xref: /netbsd/sys/arch/evbmips/malta/malta_intr.c (revision bf9ec67e)
1 /*	$NetBSD: malta_intr.c,v 1.2 2002/04/08 14:08:27 simonb Exp $	*/
2 
3 /*
4  * Copyright 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Platform-specific interrupt support for the MIPS Malta.
40  */
41 
42 
43 #include <sys/param.h>
44 #include <sys/device.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 
48 #include <mips/locore.h>
49 
50 #include <evbmips/evbmips/clockvar.h>
51 
52 #include <evbmips/malta/maltavar.h>
53 #include <evbmips/malta/pci/pcibvar.h>
54 
55 #include <dev/ic/mc146818reg.h>		/* for malta_cal_timer() */
56 
57 #include <dev/isa/isavar.h>
58 #include <dev/pci/pciidereg.h>
59 
60 /*
61  * This is a mask of bits to clear in the SR when we go to a
62  * given hardware interrupt priority level.
63  */
64 const u_int32_t ipl_sr_bits[_IPL_N] = {
65 	0,					/* IPL_NONE */
66 
67 	MIPS_SOFT_INT_MASK_0,			/* IPL_SOFT */
68 
69 	MIPS_SOFT_INT_MASK_0,			/* IPL_SOFTCLOCK */
70 
71 	MIPS_SOFT_INT_MASK_0|
72 		MIPS_SOFT_INT_MASK_1,		/* IPL_SOFTNET */
73 
74 	MIPS_SOFT_INT_MASK_0|
75 		MIPS_SOFT_INT_MASK_1,		/* IPL_SOFTSERIAL */
76 
77 	MIPS_SOFT_INT_MASK_0|
78 		MIPS_SOFT_INT_MASK_1|
79 		MIPS_INT_MASK_0,		/* IPL_BIO */
80 
81 	MIPS_SOFT_INT_MASK_0|
82 		MIPS_SOFT_INT_MASK_1|
83 		MIPS_INT_MASK_0,		/* IPL_NET */
84 
85 	MIPS_SOFT_INT_MASK_0|
86 		MIPS_SOFT_INT_MASK_1|
87 		MIPS_INT_MASK_0,		/* IPL_{TTY,SERIAL} */
88 
89 	MIPS_SOFT_INT_MASK_0|
90 		MIPS_SOFT_INT_MASK_1|
91 		MIPS_INT_MASK_0|
92 		MIPS_INT_MASK_1|
93 		MIPS_INT_MASK_2|
94 		MIPS_INT_MASK_3|
95 		MIPS_INT_MASK_4|
96 		MIPS_INT_MASK_5,		/* IPL_{CLOCK,HIGH} */
97 };
98 
99 struct malta_cpuintr {
100 	LIST_HEAD(, evbmips_intrhand) cintr_list;
101 	struct evcnt cintr_count;
102 };
103 #define	NINTRS		5	/* MIPS INT0 - INT4 */
104 
105 struct malta_cpuintr malta_cpuintrs[NINTRS];
106 const char *malta_cpuintrnames[NINTRS] = {
107 	"int 0 (piix4)",
108 	"int 1 (smi)",
109 	"int 2 (uart)",
110 	"int 3 (core hi/gt64120)",
111 	"int 4 (core lo)",
112 };
113 
114 static int	malta_pci_intr_map(struct pci_attach_args *, pci_intr_handle_t *);
115 static const char
116 		*malta_pci_intr_string(void *, pci_intr_handle_t);
117 static const struct evcnt
118 		*malta_pci_intr_evcnt(void *, pci_intr_handle_t);
119 static void	*malta_pci_intr_establish(void *, pci_intr_handle_t, int,
120 		    int (*)(void *), void *);
121 static void	malta_pci_intr_disestablish(void *, void *);
122 static void	malta_pci_conf_interrupt(void *, int, int, int, int, int *);
123 static void	*malta_pciide_compat_intr_establish(void *, struct device *,
124 		    struct pci_attach_args *, int, int (*)(void *), void *);
125 
126 void
127 evbmips_intr_init(void)
128 {
129 	struct malta_config *mcp = &malta_configuration;
130 	int i;
131 
132 	for (i = 0; i < NINTRS; i++) {
133 		LIST_INIT(&malta_cpuintrs[i].cintr_list);
134 		evcnt_attach_dynamic(&malta_cpuintrs[i].cintr_count,
135 		    EVCNT_TYPE_INTR, NULL, "mips", malta_cpuintrnames[i]);
136 	}
137 
138 	evcnt_attach_static(&mips_int5_evcnt);
139 
140 	mcp->mc_pc.pc_intr_v = NULL;
141 	mcp->mc_pc.pc_intr_map = malta_pci_intr_map;
142 	mcp->mc_pc.pc_intr_string = malta_pci_intr_string;
143 	mcp->mc_pc.pc_intr_evcnt = malta_pci_intr_evcnt;
144 	mcp->mc_pc.pc_intr_establish = malta_pci_intr_establish;
145 	mcp->mc_pc.pc_intr_disestablish = malta_pci_intr_disestablish;
146 	mcp->mc_pc.pc_conf_interrupt = malta_pci_conf_interrupt;
147 	mcp->mc_pc.pc_pciide_compat_intr_establish =
148 	    malta_pciide_compat_intr_establish;
149 }
150 
151 void
152 malta_cal_timer(bus_space_tag_t st, bus_space_handle_t sh)
153 {
154 	u_long ctrdiff[4], startctr, endctr;
155 	u_int8_t regc;
156 	int i;
157 
158 	/* Disable interrupts first. */
159 	bus_space_write_1(st, sh, 0, MC_REGB);
160 	bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
161 	    MC_REGB_24HR);
162 
163 	/* Initialize for 16Hz. */
164 	bus_space_write_1(st, sh, 0, MC_REGA);
165 	bus_space_write_1(st, sh, 1, MC_BASE_32_KHz | MC_RATE_16_Hz);
166 
167 	/* Run the loop an extra time to prime the cache. */
168 	for (i = 0; i < 4; i++) {
169 		// led_display('h', 'z', '0' + i, ' ');
170 
171 		/* Enable the interrupt. */
172 		bus_space_write_1(st, sh, 0, MC_REGB);
173 		bus_space_write_1(st, sh, 1, MC_REGB_PIE | MC_REGB_SQWE |
174 		    MC_REGB_BINARY | MC_REGB_24HR);
175 
176 		/* Go to REGC. */
177 		bus_space_write_1(st, sh, 0, MC_REGC);
178 
179 		/* Wait for it to happen. */
180 		startctr = mips3_cp0_count_read();
181 		do {
182 			regc = bus_space_read_1(st, sh, 1);
183 			endctr = mips3_cp0_count_read();
184 		} while ((regc & MC_REGC_IRQF) == 0);
185 
186 		/* Already ACK'd. */
187 
188 		/* Disable. */
189 		bus_space_write_1(st, sh, 0, MC_REGB);
190 		bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
191 		    MC_REGB_24HR);
192 
193 		ctrdiff[i] = endctr - startctr;
194 	}
195 
196 	/* Compute the number of cycles per second. */
197 	curcpu()->ci_cpu_freq = ((ctrdiff[2] + ctrdiff[3]) / 2) * 16/*Hz*/;
198 
199 	/* Compute the number of ticks for hz. */
200 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
201 
202 	/* Compute the delay divisor. */
203 	curcpu()->ci_divisor_delay =
204 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
205 
206 	/*
207 	 * To implement a more accurate microtime using the CP0 COUNT
208 	 * register we need to divide that register by the number of
209 	 * cycles per MHz.  But...
210 	 *
211 	 * DIV and DIVU are expensive on MIPS (eg 75 clocks on the
212 	 * R4000).  MULT and MULTU are only 12 clocks on the same CPU.
213 	 * On the SB1 these appear to be 40-72 clocks for DIV/DIVU and 3
214 	 * clocks for MUL/MULTU.
215 	 *
216 	 * The strategy we use to to calculate the reciprical of cycles
217 	 * per MHz, scaled by 1<<32.  Then we can simply issue a MULTU
218 	 * and pluck of the HI register and have the results of the
219 	 * division.
220 	 */
221 	curcpu()->ci_divisor_recip =
222 	    0x100000000ULL / curcpu()->ci_divisor_delay;
223 
224 	/*
225 	 * Get correct cpu frequency if the CPU runs at twice the
226 	 * external/cp0-count frequency.
227 	 */
228 	if (mips_cpu_flags & CPU_MIPS_DOUBLE_COUNT)
229 		curcpu()->ci_cpu_freq *= 2;
230 
231 #ifdef DEBUG
232 	printf("Timer calibration: %lu cycles/sec [(%lu, %lu) * 16]\n",
233 	    curcpu()->ci_cpu_freq, ctrdiff[2], ctrdiff[3]);
234 #endif
235 }
236 
237 void *
238 evbmips_intr_establish(int irq, int (*func)(void *), void *arg)
239 {
240 	struct evbmips_intrhand *ih;
241 	int s;
242 
243 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
244 	if (ih == NULL)
245 		return (NULL);
246 
247 	ih->ih_func = func;
248 	ih->ih_arg = arg;
249 
250 	s = splhigh();
251 
252 	/*
253 	 * Link it into the tables.
254 	 */
255 	LIST_INSERT_HEAD(&malta_cpuintrs[0].cintr_list, ih, ih_q);
256 
257 	/* XXX - should check that MIPS_INT_MASK_0 is set... */
258 
259 	splx(s);
260 
261 	return (ih);
262 }
263 
264 void
265 evbmips_intr_disestablish(void *arg)
266 {
267 	struct evbmips_intrhand *ih = arg;
268 	int s;
269 
270 	s = splhigh();
271 
272 	/*
273 	 * First, remove it from the table.
274 	 */
275 	LIST_REMOVE(ih, ih_q);
276 
277 	/* XXX - disable MIPS_INT_MASK_0 if list is empty? */
278 
279 	splx(s);
280 
281 	free(ih, M_DEVBUF);
282 }
283 
284 void
285 evbmips_iointr(uint32_t status, uint32_t cause, uint32_t pc, uint32_t ipending)
286 {
287 	struct evbmips_intrhand *ih;
288 
289 	/* Check for error interrupts (SMI, GT62140) */
290 	if (ipending & (MIPS_INT_MASK_1 | MIPS_INT_MASK_3)) {
291 		if (ipending & MIPS_INT_MASK_1)
292 			panic("piix4 SMI interrupt");
293 		if (ipending & MIPS_INT_MASK_3)
294 			panic("gt62140 error interrupt");
295 	}
296 
297 	/*
298 	 * Read the interrupt pending registers, mask them with the
299 	 * ones we have enabled, and service them in order of decreasing
300 	 * priority.
301 	 */
302 	if (ipending & MIPS_INT_MASK_0) {
303 		/* All interrupts are gated through MIPS HW interrupt 0 */
304 		malta_cpuintrs[0].cintr_count.ev_count++;
305 		LIST_FOREACH(ih, &malta_cpuintrs[0].cintr_list, ih_q)
306 			(*ih->ih_func)(ih->ih_arg);
307 		cause &= ~MIPS_INT_MASK_0;
308 	}
309 
310 	/* Re-enable anything that we have processed. */
311 	_splset(MIPS_SR_INT_IE | ((status & ~cause) & MIPS_HARD_INT_MASK));
312 }
313 
314 /*
315  * YAMON configures pa_intrline correctly (so far), so we trust it to DTRT
316  * in the future...
317  */
318 #undef YAMON_IRQ_MAP_BAD
319 
320 /*
321  * PCI interrupt support
322  */
323 static int
324 malta_pci_intr_map(struct pci_attach_args *pa, pci_intr_handle_t *ihp)
325 {
326 #ifdef YAMON_IRQ_MAP_BAD
327 	static const int pciirqmap[13/*device*/][4/*pin*/] = {
328 		{ -1, -1, -1, 11 },	/* 10: USB */
329 		{ 10, -1, -1, -1 },	/* 11: Ethernet */
330 		{ 11, -1, -1, -1 },	/* 12: Audio */
331 		{ -1, -1, -1, -1 },	/* 13: not used */
332 		{ -1, -1, -1, -1 },	/* 14: not used */
333 		{ -1, -1, -1, -1 },	/* 15: not used */
334 		{ -1, -1, -1, -1 },	/* 16: not used */
335 		{ -1, -1, -1, -1 },	/* 17: Core card(?) */
336 		{ 10, 10, 11, 11 },	/* 18: PCI Slot 1 */
337 		{ 10, 11, 11, 10 },	/* 19: PCI Slot 2 */
338 		{ 11, 11, 10, 10 },	/* 20: PCI Slot 3 */
339 		{ 11, 10, 10, 11 },	/* 21: PCI Slot 4 */
340 	};
341 	int buspin, device, irq;
342 #else	/* !YAMON_IRQ_MAP_BAD */
343 	int buspin;
344 #endif	/* !YAMON_IRQ_MAP_BAD */
345 
346 	buspin = pa->pa_intrpin;
347 
348 	if (buspin == 0) {
349 		/* No IRQ used. */
350 		return (1);
351 	}
352 
353 	if (buspin > 4) {
354 		printf("malta_pci_intr_map: bad interrupt pin %d\n", buspin);
355 		return (1);
356 	}
357 
358 #ifdef YAMON_IRQ_MAP_BAD
359 	pci_decompose_tag(pa->pa_pc, pa->pa_intrtag, NULL, &device, NULL);
360 
361 	if (device < 10 || device > 21) {
362 		printf("malta_pci_intr_map: bad device %d\n", device);
363 		return (1);
364 	}
365 
366 	irq = pciirqmap[device - 10][buspin - 1];
367 	if (irq == -1) {
368 		printf("malta_pci_intr_map: no mapping for device %d pin %d\n",
369 		    device, buspin);
370 		return (1);
371 	}
372 
373 	*ihp = irq;
374 #else	/* !YAMON_IRQ_MAP_BAD */
375 	*ihp = pa->pa_intrline;
376 #endif	/* !YAMON_IRQ_MAP_BAD */
377 	return (0);
378 }
379 
380 static const char *
381 malta_pci_intr_string(void *v, pci_intr_handle_t irq)
382 {
383 
384 	return (isa_intr_string(pcib_ic, irq));
385 }
386 
387 static const struct evcnt *
388 malta_pci_intr_evcnt(void *v, pci_intr_handle_t irq)
389 {
390 
391 	return (isa_intr_evcnt(pcib_ic, irq));
392 }
393 
394 static void *
395 malta_pci_intr_establish(void *v, pci_intr_handle_t irq, int level,
396     int (*func)(void *), void *arg)
397 {
398 
399 	return (isa_intr_establish(pcib_ic, irq, IST_LEVEL, level, func, arg));
400 }
401 
402 static void
403 malta_pci_intr_disestablish(void *v, void *arg)
404 {
405 
406 	return (isa_intr_disestablish(pcib_ic, arg));
407 }
408 
409 static void
410 malta_pci_conf_interrupt(void *v, int bus, int dev, int func, int swiz,
411     int *iline)
412 {
413 
414 	/*
415 	 * We actually don't need to do anything; everything is handled
416 	 * in pci_intr_map().
417 	 */
418 	*iline = 0;
419 }
420 
421 void *
422 malta_pciide_compat_intr_establish(void *v, struct device *dev,
423     struct pci_attach_args *pa, int chan, int (*func)(void *), void *arg)
424 {
425 	pci_chipset_tag_t pc = pa->pa_pc;
426 	void *cookie;
427 	int bus, irq;
428 
429 	pci_decompose_tag(pc, pa->pa_tag, &bus, NULL, NULL);
430 
431 	/*
432 	 * If this isn't PCI bus #0, all bets are off.
433 	 */
434 	if (bus != 0)
435 		return (NULL);
436 
437 	irq = PCIIDE_COMPAT_IRQ(chan);
438 	cookie = isa_intr_establish(pcib_ic, irq, IST_EDGE, IPL_BIO, func, arg);
439 	if (cookie == NULL)
440 		return (NULL);
441 	printf("%s: %s channel interrupting at %s\n", dev->dv_xname,
442 	    PCIIDE_CHANNEL_NAME(chan), malta_pci_intr_string(v, irq));
443 	return (cookie);
444 }
445