1 /*	$NetBSD: pmap_bootstrap.c,v 1.3 2000/12/12 04:06:08 nisimura Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
40  */
41 
42 #include <sys/param.h>
43 #include <sys/proc.h>
44 
45 #include <machine/frame.h>
46 #include <machine/cpu.h>
47 #include <machine/vmparam.h>
48 #include <machine/pte.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
53 
54 extern char *etext;
55 extern int Sysptsize;
56 extern char *proc0paddr;
57 extern st_entry_t *Sysseg;
58 extern pt_entry_t *Sysptmap, *Sysmap;
59 
60 extern int maxmem, physmem;
61 extern paddr_t avail_start, avail_end;
62 extern vaddr_t virtual_avail, virtual_end;
63 extern vsize_t mem_size;
64 extern int protection_codes[];
65 
66 void	pmap_bootstrap __P((paddr_t, paddr_t));
67 
68 /*
69  * Special purpose kernel virtual addresses, used for mapping
70  * physical pages for a variety of temporary or permanent purposes:
71  *
72  *	CADDR1, CADDR2:	pmap zero/copy operations
73  *	vmmap:		/dev/mem, crash dumps, parity error checking
74  *	msgbufaddr:	kernel message buffer
75  */
76 caddr_t		CADDR1, CADDR2, vmmap;
77 extern caddr_t	msgbufaddr;
78 
79 /*
80  * Bootstrap the VM system.
81  *
82  * Called with MMU off so we must relocate all global references by `firstpa'
83  * (don't call any functions here!)  `nextpa' is the first available physical
84  * memory address.  Returns an updated first PA reflecting the memory we
85  * have allocated.  MMU is still off when we return.
86  *
87  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
88  * XXX a PIC compiler would make this much easier.
89  */
90 void
91 pmap_bootstrap(nextpa, firstpa)
92 	paddr_t nextpa;
93 	paddr_t firstpa;
94 {
95 	paddr_t kstpa, kptpa, eiiopa, iiopa, kptmpa, p0upa;
96 	u_int nptpages, kstsize;
97 	st_entry_t protoste, *ste;
98 	pt_entry_t protopte, *pte, *epte;
99 	u_int iiomapsize;
100 
101 	/*
102 	 * Calculate important physical addresses:
103 	 *
104 	 *	kstpa		kernel segment table	1 page (!040)
105 	 *						N pages (040)
106 	 *
107 	 *	kptpa		statically allocated
108 	 *			kernel PT pages		Sysptsize+ pages
109 	 *
110 	 *	iiopa		internal IO space
111 	 *			PT pages		iiomapsize pages
112 	 *
113 	 *	eiiopa		page following
114 	 *			internal IO space
115 	 *
116 	 * [ Sysptsize is the number of pages of PT, and iiomapsize
117 	 *   is the number of PTEs, hence we need to round
118 	 *   the total to a page boundary with IO maps at the end. ]
119 	 *
120 	 *	kptmpa		kernel PT map		1 page
121 	 *
122 	 *	p0upa		proc 0 u-area		UPAGES pages
123 	 *
124 	 * The KVA corresponding to any of these PAs is:
125 	 *	(PA - firstpa + KERNBASE).
126 	 */
127 	iiomapsize = m68k_btop(RELOC(intiotop_phys, u_int) -
128 			       RELOC(intiobase_phys, u_int));
129 
130 	if (RELOC(mmutype, int) == MMU_68040)
131 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
132 	else
133 		kstsize = 1;
134 	kstpa = nextpa;
135 	nextpa += kstsize * NBPG;
136 	kptpa = nextpa;
137 	nptpages = RELOC(Sysptsize, int) +
138 		(iiomapsize + NPTEPG - 1) / NPTEPG;
139 	nextpa += nptpages * NBPG;
140 	eiiopa = nextpa;		/* just a reference for later */
141 	iiopa = nextpa - iiomapsize * sizeof(pt_entry_t);
142 	kptmpa = nextpa;
143 	nextpa += NBPG;
144 	p0upa = nextpa;
145 	nextpa += USPACE;
146 
147 	/*
148 	 * Initialize segment table and kernel page table map.
149 	 *
150 	 * On 68030s and earlier MMUs the two are identical except for
151 	 * the valid bits so both are initialized with essentially the
152 	 * same values.  On the 68040, which has a mandatory 3-level
153 	 * structure, the segment table holds the level 1 table and part
154 	 * (or all) of the level 2 table and hence is considerably
155 	 * different.  Here the first level consists of 128 descriptors
156 	 * (512 bytes) each mapping 32mb of address space.  Each of these
157 	 * points to blocks of 128 second level descriptors (512 bytes)
158 	 * each mapping 256kb.  Note that there may be additional "segment
159 	 * table" pages depending on how large MAXKL2SIZE is.
160 	 *
161 	 * XXX cramming two levels of mapping into the single "segment"
162 	 * table on the 68040 is intended as a temporary hack to get things
163 	 * working.  The 224mb of address space that this allows will most
164 	 * likely be insufficient in the future (at least for the kernel).
165 	 */
166 #if defined(M68040)
167 	if (RELOC(mmutype, int) == MMU_68040) {
168 		int num;
169 
170 		/*
171 		 * First invalidate the entire "segment table" pages
172 		 * (levels 1 and 2 have the same "invalid" value).
173 		 */
174 		pte = (u_int *)kstpa;
175 		epte = &pte[kstsize * NPTEPG];
176 		while (pte < epte)
177 			*pte++ = SG_NV;
178 		/*
179 		 * Initialize level 2 descriptors (which immediately
180 		 * follow the level 1 table).  We need:
181 		 *	NPTEPG / SG4_LEV3SIZE
182 		 * level 2 descriptors to map each of the nptpages+1
183 		 * pages of PTEs.  Note that we set the "used" bit
184 		 * now to save the HW the expense of doing it.
185 		 */
186 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
187 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
188 		epte = &pte[num];
189 		protoste = kptpa | SG_U | SG_RW | SG_V;
190 		while (pte < epte) {
191 			*pte++ = protoste;
192 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
193 		}
194 		/*
195 		 * Initialize level 1 descriptors.  We need:
196 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
197 		 * level 1 descriptors to map the `num' level 2's.
198 		 */
199 		pte = (u_int *)kstpa;
200 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
201 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
202 		while (pte < epte) {
203 			*pte++ = protoste;
204 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
205 		}
206 		/*
207 		 * Initialize the final level 1 descriptor to map the last
208 		 * block of level 2 descriptors.
209 		 */
210 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
211 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
212 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
213 		/*
214 		 * Now initialize the final portion of that block of
215 		 * descriptors to map the "last PT page".
216 		 */
217 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
218 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
219 		protoste = lkptpa | SG_U | SG_RW | SG_V;
220 		while (pte < epte) {
221 			*pte++ = protoste;
222 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
223 		}
224 		/*
225 		 * Initialize Sysptmap
226 		 */
227 		pte = (u_int *)kptmpa;
228 		epte = &pte[nptpages+1];
229 		protopte = kptpa | PG_RW | PG_CI | PG_V;
230 		while (pte < epte) {
231 			*pte++ = protopte;
232 			protopte += NBPG;
233 		}
234 		/*
235 		 * Invalidate all but the last remaining entry.
236 		 */
237 		epte = &((u_int *)kptmpa)[NPTEPG];
238 		while (pte < epte) {
239 			*pte++ = PG_NV;
240 		}
241 	} else
242 #endif
243 	{
244 		/*
245 		 * Map the page table pages in both the HW segment table
246 		 * and the software Sysptmap.  Note that Sysptmap is also
247 		 * considered a PT page hence the +1.
248 		 */
249 		ste = (u_int *)kstpa;
250 		pte = (u_int *)kptmpa;
251 		epte = &pte[nptpages+1];
252 		protoste = kptpa | SG_RW | SG_V;
253 		protopte = kptpa | PG_RW | PG_CI | PG_V;
254 		while (pte < epte) {
255 			*ste++ = protoste;
256 			*pte++ = protopte;
257 			protoste += NBPG;
258 			protopte += NBPG;
259 		}
260 		/*
261 		 * Invalidate all but the last remaining entries in both.
262 		 */
263 		epte = &((u_int *)kptmpa)[NPTEPG];
264 		while (pte < epte) {
265 			*ste++ = SG_NV;
266 			*pte++ = PG_NV;
267 		}
268 	}
269 
270 	/*
271 	 * Initialize kernel page table.
272 	 * Start by invalidating the `nptpages' that we have allocated.
273 	 */
274 	pte = (u_int *)kptpa;
275 	epte = &pte[nptpages * NPTEPG];
276 	while (pte < epte)
277 		*pte++ = PG_NV;
278 	/*
279 	 * Validate PTEs for kernel text (RO)
280 	 */
281 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
282 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
283 	protopte = firstpa | PG_RO | PG_V;
284 	while (pte < epte) {
285 		*pte++ = protopte;
286 		protopte += NBPG;
287 	}
288 	/*
289 	 * Validate PTEs for kernel data/bss, dynamic data allocated
290 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
291 	 * u-area and page table allocated below (RW).
292 	 */
293 	epte = &((u_int *)kptpa)[m68k_btop(nextpa - firstpa)];
294 	protopte = (protopte & ~PG_PROT) | PG_RW;
295 	/*
296 	 * Enable copy-back caching of data pages
297 	 */
298 	if (RELOC(mmutype, int) == MMU_68040)
299 		protopte |= PG_CCB;
300 	while (pte < epte) {
301 		*pte++ = protopte;
302 		protopte += NBPG;
303 	}
304 
305 	/*
306 	 * Finally, validate the internal IO space PTEs (RW+CI).
307 	 */
308 	pte = (u_int *)iiopa;
309 	epte = (u_int *)eiiopa;
310 	protopte = RELOC(intiobase_phys, u_int) | PG_RW | PG_CI | PG_V;
311 	while (pte < epte) {
312 		*pte++ = protopte;
313 		protopte += NBPG;
314 	}
315 
316 	/*
317 	 * Calculate important exported kernel virtual addresses
318 	 */
319 	/*
320 	 * Sysseg: base of kernel segment table
321 	 */
322 	RELOC(Sysseg, st_entry_t *) =
323 		(st_entry_t *)(kstpa - firstpa);
324 	/*
325 	 * Sysptmap: base of kernel page table map
326 	 */
327 	RELOC(Sysptmap, pt_entry_t *) =
328 		(pt_entry_t *)(kptmpa - firstpa);
329 	/*
330 	 * Sysmap: kernel page table (as mapped through Sysptmap)
331 	 * Immediately follows `nptpages' of static kernel page table.
332 	 */
333 	RELOC(Sysmap, pt_entry_t *) =
334 		(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
335 	/*
336 	 * intiobase, intiolimit: base and end of internal IO space.
337 	 * iiomapsize pages prior to external IO space at end of static
338 	 * kernel page table.
339 	 */
340 	RELOC(intiobase, char *) =
341 		(char *)m68k_ptob(nptpages*NPTEPG - iiomapsize);
342 	RELOC(intiolimit, char *) =
343 		(char *)m68k_ptob(nptpages*NPTEPG);
344 
345 	/*
346 	 * Setup u-area for process 0.
347 	 */
348 	/*
349 	 * Zero the u-area.
350 	 * NOTE: `pte' and `epte' aren't PTEs here.
351 	 */
352 	pte = (u_int *)p0upa;
353 	epte = (u_int *)(p0upa + USPACE);
354 	while (pte < epte)
355 		*pte++ = 0;
356 	/*
357 	 * Remember the u-area address so it can be loaded in the
358 	 * proc struct p_addr field later.
359 	 */
360 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
361 
362 	RELOC(avail_start, paddr_t) = nextpa;
363 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
364 	    (m68k_round_page(MSGBUFSIZE));
365 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
366 
367 	RELOC(virtual_avail, vaddr_t) =
368 		VM_MIN_KERNEL_ADDRESS + (vaddr_t)(nextpa - firstpa);
369 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
370 
371 	/*
372 	 * Initialize protection array.
373 	 * XXX don't use a switch statement, it might produce an
374 	 * absolute "jmp" table.
375 	 */
376 	{
377 		int *kp;
378 
379 		kp = &RELOC(protection_codes, int);
380 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
381 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
382 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
383 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
384 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
385 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
386 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
387 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
388 	}
389 
390 	/*
391 	 * Kernel page/segment table allocated above,
392 	 * just initialize pointers.
393 	 */
394 	{
395 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
396 
397 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
398 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
399 		simple_lock_init(&kpm->pm_lock);
400 		kpm->pm_count = 1;
401 		kpm->pm_stpa = (st_entry_t *)kstpa;
402 		/*
403 		 * For the 040 we also initialize the free level 2
404 		 * descriptor mask noting that we have used:
405 		 *	0:		level 1 table
406 		 *	1 to `num':	map page tables
407 		 *	MAXKL2SIZE-1:	maps last-page page table
408 		 */
409 		if (RELOC(mmutype, int) == MMU_68040) {
410 			int num;
411 
412 			kpm->pm_stfree = ~l2tobm(0);
413 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
414 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
415 			while (num)
416 				kpm->pm_stfree &= ~l2tobm(num--);
417 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
418 			for (num = MAXKL2SIZE;
419 			     num < sizeof(kpm->pm_stfree)*NBBY;
420 			     num++)
421 				kpm->pm_stfree &= ~l2tobm(num);
422 		}
423 	}
424 
425 	/*
426 	 * Allocate some fixed, special purpose kernel virtual addresses
427 	 */
428 	{
429 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
430 
431 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
432 		va += NBPG;
433 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
434 		va += NBPG;
435 		RELOC(vmmap, caddr_t) = (caddr_t)va;
436 		va += NBPG;
437 		RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
438 		va += m68k_round_page(MSGBUFSIZE);
439 		RELOC(virtual_avail, vaddr_t) = va;
440 	}
441 }
442