xref: /netbsd/sys/arch/evbmips/malta/malta_intr.c (revision c4a72b64)
1 /*	$NetBSD: malta_intr.c,v 1.7 2002/12/06 05:46:47 simonb Exp $	*/
2 
3 /*
4  * Copyright 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Platform-specific interrupt support for the MIPS Malta.
40  */
41 
42 
43 #include <sys/param.h>
44 #include <sys/device.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 
48 #include <mips/locore.h>
49 
50 #include <evbmips/evbmips/clockvar.h>
51 
52 #include <evbmips/malta/maltavar.h>
53 #include <evbmips/malta/pci/pcibvar.h>
54 
55 #include <dev/ic/mc146818reg.h>		/* for malta_cal_timer() */
56 
57 #include <dev/isa/isavar.h>
58 #include <dev/pci/pciidereg.h>
59 
60 /*
61  * This is a mask of bits to clear in the SR when we go to a
62  * given hardware interrupt priority level.
63  */
64 const u_int32_t ipl_sr_bits[_IPL_N] = {
65 	0,					/*  0: IPL_NONE */
66 
67 	MIPS_SOFT_INT_MASK_0,			/*  1: IPL_SOFT */
68 
69 	MIPS_SOFT_INT_MASK_0,			/*  2: IPL_SOFTCLOCK */
70 
71 	MIPS_SOFT_INT_MASK_0|
72 		MIPS_SOFT_INT_MASK_1,		/*  3: IPL_SOFTNET */
73 
74 	MIPS_SOFT_INT_MASK_0|
75 		MIPS_SOFT_INT_MASK_1,		/*  4: IPL_SOFTSERIAL */
76 
77 	MIPS_SOFT_INT_MASK_0|
78 		MIPS_SOFT_INT_MASK_1|
79 		MIPS_INT_MASK_0,		/*  5: IPL_BIO */
80 
81 	MIPS_SOFT_INT_MASK_0|
82 		MIPS_SOFT_INT_MASK_1|
83 		MIPS_INT_MASK_0,		/*  6: IPL_NET */
84 
85 	MIPS_SOFT_INT_MASK_0|
86 		MIPS_SOFT_INT_MASK_1|
87 		MIPS_INT_MASK_0,		/*  7: IPL_{TTY,SERIAL} */
88 
89 	MIPS_SOFT_INT_MASK_0|
90 		MIPS_SOFT_INT_MASK_1|
91 		MIPS_INT_MASK_0|
92 		MIPS_INT_MASK_1|
93 		MIPS_INT_MASK_2|
94 		MIPS_INT_MASK_3|
95 		MIPS_INT_MASK_4|
96 		MIPS_INT_MASK_5,		/*  8: IPL_{CLOCK,HIGH} */
97 };
98 
99 /*
100  * This is a mask of bits to clear in the SR when we go to a
101  * given software interrupt priority level.
102  * Hardware ipls are port/board specific.
103  */
104 const u_int32_t ipl_si_to_sr[_IPL_NSOFT] = {
105 	MIPS_SOFT_INT_MASK_0,			/* IPL_SOFT */
106 	MIPS_SOFT_INT_MASK_0,			/* IPL_SOFTCLOCK */
107 	MIPS_SOFT_INT_MASK_1,			/* IPL_SOFTNET */
108 	MIPS_SOFT_INT_MASK_1,			/* IPL_SOFTSERIAL */
109 };
110 
111 struct malta_cpuintr {
112 	LIST_HEAD(, evbmips_intrhand) cintr_list;
113 	struct evcnt cintr_count;
114 };
115 #define	NINTRS		5	/* MIPS INT0 - INT4 */
116 
117 struct malta_cpuintr malta_cpuintrs[NINTRS];
118 const char *malta_cpuintrnames[NINTRS] = {
119 	"int 0 (piix4)",
120 	"int 1 (smi)",
121 	"int 2 (uart)",
122 	"int 3 (core hi/gt64120)",
123 	"int 4 (core lo)",
124 };
125 
126 static int	malta_pci_intr_map(struct pci_attach_args *, pci_intr_handle_t *);
127 static const char
128 		*malta_pci_intr_string(void *, pci_intr_handle_t);
129 static const struct evcnt
130 		*malta_pci_intr_evcnt(void *, pci_intr_handle_t);
131 static void	*malta_pci_intr_establish(void *, pci_intr_handle_t, int,
132 		    int (*)(void *), void *);
133 static void	malta_pci_intr_disestablish(void *, void *);
134 static void	malta_pci_conf_interrupt(void *, int, int, int, int, int *);
135 static void	*malta_pciide_compat_intr_establish(void *, struct device *,
136 		    struct pci_attach_args *, int, int (*)(void *), void *);
137 
138 void
139 evbmips_intr_init(void)
140 {
141 	struct malta_config *mcp = &malta_configuration;
142 	int i;
143 
144 	for (i = 0; i < NINTRS; i++) {
145 		LIST_INIT(&malta_cpuintrs[i].cintr_list);
146 		evcnt_attach_dynamic(&malta_cpuintrs[i].cintr_count,
147 		    EVCNT_TYPE_INTR, NULL, "mips", malta_cpuintrnames[i]);
148 	}
149 
150 	mcp->mc_pc.pc_intr_v = NULL;
151 	mcp->mc_pc.pc_intr_map = malta_pci_intr_map;
152 	mcp->mc_pc.pc_intr_string = malta_pci_intr_string;
153 	mcp->mc_pc.pc_intr_evcnt = malta_pci_intr_evcnt;
154 	mcp->mc_pc.pc_intr_establish = malta_pci_intr_establish;
155 	mcp->mc_pc.pc_intr_disestablish = malta_pci_intr_disestablish;
156 	mcp->mc_pc.pc_conf_interrupt = malta_pci_conf_interrupt;
157 	mcp->mc_pc.pc_pciide_compat_intr_establish =
158 	    malta_pciide_compat_intr_establish;
159 }
160 
161 void
162 malta_cal_timer(bus_space_tag_t st, bus_space_handle_t sh)
163 {
164 	uint32_t ctrdiff[4], startctr, endctr;
165 	u_int8_t regc;
166 	int i;
167 
168 	/* Disable interrupts first. */
169 	bus_space_write_1(st, sh, 0, MC_REGB);
170 	bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
171 	    MC_REGB_24HR);
172 
173 	/* Initialize for 16Hz. */
174 	bus_space_write_1(st, sh, 0, MC_REGA);
175 	bus_space_write_1(st, sh, 1, MC_BASE_32_KHz | MC_RATE_16_Hz);
176 
177 	/* Run the loop an extra time to prime the cache. */
178 	for (i = 0; i < 4; i++) {
179 		// led_display('h', 'z', '0' + i, ' ');
180 
181 		/* Enable the interrupt. */
182 		bus_space_write_1(st, sh, 0, MC_REGB);
183 		bus_space_write_1(st, sh, 1, MC_REGB_PIE | MC_REGB_SQWE |
184 		    MC_REGB_BINARY | MC_REGB_24HR);
185 
186 		/* Go to REGC. */
187 		bus_space_write_1(st, sh, 0, MC_REGC);
188 
189 		/* Wait for it to happen. */
190 		startctr = mips3_cp0_count_read();
191 		do {
192 			regc = bus_space_read_1(st, sh, 1);
193 			endctr = mips3_cp0_count_read();
194 		} while ((regc & MC_REGC_IRQF) == 0);
195 
196 		/* Already ACK'd. */
197 
198 		/* Disable. */
199 		bus_space_write_1(st, sh, 0, MC_REGB);
200 		bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
201 		    MC_REGB_24HR);
202 
203 		ctrdiff[i] = endctr - startctr;
204 	}
205 
206 	/* Compute the number of cycles per second. */
207 	curcpu()->ci_cpu_freq = ((ctrdiff[2] + ctrdiff[3]) / 2) * 16/*Hz*/;
208 
209 	/* Compute the number of ticks for hz. */
210 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
211 
212 	/* Compute the delay divisor and reciprical. */
213 	curcpu()->ci_divisor_delay =
214 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
215 	MIPS_SET_CI_RECIPRICAL(curcpu());
216 
217 	/*
218 	 * Get correct cpu frequency if the CPU runs at twice the
219 	 * external/cp0-count frequency.
220 	 */
221 	if (mips_cpu_flags & CPU_MIPS_DOUBLE_COUNT)
222 		curcpu()->ci_cpu_freq *= 2;
223 
224 #ifdef DEBUG
225 	printf("Timer calibration: %lu cycles/sec [(%u, %u) * 16]\n",
226 	    curcpu()->ci_cpu_freq, ctrdiff[2], ctrdiff[3]);
227 #endif
228 }
229 
230 void *
231 evbmips_intr_establish(int irq, int (*func)(void *), void *arg)
232 {
233 	struct evbmips_intrhand *ih;
234 	int s;
235 
236 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
237 	if (ih == NULL)
238 		return (NULL);
239 
240 	ih->ih_func = func;
241 	ih->ih_arg = arg;
242 
243 	s = splhigh();
244 
245 	/*
246 	 * Link it into the tables.
247 	 */
248 	LIST_INSERT_HEAD(&malta_cpuintrs[0].cintr_list, ih, ih_q);
249 
250 	/* XXX - should check that MIPS_INT_MASK_0 is set... */
251 
252 	splx(s);
253 
254 	return (ih);
255 }
256 
257 void
258 evbmips_intr_disestablish(void *arg)
259 {
260 	struct evbmips_intrhand *ih = arg;
261 	int s;
262 
263 	s = splhigh();
264 
265 	/*
266 	 * First, remove it from the table.
267 	 */
268 	LIST_REMOVE(ih, ih_q);
269 
270 	/* XXX - disable MIPS_INT_MASK_0 if list is empty? */
271 
272 	splx(s);
273 
274 	free(ih, M_DEVBUF);
275 }
276 
277 void
278 evbmips_iointr(uint32_t status, uint32_t cause, uint32_t pc, uint32_t ipending)
279 {
280 	struct evbmips_intrhand *ih;
281 
282 	/* Check for error interrupts (SMI, GT64120) */
283 	if (ipending & (MIPS_INT_MASK_1 | MIPS_INT_MASK_3)) {
284 		if (ipending & MIPS_INT_MASK_1)
285 			panic("piix4 SMI interrupt");
286 		if (ipending & MIPS_INT_MASK_3)
287 			panic("gt64120 error interrupt");
288 	}
289 
290 	/*
291 	 * Read the interrupt pending registers, mask them with the
292 	 * ones we have enabled, and service them in order of decreasing
293 	 * priority.
294 	 */
295 	if (ipending & MIPS_INT_MASK_0) {
296 		/* All interrupts are gated through MIPS HW interrupt 0 */
297 		malta_cpuintrs[0].cintr_count.ev_count++;
298 		LIST_FOREACH(ih, &malta_cpuintrs[0].cintr_list, ih_q)
299 			(*ih->ih_func)(ih->ih_arg);
300 		cause &= ~MIPS_INT_MASK_0;
301 	}
302 
303 	/* Re-enable anything that we have processed. */
304 	_splset(MIPS_SR_INT_IE | ((status & ~cause) & MIPS_HARD_INT_MASK));
305 }
306 
307 /*
308  * YAMON configures pa_intrline correctly (so far), so we trust it to DTRT
309  * in the future...
310  */
311 #undef YAMON_IRQ_MAP_BAD
312 
313 /*
314  * PCI interrupt support
315  */
316 static int
317 malta_pci_intr_map(struct pci_attach_args *pa, pci_intr_handle_t *ihp)
318 {
319 #ifdef YAMON_IRQ_MAP_BAD
320 	static const int pciirqmap[12/*device*/][4/*pin*/] = {
321 		{ -1, -1, -1, 11 },	/* 10: USB */
322 		{ 10, -1, -1, -1 },	/* 11: Ethernet */
323 		{ 11, -1, -1, -1 },	/* 12: Audio */
324 		{ -1, -1, -1, -1 },	/* 13: not used */
325 		{ -1, -1, -1, -1 },	/* 14: not used */
326 		{ -1, -1, -1, -1 },	/* 15: not used */
327 		{ -1, -1, -1, -1 },	/* 16: not used */
328 		{ -1, -1, -1, -1 },	/* 17: Core card(?) */
329 		{ 10, 10, 11, 11 },	/* 18: PCI Slot 1 */
330 		{ 10, 11, 11, 10 },	/* 19: PCI Slot 2 */
331 		{ 11, 11, 10, 10 },	/* 20: PCI Slot 3 */
332 		{ 11, 10, 10, 11 },	/* 21: PCI Slot 4 */
333 	};
334 	int buspin, device, irq;
335 #else	/* !YAMON_IRQ_MAP_BAD */
336 	int buspin;
337 #endif	/* !YAMON_IRQ_MAP_BAD */
338 
339 	buspin = pa->pa_intrpin;
340 
341 	if (buspin == 0) {
342 		/* No IRQ used. */
343 		return (1);
344 	}
345 
346 	if (buspin > 4) {
347 		printf("malta_pci_intr_map: bad interrupt pin %d\n", buspin);
348 		return (1);
349 	}
350 
351 #ifdef YAMON_IRQ_MAP_BAD
352 	pci_decompose_tag(pa->pa_pc, pa->pa_intrtag, NULL, &device, NULL);
353 
354 	if (device < 10 || device > 21) {
355 		printf("malta_pci_intr_map: bad device %d\n", device);
356 		return (1);
357 	}
358 
359 	irq = pciirqmap[device - 10][buspin - 1];
360 	if (irq == -1) {
361 		printf("malta_pci_intr_map: no mapping for device %d pin %d\n",
362 		    device, buspin);
363 		return (1);
364 	}
365 
366 	*ihp = irq;
367 #else	/* !YAMON_IRQ_MAP_BAD */
368 	*ihp = pa->pa_intrline;
369 #endif	/* !YAMON_IRQ_MAP_BAD */
370 	return (0);
371 }
372 
373 static const char *
374 malta_pci_intr_string(void *v, pci_intr_handle_t irq)
375 {
376 
377 	return (isa_intr_string(pcib_ic, irq));
378 }
379 
380 static const struct evcnt *
381 malta_pci_intr_evcnt(void *v, pci_intr_handle_t irq)
382 {
383 
384 	return (isa_intr_evcnt(pcib_ic, irq));
385 }
386 
387 static void *
388 malta_pci_intr_establish(void *v, pci_intr_handle_t irq, int level,
389     int (*func)(void *), void *arg)
390 {
391 
392 	return (isa_intr_establish(pcib_ic, irq, IST_LEVEL, level, func, arg));
393 }
394 
395 static void
396 malta_pci_intr_disestablish(void *v, void *arg)
397 {
398 
399 	return (isa_intr_disestablish(pcib_ic, arg));
400 }
401 
402 static void
403 malta_pci_conf_interrupt(void *v, int bus, int dev, int func, int swiz,
404     int *iline)
405 {
406 
407 	/*
408 	 * We actually don't need to do anything; everything is handled
409 	 * in pci_intr_map().
410 	 */
411 	*iline = 0;
412 }
413 
414 void *
415 malta_pciide_compat_intr_establish(void *v, struct device *dev,
416     struct pci_attach_args *pa, int chan, int (*func)(void *), void *arg)
417 {
418 	pci_chipset_tag_t pc = pa->pa_pc;
419 	void *cookie;
420 	int bus, irq;
421 
422 	pci_decompose_tag(pc, pa->pa_tag, &bus, NULL, NULL);
423 
424 	/*
425 	 * If this isn't PCI bus #0, all bets are off.
426 	 */
427 	if (bus != 0)
428 		return (NULL);
429 
430 	irq = PCIIDE_COMPAT_IRQ(chan);
431 	cookie = isa_intr_establish(pcib_ic, irq, IST_EDGE, IPL_BIO, func, arg);
432 	if (cookie == NULL)
433 		return (NULL);
434 	printf("%s: %s channel interrupting at %s\n", dev->dv_xname,
435 	    PCIIDE_CHANNEL_NAME(chan), malta_pci_intr_string(v, irq));
436 	return (cookie);
437 }
438