf("Please press any key to reboot.\n\n");
271 		cngetc();
272 	}
273 
274 	printf("rebooting...\n");
275 	cpu_reset();
276 	/*NOTREACHED*/
277 }
278 
279 /*
280  * Mapping table for core kernel memory. This memory is mapped at init
281  * time with section mappings.
282  */
283 struct l1_sec_map {
284 	vaddr_t	va;
285 	vaddr_t	pa;
286 	vsize_t	size;
287 	vm_prot_t prot;
288 	int cache;
289 } l1_sec_table[] = {
290     /*
291      * Map the on-board devices VA == PA so that we can access them
292      * with the MMU on or off.
293      */
294     {
295 	IQ80310_OBIO_BASE,
296 	IQ80310_OBIO_BASE,
297 	IQ80310_OBIO_SIZE,
298 	VM_PROT_READ|VM_PROT_WRITE,
299 	PTE_NOCACHE,
300     },
301 
302     {
303 	0,
304 	0,
305 	0,
306 	0,
307 	0,
308     }
309 };
310 
311 /*
312  * u_int initarm(...)
313  *
314  * Initial entry point on startup. This gets called before main() is
315  * entered.
316  * It should be responsible for setting up everything that must be
317  * in place when main is called.
318  * This includes
319  *   Taking a copy of the boot configuration structure.
320  *   Initialising the physical console so characters can be printed.
321  *   Setting up page tables for the kernel
322  *   Relocating the kernel to the bottom of physical memory
323  */
324 u_int
325 initarm(void *arg)
326 {
327 	extern vaddr_t xscale_cache_clean_addr;
328 	extern vsize_t xscale_minidata_clean_size;
329 	int loop;
330 	int loop1;
331 	u_int l1pagetable;
332 	pv_addr_t kernel_l1pt;
333 	pv_addr_t kernel_ptpt;
334 	paddr_t memstart;
335 	psize_t memsize;
336 
337 	/*
338 	 * Clear out the 7-segment display.  Whee, the first visual
339 	 * indication that we're running kernel code.
340 	 */
341 	iq80310_7seg(' ', ' ');
342 
343 	/*
344 	 * Heads up ... Setup the CPU / MMU / TLB functions
345 	 */
346 	if (set_cpufuncs())
347 		panic("cpu not recognized!");
348 
349 	/* Calibrate the delay loop. */
350 	iq80310_calibrate_delay();
351 
352 	/*
353 	 * Since we map the on-board devices VA==PA, and the kernel
354 	 * is running VA==PA, it's possible for us to initialize
355 	 * the console now.
356 	 */
357 	consinit();
358 
359 	/* Talk to the user */
360 	printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
361 
362 	/*
363 	 * Reset the secondary PCI bus.  RedBoot doesn't stop devices
364 	 * on the PCI bus before handing us control, so we have to
365 	 * do this.
366 	 *
367 	 * XXX This is arguably a bug in RedBoot, and doing this reset
368 	 * XXX could be problematic in the future if we encounter an
369 	 * XXX application where the PPB in the i80312 is used as a
370 	 * XXX PPB.
371 	 */
372 	{
373 		uint32_t reg;
374 
375 		printf("Resetting secondary PCI bus...\n");
376 		reg = bus_space_read_4(&obio_bs_tag,
377 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
378 		bus_space_write_4(&obio_bs_tag,
379 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
380 		    reg | PPB_BC_SECONDARY_RESET);
381 		delay(10 * 1000);	/* 10ms enough? */
382 		bus_space_write_4(&obio_bs_tag,
383 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
384 		    reg);
385 	}
386 
387 	/*
388 	 * We are currently running with the MMU enabled and the
389 	 * entire address space mapped VA==PA, except for the
390 	 * first 64M of RAM is also double-mapped at 0xc0000000.
391 	 * There is an L1 page table at 0xa0004000.
392 	 */
393 
394 	/*
395 	 * Fetch the SDRAM start/size from the i80312 SDRAM configration
396 	 * registers.
397 	 */
398 	i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
399 	    &memstart, &memsize);
400 
401 	printf("initarm: Configuring system ...\n");
402 
403 	/* Fake bootconfig structure for the benefit of pmap.c */
404 	/* XXX must make the memory description h/w independant */
405 	bootconfig.dramblocks = 1;
406 	bootconfig.dram[0].address = memstart;
407 	bootconfig.dram[0].pages = memsize / NBPG;
408 
409 	/*
410 	 * Set up the variables that define the availablilty of
411 	 * physical memory.  For now, we're going to set
412 	 * physical_freestart to 0xa0200000 (where the kernel
413 	 * was loaded), and allocate the memory we need downwards.
414 	 * If we get too close to the L1 table that we set up, we
415 	 * will panic.  We will update physical_freestart and
416 	 * physical_freeend later to reflect what pmap_bootstrap()
417 	 * wants to see.
418 	 *
419 	 * XXX pmap_bootstrap() needs an enema.
420 	 */
421 	physical_start = bootconfig.dram[0].address;
422 	physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
423 
424 	physical_freestart = 0xa0009000UL;
425 	physical_freeend = 0xa0200000UL;
426 
427 	physmem = (physical_end - physical_start) / NBPG;
428 
429 	/* Tell the user about the memory */
430 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
431 	    physical_start, physical_end - 1);
432 
433 	/*
434 	 * Okay, the kernel starts 2MB in from the bottom of physical
435 	 * memory.  We are going to allocate our bootstrap pages downwards
436 	 * from there.
437 	 *
438 	 * We need to allocate some fixed page tables to get the kernel
439 	 * going.  We allocate one page directory and a number of page
440 	 * tables and store the physical addresses in the kernel_pt_table
441 	 * array.
442 	 *
443 	 * The kernel page directory must be on a 16K boundary.  The page
444 	 * tables must be on 4K bounaries.  What we do is allocate the
445 	 * page directory on the first 16K boundary that we encounter, and
446 	 * the page tables on 4K boundaries otherwise.  Since we allocate
447 	 * at least 3 L2 page tables, we are guaranteed to encounter at
448 	 * least one 16K aligned region.
449 	 */
450 
451 #ifdef VERBOSE_INIT_ARM
452 	printf("Allocating page tables\n");
453 #endif
454 
455 	free_pages = (physical_freeend - physical_freestart) / NBPG;
456 
457 #ifdef VERBOSE_INIT_ARM
458 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
459 	       physical_freestart, free_pages, free_pages);
460 #endif
461 
462 	/* Define a macro to simplify memory allocation */
463 #define	valloc_pages(var, np)				\
464 	alloc_pages((var).pv_pa, (np));			\
465 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
466 
467 #define alloc_pages(var, np)				\
468 	physical_freeend -= ((np) * NBPG);		\
469 	if (physical_freeend < physical_freestart)	\
470 		panic("initarm: out of memory");	\
471 	(var) = physical_freeend;			\
472 	free_pages -= (np);				\
473 	memset((char *)(var), 0, ((np) * NBPG));
474 
475 	loop1 = 0;
476 	kernel_l1pt.pv_pa = 0;
477 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
478 		/* Are we 16KB aligned for an L1 ? */
479 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
480 		    && kernel_l1pt.pv_pa == 0) {
481 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / NBPG);
482 		} else {
483 			alloc_pages(kernel_pt_table[loop1].pv_pa,
484 			    L2_TABLE_SIZE / NBPG);
485 			kernel_pt_table[loop1].pv_va =
486 			    kernel_pt_table[loop1].pv_pa;
487 			++loop1;
488 		}
489 	}
490 
491 	/* This should never be able to happen but better confirm that. */
492 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
493 		panic("initarm: Failed to align the kernel page directory\n");
494 
495 	/*
496 	 * Allocate a page for the system page mapped to V0x00000000
497 	 * This page will just contain the system vectors and can be
498 	 * shared by all processes.
499 	 */
500 	alloc_pages(systempage.pv_pa, 1);
501 
502 	/* Allocate a page for the page table to map kernel page tables. */
503 	valloc_pages(kernel_ptpt, L2_TABLE_SIZE / NBPG);
504 
505 	/* Allocate stacks for all modes */
506 	valloc_pages(irqstack, IRQ_STACK_SIZE);
507 	valloc_pages(abtstack, ABT_STACK_SIZE);
508 	valloc_pages(undstack, UND_STACK_SIZE);
509 	valloc_pages(kernelstack, UPAGES);
510 
511 	/* Allocate enough pages for cleaning the Mini-Data cache. */
512 	KASSERT(xscale_minidata_clean_size <= NBPG);
513 	valloc_pages(minidataclean, 1);
514 
515 #ifdef VERBOSE_INIT_ARM
516 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
517 	    irqstack.pv_va);
518 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
519 	    abtstack.pv_va);
520 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
521 	    undstack.pv_va);
522 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
523 	    kernelstack.pv_va);
524 #endif
525 
526 	/*
527 	 * XXX Defer this to later so that we can reclaim the memory
528 	 * XXX used by the RedBoot page tables.
529 	 */
530 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
531 
532 	/*
533 	 * Ok we have allocated physical pages for the primary kernel
534 	 * page tables
535 	 */
536 
537 #ifdef VERBOSE_INIT_ARM
538 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
539 #endif
540 
541 	/*
542 	 * Now we start construction of the L1 page table
543 	 * We start by mapping the L2 page tables into the L1.
544 	 * This means that we can replace L1 mappings later on if necessary
545 	 */
546 	l1pagetable = kernel_l1pt.pv_pa;
547 
548 	/* Map the L2 pages tables in the L1 page table */
549 	pmap_link_l2pt(l1pagetable, 0x00000000,
550 	    &kernel_pt_table[KERNEL_PT_SYS]);
551 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
552 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
553 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
554 	pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
555 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
556 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
557 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
558 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
559 	pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt);
560 
561 	/* update the top of the kernel VM */
562 	pmap_curmaxkvaddr =
563 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
564 
565 #ifdef VERBOSE_INIT_ARM
566 	printf("Mapping kernel\n");
567 #endif
568 
569 	/* Now we fill in the L2 pagetable for the kernel static code/data */
570 	{
571 		extern char etext[], _end[];
572 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
573 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
574 		u_int logical;
575 
576 		textsize = (textsize + PGOFSET) & ~PGOFSET;
577 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
578 
579 		logical = 0x00200000;	/* offset of kernel in RAM */
580 
581 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
582 		    physical_start + logical, textsize,
583 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
584 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
585 		    physical_start + logical, totalsize - textsize,
586 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
587 	}
588 
589 #ifdef VERBOSE_INIT_ARM
590 	printf("Constructing L2 page tables\n");
591 #endif
592 
593 	/* Map the stack pages */
594 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
595 	    IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
596 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
597 	    ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
598 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
599 	    UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
600 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
601 	    UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
602 
603 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
604 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
605 
606 	/* Map the Mini-Data cache clean area. */
607 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
608 	    minidataclean.pv_pa);
609 
610 	/* Map the page table that maps the kernel pages */
611 	pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
612 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
613 
614 	/*
615 	 * Map entries in the page table used to map PTE's
616 	 * Basically every kernel page table gets mapped here
617 	 */
618 	/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
619 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
620 		pmap_map_entry(l1pagetable,
621 		    PTE_BASE + ((KERNEL_BASE +
622 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
623 		    kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
624 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
625 	}
626 	pmap_map_entry(l1pagetable,
627 	    PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
628 	    kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
629 	pmap_map_entry(l1pagetable,
630 	    PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
631 	    kernel_pt_table[KERNEL_PT_SYS].pv_pa,
632 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
633 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
634 		pmap_map_entry(l1pagetable,
635 		    PTE_BASE + ((KERNEL_VM_BASE +
636 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
637 		    kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
638 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
639 
640 	/* Map the vector page. */
641 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
642 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
643 
644 	/*
645 	 * Map devices we can map w/ section mappings.
646 	 */
647 	loop = 0;
648 	while (l1_sec_table[loop].size) {
649 		vm_size_t sz;
650 
651 #ifdef VERBOSE_INIT_ARM
652 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
653 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
654 		    l1_sec_table[loop].va);
655 #endif
656 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
657 			pmap_map_section(l1pagetable,
658 			    l1_sec_table[loop].va + sz,
659 			    l1_sec_table[loop].pa + sz,
660 			    l1_sec_table[loop].prot,
661 			    l1_sec_table[loop].cache);
662 		++loop;
663 	}
664 
665 	/*
666 	 * Map the PCI I/O spaces and i80312 registers.  These are too
667 	 * small to be mapped w/ section mappings.
668 	 */
669 #ifdef VERBOSE_INIT_ARM
670 	printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
671 	    I80312_PCI_XLATE_PIOW_BASE,
672 	    I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
673 	    IQ80310_PIOW_VBASE);
674 #endif
675 	pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
676 	    I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
677 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
678 
679 #ifdef VERBOSE_INIT_ARM
680 	printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
681 	    I80312_PCI_XLATE_SIOW_BASE,
682 	    I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
683 	    IQ80310_SIOW_VBASE);
684 #endif
685 	pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
686 	    I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
687 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
688 
689 #ifdef VERBOSE_INIT_ARM
690 	printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
691 	    I80312_PMMR_BASE,
692 	    I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
693 	    IQ80310_80312_VBASE);
694 #endif
695 	pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
696 	    I80312_PMMR_BASE, I80312_PMMR_SIZE,
697 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
698 
699 	/*
700 	 * Give the XScale global cache clean code an appropriately
701 	 * sized chunk of unmapped VA space starting at 0xff000000
702 	 * (our device mappings end before this address).
703 	 */
704 	xscale_cache_clean_addr = 0xff000000U;
705 
706 	/*
707 	 * Now we have the real page tables in place so we can switch to them.
708 	 * Once this is done we will be running with the REAL kernel page
709 	 * tables.
710 	 */
711 
712 	/*
713 	 * Update the physical_freestart/physical_freeend/free_pages
714 	 * variables.
715 	 */
716 	{
717 		extern char _end[];
718 
719 		physical_freestart = physical_start +
720 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
721 		     KERNEL_BASE);
722 		physical_freeend = physical_end;
723 		free_pages = (physical_freeend - physical_freestart) / NBPG;
724 	}
725 
726 	/* Switch tables */
727 #ifdef VERBOSE_INIT_ARM
728 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
729 	       physical_freestart, free_pages, free_pages);
730 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
731 #endif
732 	setttb(kernel_l1pt.pv_pa);
733 	cpu_tlb_flushID();
734 
735 #ifdef VERBOSE_INIT_ARM
736 	printf("done!\n");
737 #endif
738 
739 #ifdef VERBOSE_INIT_ARM
740 	printf("bootstrap done.\n");
741 #endif
742 
743 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
744 
745 	/*
746 	 * Pages were allocated during the secondary bootstrap for the
747 	 * stacks for different CPU modes.
748 	 * We must now set the r13 registers in the different CPU modes to
749 	 * point to these stacks.
750 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
751 	 * of the stack memory.
752 	 */
753 	printf("init subsystems: stacks ");
754 
755 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
756 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
757 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
758 
759 	/*
760 	 * Well we should set a data abort handler.
761 	 * Once things get going this will change as we will need a proper
762 	 * handler.
763 	 * Until then we will use a handler that just panics but tells us
764 	 * why.
765 	 * Initialisation of the vectors will just panic on a data abort.
766 	 * This just fills in a slighly better one.
767 	 */
768 	printf("vectors ");
769 	data_abort_handler_address = (u_int)data_abort_handler;
770 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
771 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
772 
773 	/* Initialise the undefined instruction handlers */
774 	printf("undefined ");
775 	undefined_init();
776 
777 	/* Boot strap pmap telling it where the kernel page table is */
778 	printf("pmap ");
779 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
780 
781 	/* Setup the IRQ system */
782 	printf("irq ");
783 	iq80310_intr_init();
784 	printf("done.\n");
785 
786 #ifdef IPKDB
787 	/* Initialise ipkdb */
788 	ipkdb_init();
789 	if (boothowto & RB_KDB)
790 		ipkdb_connect(0);
791 #endif
792 
793 #ifdef DDB
794 	db_machine_init();
795 
796 	/* Firmware doesn't load symbols. */
797 	ddb_init(0, NULL, NULL);
798 
799 	if (boothowto & RB_KDB)
800 		Debugger();
801 #endif
802 
803 	/* We return the new stack pointer address */
804 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
805 }
806 
807 void
808 consinit(void)
809 {
810 	static const bus_addr_t comcnaddrs[] = {
811 		IQ80310_UART2,		/* com0 (J9) */
812 		IQ80310_UART1,		/* com1 (J10) */
813 	};
814 	static int consinit_called;
815 
816 	if (consinit_called != 0)
817 		return;
818 
819 	consinit_called = 1;
820 
821 #if NCOM > 0
822 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
823 	    COM_FREQ, comcnmode))
824 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
825 #else
826 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
827 #endif
828 }
829