xref: /netbsd/sys/arch/hp300/hp300/pmap_bootstrap.c (revision c4a72b64)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.21 2002/11/05 07:41:21 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
40  */
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.21 2002/11/05 07:41:21 chs Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 
48 #include <machine/frame.h>
49 #include <machine/cpu.h>
50 #include <machine/hp300spu.h>
51 #include <machine/vmparam.h>
52 #include <machine/pte.h>
53 
54 #include <hp300/hp300/clockreg.h>
55 
56 #include <uvm/uvm_extern.h>
57 
58 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
59 
60 extern char *etext;
61 extern int Sysptsize;
62 extern char *extiobase, *proc0paddr;
63 extern st_entry_t *Sysseg;
64 extern pt_entry_t *Sysptmap, *Sysmap;
65 extern vaddr_t CLKbase, MMUbase;
66 extern paddr_t bootinfo_pa;
67 extern vaddr_t bootinfo_va;
68 
69 extern int maxmem, physmem;
70 extern paddr_t avail_start, avail_end;
71 extern vaddr_t virtual_avail, virtual_end;
72 extern vsize_t mem_size;
73 extern int protection_codes[];
74 #ifdef M68K_MMU_HP
75 extern int pmap_aliasmask;
76 #endif
77 
78 void	pmap_bootstrap __P((paddr_t, paddr_t));
79 
80 /*
81  * Special purpose kernel virtual addresses, used for mapping
82  * physical pages for a variety of temporary or permanent purposes:
83  *
84  *	CADDR1, CADDR2:	pmap zero/copy operations
85  *	vmmap:		/dev/mem, crash dumps, parity error checking
86  *	ledbase:	SPU LEDs
87  *	msgbufaddr:	kernel message buffer
88  */
89 caddr_t		CADDR1, CADDR2, vmmap, ledbase;
90 extern caddr_t	msgbufaddr;
91 
92 /*
93  * Bootstrap the VM system.
94  *
95  * Called with MMU off so we must relocate all global references by `firstpa'
96  * (don't call any functions here!)  `nextpa' is the first available physical
97  * memory address.  Returns an updated first PA reflecting the memory we
98  * have allocated.  MMU is still off when we return.
99  *
100  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
101  * XXX a PIC compiler would make this much easier.
102  */
103 void
104 pmap_bootstrap(nextpa, firstpa)
105 	paddr_t nextpa;
106 	paddr_t firstpa;
107 {
108 	paddr_t kstpa, kptpa, iiopa, eiopa, kptmpa, lkptpa, p0upa;
109 	u_int nptpages, kstsize;
110 	st_entry_t protoste, *ste;
111 	pt_entry_t protopte, *pte, *epte;
112 
113 	/*
114 	 * Calculate important physical addresses:
115 	 *
116 	 *	kstpa		kernel segment table	1 page (!040)
117 	 *						N pages (040)
118 	 *
119 	 *	kptpa		statically allocated
120 	 *			kernel PT pages		Sysptsize+ pages
121 	 *
122 	 *	iiopa		internal IO space
123 	 *			PT pages		IIOMAPSIZE pages
124 	 *
125 	 *	eiopa		external IO space
126 	 *			PT pages		EIOMAPSIZE pages
127 	 *
128 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
129 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
130 	 *   the total to a page boundary with IO maps at the end. ]
131 	 *
132 	 *	kptmpa		kernel PT map		1 page
133 	 *
134 	 *	lkptpa		last kernel PT page	1 page
135 	 *
136 	 *	p0upa		proc 0 u-area		UPAGES pages
137 	 *
138 	 * The KVA corresponding to any of these PAs is:
139 	 *	(PA - firstpa + KERNBASE).
140 	 */
141 	if (RELOC(mmutype, int) == MMU_68040)
142 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
143 	else
144 		kstsize = 1;
145 	kstpa = nextpa;
146 	nextpa += kstsize * NBPG;
147 	kptpa = nextpa;
148 	nptpages = RELOC(Sysptsize, int) +
149 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
150 	nextpa += nptpages * NBPG;
151 	eiopa = nextpa - EIOMAPSIZE * sizeof(pt_entry_t);
152 	iiopa = eiopa - IIOMAPSIZE * sizeof(pt_entry_t);
153 	kptmpa = nextpa;
154 	nextpa += NBPG;
155 	lkptpa = nextpa;
156 	nextpa += NBPG;
157 	p0upa = nextpa;
158 	nextpa += USPACE;
159 
160 	/*
161 	 * Initialize segment table and kernel page table map.
162 	 *
163 	 * On 68030s and earlier MMUs the two are identical except for
164 	 * the valid bits so both are initialized with essentially the
165 	 * same values.  On the 68040, which has a mandatory 3-level
166 	 * structure, the segment table holds the level 1 table and part
167 	 * (or all) of the level 2 table and hence is considerably
168 	 * different.  Here the first level consists of 128 descriptors
169 	 * (512 bytes) each mapping 32mb of address space.  Each of these
170 	 * points to blocks of 128 second level descriptors (512 bytes)
171 	 * each mapping 256kb.  Note that there may be additional "segment
172 	 * table" pages depending on how large MAXKL2SIZE is.
173 	 *
174 	 * Portions of the last segment of KVA space (0xFFF00000 -
175 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
176 	 * for UPAGES is used for mapping the current process u-area
177 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
178 	 * to the last physical page of RAM to give us a region in which
179 	 * PA == VA.  We use the first part of this page for enabling
180 	 * and disabling mapping.  The last part of this page also contains
181 	 * info left by the boot ROM.
182 	 *
183 	 * XXX cramming two levels of mapping into the single "segment"
184 	 * table on the 68040 is intended as a temporary hack to get things
185 	 * working.  The 224mb of address space that this allows will most
186 	 * likely be insufficient in the future (at least for the kernel).
187 	 */
188 	if (RELOC(mmutype, int) == MMU_68040) {
189 		int num;
190 
191 		/*
192 		 * First invalidate the entire "segment table" pages
193 		 * (levels 1 and 2 have the same "invalid" value).
194 		 */
195 		pte = (u_int *)kstpa;
196 		epte = &pte[kstsize * NPTEPG];
197 		while (pte < epte)
198 			*pte++ = SG_NV;
199 		/*
200 		 * Initialize level 2 descriptors (which immediately
201 		 * follow the level 1 table).  We need:
202 		 *	NPTEPG / SG4_LEV3SIZE
203 		 * level 2 descriptors to map each of the nptpages+1
204 		 * pages of PTEs.  Note that we set the "used" bit
205 		 * now to save the HW the expense of doing it.
206 		 */
207 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
208 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
209 		epte = &pte[num];
210 		protoste = kptpa | SG_U | SG_RW | SG_V;
211 		while (pte < epte) {
212 			*pte++ = protoste;
213 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
214 		}
215 		/*
216 		 * Initialize level 1 descriptors.  We need:
217 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
218 		 * level 1 descriptors to map the `num' level 2's.
219 		 */
220 		pte = (u_int *)kstpa;
221 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
222 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
223 		while (pte < epte) {
224 			*pte++ = protoste;
225 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
226 		}
227 		/*
228 		 * Initialize the final level 1 descriptor to map the last
229 		 * block of level 2 descriptors.
230 		 */
231 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
232 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
233 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
234 		/*
235 		 * Now initialize the final portion of that block of
236 		 * descriptors to map the "last PT page".
237 		 */
238 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
239 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
240 		protoste = lkptpa | SG_U | SG_RW | SG_V;
241 		while (pte < epte) {
242 			*pte++ = protoste;
243 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
244 		}
245 		/*
246 		 * Initialize Sysptmap
247 		 */
248 		pte = (u_int *)kptmpa;
249 		epte = &pte[nptpages+1];
250 		protopte = kptpa | PG_RW | PG_CI | PG_V;
251 		while (pte < epte) {
252 			*pte++ = protopte;
253 			protopte += NBPG;
254 		}
255 		/*
256 		 * Invalidate all but the last remaining entry.
257 		 */
258 		epte = &((u_int *)kptmpa)[NPTEPG-1];
259 		while (pte < epte) {
260 			*pte++ = PG_NV;
261 		}
262 		/*
263 		 * Initialize the last to point to the page
264 		 * table page allocated earlier.
265 		 */
266 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
267 	} else {
268 		/*
269 		 * Map the page table pages in both the HW segment table
270 		 * and the software Sysptmap.  Note that Sysptmap is also
271 		 * considered a PT page hence the +1.
272 		 */
273 		ste = (u_int *)kstpa;
274 		pte = (u_int *)kptmpa;
275 		epte = &pte[nptpages+1];
276 		protoste = kptpa | SG_RW | SG_V;
277 		protopte = kptpa | PG_RW | PG_CI | PG_V;
278 		while (pte < epte) {
279 			*ste++ = protoste;
280 			*pte++ = protopte;
281 			protoste += NBPG;
282 			protopte += NBPG;
283 		}
284 		/*
285 		 * Invalidate all but the last remaining entries in both.
286 		 */
287 		epte = &((u_int *)kptmpa)[NPTEPG-1];
288 		while (pte < epte) {
289 			*ste++ = SG_NV;
290 			*pte++ = PG_NV;
291 		}
292 		/*
293 		 * Initialize the last to point to point to the page
294 		 * table page allocated earlier.
295 		 */
296 		*ste = lkptpa | SG_RW | SG_V;
297 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
298 	}
299 	/*
300 	 * Invalidate all but the final entry in the last kernel PT page
301 	 * (u-area PTEs will be validated later).  The final entry maps
302 	 * the last page of physical memory.
303 	 */
304 	pte = (u_int *)lkptpa;
305 	epte = &pte[NPTEPG-1];
306 	while (pte < epte)
307 		*pte++ = PG_NV;
308 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
309 	/*
310 	 * Initialize kernel page table.
311 	 * Start by invalidating the `nptpages' that we have allocated.
312 	 */
313 	pte = (u_int *)kptpa;
314 	epte = &pte[nptpages * NPTEPG];
315 	while (pte < epte)
316 		*pte++ = PG_NV;
317 
318 	/*
319 	 * The page of kernel text is zero-filled in locore.s,
320 	 * and not mapped (at VA 0).  The boot loader places the
321 	 * bootinfo here after the kernel is loaded.  Remember
322 	 * the physical address; we'll map it to a virtual address
323 	 * later.
324 	 */
325 	RELOC(bootinfo_pa, paddr_t) = firstpa;
326 
327 	/*
328 	 * Validate PTEs for kernel text (RO).  The first page
329 	 * of kernel text remains invalid; see locore.s
330 	 */
331 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE + NBPG)];
332 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
333 	protopte = (firstpa + NBPG) | PG_RO | PG_V;
334 	while (pte < epte) {
335 		*pte++ = protopte;
336 		protopte += NBPG;
337 	}
338 	/*
339 	 * Validate PTEs for kernel data/bss, dynamic data allocated
340 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
341 	 * u-area and page table allocated below (RW).
342 	 */
343 	epte = &((u_int *)kptpa)[m68k_btop(nextpa - firstpa)];
344 	protopte = (protopte & ~PG_PROT) | PG_RW;
345 	/*
346 	 * Enable copy-back caching of data pages
347 	 */
348 	if (RELOC(mmutype, int) == MMU_68040)
349 		protopte |= PG_CCB;
350 	while (pte < epte) {
351 		*pte++ = protopte;
352 		protopte += NBPG;
353 	}
354 	/*
355 	 * Finally, validate the internal IO space PTEs (RW+CI).
356 	 * We do this here since the 320/350 MMU registers (also
357 	 * used, but to a lesser extent, on other models) are mapped
358 	 * in this range and it would be nice to be able to access
359 	 * them after the MMU is turned on.
360 	 */
361 	pte = (u_int *)iiopa;
362 	epte = (u_int *)eiopa;
363 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
364 	while (pte < epte) {
365 		*pte++ = protopte;
366 		protopte += NBPG;
367 	}
368 
369 	/*
370 	 * Calculate important exported kernel virtual addresses
371 	 */
372 	/*
373 	 * Sysseg: base of kernel segment table
374 	 */
375 	RELOC(Sysseg, st_entry_t *) =
376 		(st_entry_t *)(kstpa - firstpa);
377 	/*
378 	 * Sysptmap: base of kernel page table map
379 	 */
380 	RELOC(Sysptmap, pt_entry_t *) =
381 		(pt_entry_t *)(kptmpa - firstpa);
382 	/*
383 	 * Sysmap: kernel page table (as mapped through Sysptmap)
384 	 * Immediately follows `nptpages' of static kernel page table.
385 	 */
386 	RELOC(Sysmap, pt_entry_t *) =
387 		(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
388 	/*
389 	 * intiobase, intiolimit: base and end of internal (DIO) IO space.
390 	 * IIOMAPSIZE pages prior to external IO space at end of static
391 	 * kernel page table.
392 	 */
393 	RELOC(intiobase, char *) =
394 		(char *)m68k_ptob(nptpages*NPTEPG - (IIOMAPSIZE+EIOMAPSIZE));
395 	RELOC(intiolimit, char *) =
396 		(char *)m68k_ptob(nptpages*NPTEPG - EIOMAPSIZE);
397 	/*
398 	 * extiobase: base of external (DIO-II) IO space.
399 	 * EIOMAPSIZE pages at the end of the static kernel page table.
400 	 */
401 	RELOC(extiobase, char *) =
402 		(char *)m68k_ptob(nptpages*NPTEPG - EIOMAPSIZE);
403 	/*
404 	 * CLKbase, MMUbase: important registers in internal IO space
405 	 * accessed from assembly language.
406 	 */
407 	RELOC(CLKbase, vaddr_t) =
408 		(vaddr_t)RELOC(intiobase, char *) + CLKBASE;
409 	RELOC(MMUbase, vaddr_t) =
410 		(vaddr_t)RELOC(intiobase, char *) + MMUBASE;
411 
412 	/*
413 	 * Setup u-area for process 0.
414 	 */
415 	/*
416 	 * Zero the u-area.
417 	 * NOTE: `pte' and `epte' aren't PTEs here.
418 	 */
419 	pte = (u_int *)p0upa;
420 	epte = (u_int *)(p0upa + USPACE);
421 	while (pte < epte)
422 		*pte++ = 0;
423 	/*
424 	 * Remember the u-area address so it can be loaded in the
425 	 * proc struct p_addr field later.
426 	 */
427 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
428 
429 	/*
430 	 * VM data structures are now initialized, set up data for
431 	 * the pmap module.
432 	 *
433 	 * Note about avail_end: msgbuf is initialized just after
434 	 * avail_end in machdep.c.  Since the last page is used
435 	 * for rebooting the system (code is copied there and
436 	 * excution continues from copied code before the MMU
437 	 * is disabled), the msgbuf will get trounced between
438 	 * reboots if it's placed in the last physical page.
439 	 * To work around this, we move avail_end back one more
440 	 * page so the msgbuf can be preserved.
441 	 */
442 	RELOC(avail_start, paddr_t) = nextpa;
443 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
444 	    (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
445 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
446 	RELOC(virtual_avail, vaddr_t) =
447 		VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
448 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
449 
450 #ifdef M68K_MMU_HP
451 	/*
452 	 * Determine VA aliasing distance if any
453 	 */
454 	if (RELOC(ectype, int) == EC_VIRT) {
455 		if (RELOC(machineid, int) == HP_320)
456 			RELOC(pmap_aliasmask, int) = 0x3fff;	/* 16k */
457 		else if (RELOC(machineid, int) == HP_350)
458 			RELOC(pmap_aliasmask, int) = 0x7fff;	/* 32k */
459 	}
460 #endif
461 
462 	/*
463 	 * Initialize protection array.
464 	 * XXX don't use a switch statement, it might produce an
465 	 * absolute "jmp" table.
466 	 */
467 	{
468 		int *kp;
469 
470 		kp = &RELOC(protection_codes, int);
471 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
472 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
473 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
474 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
475 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
476 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
477 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
478 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
479 	}
480 
481 	/*
482 	 * Kernel page/segment table allocated in locore,
483 	 * just initialize pointers.
484 	 */
485 	{
486 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
487 
488 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
489 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
490 		simple_lock_init(&kpm->pm_lock);
491 		kpm->pm_count = 1;
492 		kpm->pm_stpa = (st_entry_t *)kstpa;
493 		/*
494 		 * For the 040 we also initialize the free level 2
495 		 * descriptor mask noting that we have used:
496 		 *	0:		level 1 table
497 		 *	1 to `num':	map page tables
498 		 *	MAXKL2SIZE-1:	maps last-page page table
499 		 */
500 		if (RELOC(mmutype, int) == MMU_68040) {
501 			int num;
502 
503 			kpm->pm_stfree = ~l2tobm(0);
504 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
505 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
506 			while (num)
507 				kpm->pm_stfree &= ~l2tobm(num--);
508 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
509 			for (num = MAXKL2SIZE;
510 			     num < sizeof(kpm->pm_stfree)*NBBY;
511 			     num++)
512 				kpm->pm_stfree &= ~l2tobm(num);
513 		}
514 	}
515 
516 	/*
517 	 * Allocate some fixed, special purpose kernel virtual addresses
518 	 */
519 	{
520 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
521 
522 		RELOC(bootinfo_va, vaddr_t) = (vaddr_t)va;
523 		va += NBPG;
524 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
525 		va += NBPG;
526 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
527 		va += NBPG;
528 		RELOC(vmmap, caddr_t) = (caddr_t)va;
529 		va += NBPG;
530 		RELOC(ledbase, caddr_t) = (caddr_t)va;
531 		va += NBPG;
532 		RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
533 		va += m68k_round_page(MSGBUFSIZE);
534 		RELOC(virtual_avail, vaddr_t) = va;
535 	}
536 }
537 
538 void
539 pmap_init_md(void)
540 {
541 	vaddr_t addr;
542 
543 	addr = (vaddr_t) intiobase;
544 	if (uvm_map(kernel_map, &addr,
545 		    m68k_ptob(IIOMAPSIZE+EIOMAPSIZE),
546 		    NULL, UVM_UNKNOWN_OFFSET, 0,
547 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE,
548 				UVM_INH_NONE, UVM_ADV_RANDOM,
549 				UVM_FLAG_FIXED)) != 0)
550 		panic("pmap_init_md: uvm_map failed");
551 }
552