xref: /netbsd/sys/arch/hpcmips/stand/pbsdboot/vmem.c (revision bf9ec67e)
1 /*	$NetBSD: vmem.c,v 1.5 2000/06/04 04:30:50 takemura Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Shin Takemura.
5  * All rights reserved.
6  *
7  * This software is part of the PocketBSD.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the PocketBSD project
20  *	and its contributors.
21  * 4. Neither the name of the project nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  */
38 #include <pbsdboot.h>
39 
40 struct addr_s {
41 	caddr_t addr;
42 	int in_use;
43 };
44 
45 struct page_header_s {
46 	unsigned long magic0;
47 	int pageno;
48 	unsigned long magic1;
49 };
50 
51 struct map_s *map = NULL;
52 struct addr_s *phys_addrs = NULL;
53 unsigned char* heap = NULL;
54 int npages;
55 caddr_t kernel_start;
56 caddr_t kernel_end;
57 
58 int
59 vmem_exec(caddr_t entry, int argc, char *argv[], struct bootinfo *bi)
60 {
61 	int i;
62 	caddr_t p;
63 
64 	if (map == NULL) {
65 		debug_printf(TEXT("vmem is not initialized.\n"));
66 		msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
67 		return (-1);
68 	}
69 
70 	debug_printf(TEXT("entry point=0x%x\n"), entry);
71 
72 	map->entry = entry;
73 	map->base = kernel_start;
74 
75 	for (i = 0; i < argc; i++) {
76 		argv[i] = vtophysaddr(argv[i]);
77 	}
78 	map->arg0 = (caddr_t)argc;
79 	map->arg1 = vtophysaddr((caddr_t)argv);
80 	map->arg2 = vtophysaddr((caddr_t)bi);
81 	map->arg3 = NULL;
82 
83 	if (map->arg1 == NULL || map->arg2 == NULL) {
84 		debug_printf(TEXT("arg, vtophysaddr() failed\n"));
85 		msg_printf(MSG_ERROR, whoami,
86 			   TEXT("arg, vtophysaddr() failed\n"));
87 		return (-1);
88 	}
89 
90 	for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++)  {
91 		if ((p = vtophysaddr(p)) == NULL) {
92 			debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
93 				     i, map->leaf[i / map->leafsize][i % map->leafsize]);
94 			msg_printf(MSG_ERROR, whoami,
95 				   TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
96 				   i, map->leaf[i / map->leafsize][i % map->leafsize]);
97 			return (-1);
98 		}
99 		map->leaf[i / map->leafsize][i % map->leafsize] = p;
100 	}
101 
102 	for (i = 0; i < map->nleaves; i++) {
103 		if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
104 			debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
105 				     i, map->leaf[i / map->leafsize][i % map->leafsize]);
106 			msg_printf(MSG_ERROR, whoami,
107 				   TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
108 				   i, map->leaf[i / map->leafsize][i % map->leafsize]);
109 			return (-1);
110 		}
111 		map->leaf[i] = (caddr_t*)p;
112 	}
113 
114 	debug_printf(TEXT("execute startprog()\n"));
115 	//return (-1);
116 	close_debug_log();
117 	return ((*system_info.si_boot)(vtophysaddr((caddr_t)map)));
118 }
119 
120 caddr_t
121 vmem_alloc()
122 {
123 	int i, pagesize;
124 	struct page_header_s *page;
125 
126 	pagesize = system_info.si_pagesize;
127 	for (i = 0; i < npages; i++) {
128 		page = (struct page_header_s*)&heap[pagesize * i];
129 		if (!phys_addrs[i].in_use &&
130 		    !(kernel_start <= phys_addrs[i].addr &&
131 		      phys_addrs[i].addr < kernel_end)) {
132 			phys_addrs[i].in_use = 1;
133 			return ((caddr_t)page);
134 		}
135 	}
136 	return (NULL);
137 }
138 
139 static caddr_t
140 alloc_kpage(caddr_t phys_addr)
141 {
142 	int i, pagesize;
143 	struct page_header_s *page;
144 
145 	pagesize = system_info.si_pagesize;
146 	for (i = 0; i < npages; i++) {
147 		page = (struct page_header_s*)&heap[pagesize * i];
148 		if (phys_addrs[i].addr == phys_addr) {
149 			if (phys_addrs[i].in_use) {
150 				debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
151 					     i, phys_addr);
152 				msg_printf(MSG_ERROR, whoami,
153 					   TEXT("page %d (phys addr=0x%x) is already in use\n"),
154 					   i, phys_addr);
155 				return (NULL);
156 			}
157 			phys_addrs[i].in_use = 1;
158 			return ((caddr_t)page);
159 		}
160 	}
161 	return (vmem_alloc());
162 }
163 
164 caddr_t
165 vmem_get(caddr_t phys_addr, int *length)
166 {
167 	int pagesize = system_info.si_pagesize;
168 	int pageno = (phys_addr - kernel_start) / pagesize;
169 	int offset = (phys_addr - kernel_start) % pagesize;
170 
171 	if (map == NULL || pageno < 0 || npages <= pageno) {
172 		return (NULL);
173 	}
174 	if (length) {
175 		*length = pagesize - offset;
176 	}
177 	return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
178 }
179 
180 caddr_t
181 vtophysaddr(caddr_t page)
182 {
183 	int pageno = (page - heap) / system_info.si_pagesize;
184 	int offset = (page - heap) % system_info.si_pagesize;
185 
186 	if (map == NULL || pageno < 0 || npages <= pageno) {
187 		return (NULL);
188 	}
189 	return (phys_addrs[pageno].addr + offset);
190 }
191 
192 int
193 vmem_init(caddr_t start, caddr_t end)
194 {
195 #define MEM_BLOCK_SIZE (1024*1024*4) /* must be greater than page size */
196 	int i, m, pageno;
197 	unsigned long magic0;
198 	unsigned long magic1;
199 	int nfounds;
200 	struct page_header_s *page;
201 	long size;
202 	int nleaves;
203 	int pagesize, memblocks;
204 
205 	pagesize = system_info.si_pagesize;
206 	memblocks = (system_info.si_drammaxsize) / MEM_BLOCK_SIZE;
207 
208 	/* align with page size */
209 	start = (caddr_t)(((long)start / pagesize) * pagesize);
210 	end = (caddr_t)((((long)end + pagesize - 1) / pagesize) * pagesize);
211 
212 	kernel_start = start;
213 	kernel_end = end;
214 	size = end - start;
215 
216 	/*
217 	 *  program image pages.
218 	 */
219 	npages = (size + pagesize - 1) / pagesize;
220 
221 	/*
222 	 *  map leaf pages.
223 	 *  npages plus one for end mark.
224 	 */
225 	npages += (nleaves = ((npages * sizeof(caddr_t) + pagesize) / pagesize));
226 
227 	/*
228 	 *  map root page, startprg code page, argument page and bootinfo page.
229 	 */
230 	npages += 4;
231 
232 	/*
233 	 *  allocate pages
234 	 */
235 	debug_printf(TEXT("allocate %d pages\n"), npages);
236 	heap = (unsigned char*)
237 		VirtualAlloc(0,
238 			     npages * pagesize,
239 			     MEM_COMMIT,
240 			     PAGE_READWRITE | PAGE_NOCACHE);
241 	if (heap == NULL) {
242 		debug_printf(TEXT("can't allocate heap\n"));
243 		msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
244 		goto error_cleanup;
245 	}
246 
247 	/*
248 	 *  allocate address table.
249 	 */
250 	phys_addrs = (struct addr_s *)
251 		VirtualAlloc(0,
252 			     npages * sizeof(struct addr_s),
253 			     MEM_COMMIT,
254 			     PAGE_READWRITE);
255 	if (phys_addrs == NULL) {
256 		debug_printf(TEXT("can't allocate address table\n"));
257 		msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
258 		goto error_cleanup;
259 	}
260 
261 	/*
262 	 *  set magic number for each page in buffer.
263 	 */
264 	magic0 = Random();
265 	magic1 = Random();
266 	debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
267 
268 	for (i = 0; i < npages; i++) {
269 		page = (struct page_header_s*)&heap[pagesize * i];
270 		page->magic0 = magic0;
271 		page->pageno = i;
272 		page->magic1 = magic1;
273 		phys_addrs[i].addr = 0;
274 		phys_addrs[i].in_use = 0;
275 	}
276 
277 	/*
278 	 *  Scan whole physical memory.
279 	 */
280 	nfounds = 0;
281 	for (m = 0; (m < memblocks) && (nfounds < npages); m++) {
282 		unsigned char* mem;
283 		/* Map physical memory block */
284 		mem = (unsigned char*)VirtualAlloc(0, MEM_BLOCK_SIZE,
285 						   MEM_RESERVE, PAGE_NOACCESS);
286 		if(!VirtualCopy((LPVOID)mem, (LPVOID)
287 				((system_info.si_dramstart + MEM_BLOCK_SIZE * m) >> 8),
288 				MEM_BLOCK_SIZE,
289 				PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL)) {
290 			VirtualFree(mem, 0, MEM_RELEASE);
291 			continue;
292 		}
293 		/* Find preliminary allocated pages */
294 		for (i = 0; i < (int)(MEM_BLOCK_SIZE / pagesize); i++) {
295 			page = (struct page_header_s*)&mem[pagesize * i];
296 			if (page->magic0 == magic0 &&
297 			    page->magic1 == magic1) {
298 				pageno = page->pageno;
299 				if (0 <= pageno && pageno < npages &&
300 				    phys_addrs[pageno].addr == 0) {
301 					/* Set kernel virtual addr. XXX mips dependent */
302 					phys_addrs[pageno].addr = (unsigned char*)
303 						((0x80000000 |
304 						  system_info.si_dramstart) +
305 						 MEM_BLOCK_SIZE * m +
306 						 pagesize * i);
307 					page->magic0 = 0;
308 					page->magic1 = 0;
309 					if (npages <= ++nfounds) {
310 						break;
311 					}
312 				} else {
313 					debug_printf(TEXT("invalid page header\n"));
314 					msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
315 					goto error_cleanup;
316 				}
317 			}
318 		}
319 		VirtualFree(mem, 0, MEM_RELEASE);
320 	}
321 
322 	if (nfounds < npages) {
323 		debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
324 		msg_printf(MSG_ERROR, whoami,
325 			   TEXT("lost %d pages (allocated %d pages)\n"),
326 			   npages - nfounds, npages);
327 		goto error_cleanup;
328 	}
329 
330 	/*
331 	 *  allocate root page
332 	 */
333 	if ((map = (struct map_s*)vmem_alloc()) == NULL) {
334 		debug_printf(TEXT("can't allocate root page.\n"));
335 		msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
336 		goto error_cleanup;
337 	}
338 	map->nleaves = nleaves;
339 	map->leafsize = pagesize / sizeof(caddr_t);
340 	map->pagesize = pagesize;
341 
342 	/*
343 	 *  allocate leaf pages
344 	 */
345 	for (i = 0; i < nleaves; i++) {
346 		if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
347 			debug_printf(TEXT("can't allocate leaf page.\n"));
348 			msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
349 			goto error_cleanup;
350 		}
351 	}
352 
353 	/*
354 	 *  allocate kernel pages
355 	 */
356 	for (i = 0; start < kernel_end; start += pagesize, i++) {
357 		caddr_t *leaf = map->leaf[i / map->leafsize];
358 		if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
359 			debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
360 			msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
361 			goto error_cleanup;
362 		}
363 	}
364 	map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
365 
366 	return (0);
367 
368  error_cleanup:
369 	vmem_free();
370 
371 	return (-1);
372 }
373 
374 void
375 vmem_free()
376 {
377 	map = NULL;
378 	if (heap) {
379 		VirtualFree(heap, 0, MEM_RELEASE);
380 		heap = NULL;
381 	}
382 	if (phys_addrs) {
383 		VirtualFree(phys_addrs, 0, MEM_RELEASE);
384 		phys_addrs = NULL;
385 	}
386 }
387 
388 void
389 vmem_dump_map()
390 {
391 	caddr_t addr, page, paddr;
392 
393 	if (map == NULL) {
394 		debug_printf(TEXT("no page map\n"));
395 		return;
396 	}
397 
398 	for (addr = kernel_start; addr < kernel_end; addr += system_info.si_pagesize) {
399 		page = vmem_get(addr, NULL);
400 		paddr = vtophysaddr(page);
401 		debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
402 			     addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
403 
404 	}
405 }
406