xref: /netbsd/sys/arch/m68k/fpe/fpu_explode.c (revision bf9ec67e)
1 /*	$NetBSD: fpu_explode.c,v 1.3 1999/05/30 20:17:48 briggs Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * FPU subroutines: `explode' the machine's `packed binary' format numbers
49  * into our internal format.
50  */
51 
52 #include <sys/types.h>
53 #include <sys/systm.h>
54 
55 #include "ieee.h"
56 #include <machine/reg.h>
57 
58 #include "fpu_arith.h"
59 #include "fpu_emulate.h"
60 
61 
62 /* Conversion to internal format -- note asymmetry. */
63 static int	fpu_itof __P((struct fpn *fp, u_int i));
64 static int	fpu_stof __P((struct fpn *fp, u_int i));
65 static int	fpu_dtof __P((struct fpn *fp, u_int i, u_int j));
66 static int	fpu_xtof __P((struct fpn *fp, u_int i, u_int j, u_int k));
67 
68 /*
69  * N.B.: in all of the following, we assume the FP format is
70  *
71  *	---------------------------
72  *	| s | exponent | fraction |
73  *	---------------------------
74  *
75  * (which represents -1**s * 1.fraction * 2**exponent), so that the
76  * sign bit is way at the top (bit 31), the exponent is next, and
77  * then the remaining bits mark the fraction.  A zero exponent means
78  * zero or denormalized (0.fraction rather than 1.fraction), and the
79  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
80  *
81  * Since the sign bit is always the topmost bit---this holds even for
82  * integers---we set that outside all the *tof functions.  Each function
83  * returns the class code for the new number (but note that we use
84  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
85  */
86 
87 /*
88  * int -> fpn.
89  */
90 static int
91 fpu_itof(fp, i)
92 	register struct fpn *fp;
93 	register u_int i;
94 {
95 
96 	if (i == 0)
97 		return (FPC_ZERO);
98 	/*
99 	 * The value FP_1 represents 2^FP_LG, so set the exponent
100 	 * there and let normalization fix it up.  Convert negative
101 	 * numbers to sign-and-magnitude.  Note that this relies on
102 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
103 	 */
104 	fp->fp_exp = FP_LG;
105 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
106 	fp->fp_mant[1] = 0;
107 	fp->fp_mant[2] = 0;
108 	fpu_norm(fp);
109 	return (FPC_NUM);
110 }
111 
112 #define	mask(nbits) ((1 << (nbits)) - 1)
113 
114 /*
115  * All external floating formats convert to internal in the same manner,
116  * as defined here.  Note that only normals get an implied 1.0 inserted.
117  */
118 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
119 	if (exp == 0) { \
120 		if (allfrac == 0) \
121 			return (FPC_ZERO); \
122 		fp->fp_exp = 1 - expbias; \
123 		fp->fp_mant[0] = f0; \
124 		fp->fp_mant[1] = f1; \
125 		fp->fp_mant[2] = f2; \
126 		fpu_norm(fp); \
127 		return (FPC_NUM); \
128 	} \
129 	if (exp == (2 * expbias + 1)) { \
130 		if (allfrac == 0) \
131 			return (FPC_INF); \
132 		fp->fp_mant[0] = f0; \
133 		fp->fp_mant[1] = f1; \
134 		fp->fp_mant[2] = f2; \
135 		return (FPC_QNAN); \
136 	} \
137 	fp->fp_exp = exp - expbias; \
138 	fp->fp_mant[0] = FP_1 | f0; \
139 	fp->fp_mant[1] = f1; \
140 	fp->fp_mant[2] = f2; \
141 	return (FPC_NUM)
142 
143 /*
144  * 32-bit single precision -> fpn.
145  * We assume a single occupies at most (64-FP_LG) bits in the internal
146  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
147  */
148 static int
149 fpu_stof(fp, i)
150 	register struct fpn *fp;
151 	register u_int i;
152 {
153 	register int exp;
154 	register u_int frac, f0, f1;
155 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
156 
157 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
158 	frac = i & mask(SNG_FRACBITS);
159 	f0 = frac >> SNG_SHIFT;
160 	f1 = frac << (32 - SNG_SHIFT);
161 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
162 }
163 
164 /*
165  * 64-bit double -> fpn.
166  * We assume this uses at most (96-FP_LG) bits.
167  */
168 static int
169 fpu_dtof(fp, i, j)
170 	register struct fpn *fp;
171 	register u_int i, j;
172 {
173 	register int exp;
174 	register u_int frac, f0, f1, f2;
175 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
176 
177 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
178 	frac = i & mask(DBL_FRACBITS - 32);
179 	f0 = frac >> DBL_SHIFT;
180 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
181 	f2 = j << (32 - DBL_SHIFT);
182 	frac |= j;
183 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
184 }
185 
186 /*
187  * 96-bit extended -> fpn.
188  */
189 static int
190 fpu_xtof(fp, i, j, k)
191 	register struct fpn *fp;
192 	register u_int i, j, k;
193 {
194 	register int exp;
195 	register u_int frac, f0, f1, f2;
196 #define EXT_SHIFT (EXT_FRACBITS - 1 - 32 - FP_LG)
197 
198 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
199 	f0 = j >> EXT_SHIFT;
200 	f1 = (j << (32 - EXT_SHIFT)) | (k >> EXT_SHIFT);
201 	f2 = k << (32 - EXT_SHIFT);
202 	frac = j | k;
203 
204 	/* m68k extended does not imply denormal by exp==0 */
205 	if (exp == 0) {
206 		if (frac == 0)
207 			return (FPC_ZERO);
208 		fp->fp_exp = - EXT_EXP_BIAS;
209 		fp->fp_mant[0] = f0;
210 		fp->fp_mant[1] = f1;
211 		fp->fp_mant[2] = f2;
212 		fpu_norm(fp);
213 		return (FPC_NUM);
214 	}
215 	if (exp == (2 * EXT_EXP_BIAS + 1)) {
216 		if (frac == 0)
217 			return (FPC_INF);
218 		fp->fp_mant[0] = f0;
219 		fp->fp_mant[1] = f1;
220 		fp->fp_mant[2] = f2;
221 		return (FPC_QNAN);
222 	}
223 	fp->fp_exp = exp - EXT_EXP_BIAS;
224 	fp->fp_mant[0] = FP_1 | f0;
225 	fp->fp_mant[1] = f1;
226 	fp->fp_mant[2] = f2;
227 	return (FPC_NUM);
228 }
229 
230 /*
231  * Explode the contents of a memory operand.
232  */
233 void
234 fpu_explode(fe, fp, type, space)
235 	register struct fpemu *fe;
236 	register struct fpn *fp;
237 	int type;
238 	register u_int *space;
239 {
240 	register u_int s;
241 
242 	s = space[0];
243 	fp->fp_sign = s >> 31;
244 	fp->fp_sticky = 0;
245 	switch (type) {
246 
247 	case FTYPE_BYT:
248 		s >>= 8;
249 	case FTYPE_WRD:
250 		s >>= 16;
251 	case FTYPE_LNG:
252 		s = fpu_itof(fp, s);
253 		break;
254 
255 	case FTYPE_SNG:
256 		s = fpu_stof(fp, s);
257 		break;
258 
259 	case FTYPE_DBL:
260 		s = fpu_dtof(fp, s, space[1]);
261 		break;
262 
263 	case FTYPE_EXT:
264 		s = fpu_xtof(fp, s, space[1], space[2]);
265 		break;
266 
267 	default:
268 		panic("fpu_explode");
269 	}
270 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
271 		/*
272 		 * Input is a signalling NaN.  All operations that return
273 		 * an input NaN operand put it through a ``NaN conversion'',
274 		 * which basically just means ``turn on the quiet bit''.
275 		 * We do this here so that all NaNs internally look quiet
276 		 * (we can tell signalling ones by their class).
277 		 */
278 		fp->fp_mant[0] |= FP_QUIETBIT;
279 		fe->fe_fpsr |= FPSR_SNAN;	/* assert SNAN exception */
280 		s = FPC_SNAN;
281 	}
282 	fp->fp_class = s;
283 }
284