xref: /netbsd/sys/arch/m68k/fpsp/get_op.sa (revision bf9ec67e)
1*	$NetBSD: get_op.sa,v 1.4 2001/12/09 01:43:13 briggs Exp $
2
3*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
4*	M68000 Hi-Performance Microprocessor Division
5*	M68040 Software Package
6*
7*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
8*	All rights reserved.
9*
10*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
11*	To the maximum extent permitted by applicable law,
12*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
13*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
14*	PARTICULAR PURPOSE and any warranty against infringement with
15*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
16*	and any accompanying written materials.
17*
18*	To the maximum extent permitted by applicable law,
19*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
20*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
21*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
22*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
23*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
24*	and support of the SOFTWARE.
25*
26*	You are hereby granted a copyright license to use, modify, and
27*	distribute the SOFTWARE so long as this entire notice is retained
28*	without alteration in any modified and/or redistributed versions,
29*	and that such modified versions are clearly identified as such.
30*	No licenses are granted by implication, estoppel or otherwise
31*	under any patents or trademarks of Motorola, Inc.
32
33*
34*	get_op.sa 3.6 5/19/92
35*
36*	get_op.sa 3.5 4/26/91
37*
38*  Description: This routine is called by the unsupported format/data
39* type exception handler ('unsupp' - vector 55) and the unimplemented
40* instruction exception handler ('unimp' - vector 11).  'get_op'
41* determines the opclass (0, 2, or 3) and branches to the
42* opclass handler routine.  See 68881/2 User's Manual table 4-11
43* for a description of the opclasses.
44*
45* For UNSUPPORTED data/format (exception vector 55) and for
46* UNIMPLEMENTED instructions (exception vector 11) the following
47* applies:
48*
49* - For unnormormalized numbers (opclass 0, 2, or 3) the
50* number(s) is normalized and the operand type tag is updated.
51*
52* - For a packed number (opclass 2) the number is unpacked and the
53* operand type tag is updated.
54*
55* - For denormalized numbers (opclass 0 or 2) the number(s) is not
56* changed but passed to the next module.  The next module for
57* unimp is do_func, the next module for unsupp is res_func.
58*
59* For UNSUPPORTED data/format (exception vector 55) only the
60* following applies:
61*
62* - If there is a move out with a packed number (opclass 3) the
63* number is packed and written to user memory.  For the other
64* opclasses the number(s) are written back to the fsave stack
65* and the instruction is then restored back into the '040.  The
66* '040 is then able to complete the instruction.
67*
68* For example:
69* fadd.x fpm,fpn where the fpm contains an unnormalized number.
70* The '040 takes an unsupported data trap and gets to this
71* routine.  The number is normalized, put back on the stack and
72* then an frestore is done to restore the instruction back into
73* the '040.  The '040 then re-executes the fadd.x fpm,fpn with
74* a normalized number in the source and the instruction is
75* successful.
76*
77* Next consider if in the process of normalizing the un-
78* normalized number it becomes a denormalized number.  The
79* routine which converts the unnorm to a norm (called mk_norm)
80* detects this and tags the number as a denorm.  The routine
81* res_func sees the denorm tag and converts the denorm to a
82* norm.  The instruction is then restored back into the '040
83* which re_executess the instruction.
84*
85
86GET_OP    IDNT    2,1 Motorola 040 Floating Point Software Package
87
88	section	8
89
90	include	fpsp.h
91
92	xdef	PIRN,PIRZRM,PIRP
93	xdef	SMALRN,SMALRZRM,SMALRP
94	xdef	BIGRN,BIGRZRM,BIGRP
95
96PIRN:
97	dc.l $40000000,$c90fdaa2,$2168c235    ;pi
98PIRZRM:
99	dc.l $40000000,$c90fdaa2,$2168c234    ;pi
100PIRP:
101	dc.l $40000000,$c90fdaa2,$2168c235    ;pi
102
103*round to nearest
104SMALRN:
105	dc.l $3ffd0000,$9a209a84,$fbcff798    ;log10(2)
106	dc.l $40000000,$adf85458,$a2bb4a9a    ;e
107	dc.l $3fff0000,$b8aa3b29,$5c17f0bc    ;log2(e)
108	dc.l $3ffd0000,$de5bd8a9,$37287195    ;log10(e)
109	dc.l $00000000,$00000000,$00000000    ;0.0
110* round to zero;round to negative infinity
111SMALRZRM:
112	dc.l $3ffd0000,$9a209a84,$fbcff798    ;log10(2)
113	dc.l $40000000,$adf85458,$a2bb4a9a    ;e
114	dc.l $3fff0000,$b8aa3b29,$5c17f0bb    ;log2(e)
115	dc.l $3ffd0000,$de5bd8a9,$37287195    ;log10(e)
116	dc.l $00000000,$00000000,$00000000    ;0.0
117* round to positive infinity
118SMALRP:
119	dc.l $3ffd0000,$9a209a84,$fbcff799    ;log10(2)
120	dc.l $40000000,$adf85458,$a2bb4a9b    ;e
121	dc.l $3fff0000,$b8aa3b29,$5c17f0bc    ;log2(e)
122	dc.l $3ffd0000,$de5bd8a9,$37287195    ;log10(e)
123	dc.l $00000000,$00000000,$00000000    ;0.0
124
125*round to nearest
126BIGRN:
127	dc.l $3ffe0000,$b17217f7,$d1cf79ac    ;ln(2)
128	dc.l $40000000,$935d8ddd,$aaa8ac17    ;ln(10)
129	dc.l $3fff0000,$80000000,$00000000    ;10 ^ 0
130
131	xdef	PTENRN
132PTENRN:
133	dc.l $40020000,$A0000000,$00000000    ;10 ^ 1
134	dc.l $40050000,$C8000000,$00000000    ;10 ^ 2
135	dc.l $400C0000,$9C400000,$00000000    ;10 ^ 4
136	dc.l $40190000,$BEBC2000,$00000000    ;10 ^ 8
137	dc.l $40340000,$8E1BC9BF,$04000000    ;10 ^ 16
138	dc.l $40690000,$9DC5ADA8,$2B70B59E    ;10 ^ 32
139	dc.l $40D30000,$C2781F49,$FFCFA6D5    ;10 ^ 64
140	dc.l $41A80000,$93BA47C9,$80E98CE0    ;10 ^ 128
141	dc.l $43510000,$AA7EEBFB,$9DF9DE8E    ;10 ^ 256
142	dc.l $46A30000,$E319A0AE,$A60E91C7    ;10 ^ 512
143	dc.l $4D480000,$C9767586,$81750C17    ;10 ^ 1024
144	dc.l $5A920000,$9E8B3B5D,$C53D5DE5    ;10 ^ 2048
145	dc.l $75250000,$C4605202,$8A20979B    ;10 ^ 4096
146*round to minus infinity
147BIGRZRM:
148	dc.l $3ffe0000,$b17217f7,$d1cf79ab    ;ln(2)
149	dc.l $40000000,$935d8ddd,$aaa8ac16    ;ln(10)
150	dc.l $3fff0000,$80000000,$00000000    ;10 ^ 0
151
152	xdef	PTENRM
153PTENRM:
154	dc.l $40020000,$A0000000,$00000000    ;10 ^ 1
155	dc.l $40050000,$C8000000,$00000000    ;10 ^ 2
156	dc.l $400C0000,$9C400000,$00000000    ;10 ^ 4
157	dc.l $40190000,$BEBC2000,$00000000    ;10 ^ 8
158	dc.l $40340000,$8E1BC9BF,$04000000    ;10 ^ 16
159	dc.l $40690000,$9DC5ADA8,$2B70B59D    ;10 ^ 32
160	dc.l $40D30000,$C2781F49,$FFCFA6D5    ;10 ^ 64
161	dc.l $41A80000,$93BA47C9,$80E98CDF    ;10 ^ 128
162	dc.l $43510000,$AA7EEBFB,$9DF9DE8D    ;10 ^ 256
163	dc.l $46A30000,$E319A0AE,$A60E91C6    ;10 ^ 512
164	dc.l $4D480000,$C9767586,$81750C17    ;10 ^ 1024
165	dc.l $5A920000,$9E8B3B5D,$C53D5DE5    ;10 ^ 2048
166	dc.l $75250000,$C4605202,$8A20979A    ;10 ^ 4096
167*round to positive infinity
168BIGRP:
169	dc.l $3ffe0000,$b17217f7,$d1cf79ac    ;ln(2)
170	dc.l $40000000,$935d8ddd,$aaa8ac17    ;ln(10)
171	dc.l $3fff0000,$80000000,$00000000    ;10 ^ 0
172
173	xdef	PTENRP
174PTENRP:
175	dc.l $40020000,$A0000000,$00000000    ;10 ^ 1
176	dc.l $40050000,$C8000000,$00000000    ;10 ^ 2
177	dc.l $400C0000,$9C400000,$00000000    ;10 ^ 4
178	dc.l $40190000,$BEBC2000,$00000000    ;10 ^ 8
179	dc.l $40340000,$8E1BC9BF,$04000000    ;10 ^ 16
180	dc.l $40690000,$9DC5ADA8,$2B70B59E    ;10 ^ 32
181	dc.l $40D30000,$C2781F49,$FFCFA6D6    ;10 ^ 64
182	dc.l $41A80000,$93BA47C9,$80E98CE0    ;10 ^ 128
183	dc.l $43510000,$AA7EEBFB,$9DF9DE8E    ;10 ^ 256
184	dc.l $46A30000,$E319A0AE,$A60E91C7    ;10 ^ 512
185	dc.l $4D480000,$C9767586,$81750C18    ;10 ^ 1024
186	dc.l $5A920000,$9E8B3B5D,$C53D5DE6    ;10 ^ 2048
187	dc.l $75250000,$C4605202,$8A20979B    ;10 ^ 4096
188
189	xref	nrm_zero
190	xref	decbin
191	xref	round
192
193	xdef    get_op
194	xdef    uns_getop
195	xdef    uni_getop
196get_op:
197	clr.b	DY_MO_FLG(a6)
198	tst.b	UFLG_TMP(a6)	;test flag for unsupp/unimp state
199	beq.b	short_uni_getop
200
201uns_getop:
202	btst.b	#direction_bit,CMDREG1B(a6)
203	bne.w	opclass3	;branch if a fmove out (any kind)
204	btst.b	#6,CMDREG1B(a6)
205	beq.b	uns_notpacked
206
207	bfextu	CMDREG1B(a6){3:3},d0
208	cmp.b	#3,d0
209	beq.w	pack_source	;check for a packed src op, branch if so
210uns_notpacked:
211	bsr	chk_dy_mo	;set the dyadic/monadic flag
212	tst.b	DY_MO_FLG(a6)
213	beq.b	src_op_ck	;if monadic, go check src op
214*				;else, check dst op (fall through)
215
216	btst.b	#7,DTAG(a6)
217	beq.b	src_op_ck	;if dst op is norm, check src op
218	bra.b	dst_ex_dnrm	;else, handle destination unnorm/dnrm
219
220uni_getop:
221short_uni_getop:
222	bfextu	CMDREG1B(a6){0:6},d0 ;get opclass and src fields
223	cmpi.l	#$17,d0		;if op class and size fields are $17,
224*				;it is FMOVECR; if not, continue
225*
226* If the instruction is fmovecr, exit get_op.  It is handled
227* in do_func and smovecr.sa.
228*
229	bne.w	not_fmovecr	;handle fmovecr as an unimplemented inst
230	rts
231
232not_fmovecr:
233	btst.b	#E1,E_BYTE(a6)	;if set, there is a packed operand
234	bne.w	pack_source	;check for packed src op, branch if so
235
236* The following lines of are coded to optimize on normalized operands
237	move.b	STAG(a6),d0
238	or.b	DTAG(a6),d0	;check if either of STAG/DTAG msb set
239	bmi.b	dest_op_ck	;if so, some op needs to be fixed
240	rts
241
242dest_op_ck:
243	btst.b	#7,DTAG(a6)	;check for unsupported data types in
244	beq.b	src_op_ck	;the destination, if not, check src op
245	bsr	chk_dy_mo	;set dyadic/monadic flag
246	tst.b	DY_MO_FLG(a6)	;
247	beq.b	src_op_ck	;if monadic, check src op
248*
249* At this point, destination has an extended denorm or unnorm.
250*
251dst_ex_dnrm:
252	move.w	FPTEMP_EX(a6),d0 ;get destination exponent
253	andi.w	#$7fff,d0	;mask sign, check if exp = 0000
254	beq.b	src_op_ck	;if denorm then check source op.
255*				;denorms are taken care of in res_func
256*				;(unsupp) or do_func (unimp)
257*				;else unnorm fall through
258	lea.l	FPTEMP(a6),a0	;point a0 to dop - used in mk_norm
259	bsr	mk_norm		;go normalize - mk_norm returns:
260*				;L_SCR1{7:5} = operand tag
261*				;	(000 = norm, 100 = denorm)
262*				;L_SCR1{4} = fpte15 or ete15
263*				;	0 = exp >  $3fff
264*				;	1 = exp <= $3fff
265*				;and puts the normalized num back
266*				;on the fsave stack
267*
268	move.b L_SCR1(a6),DTAG(a6) ;write the new tag & fpte15
269*				;to the fsave stack and fall
270*				;through to check source operand
271*
272src_op_ck:
273	btst.b	#7,STAG(a6)
274	beq.w	end_getop	;check for unsupported data types on the
275*				;source operand
276	btst.b	#5,STAG(a6)
277	bne.b	src_sd_dnrm	;if bit 5 set, handle sgl/dbl denorms
278*
279* At this point only unnorms or extended denorms are possible.
280*
281src_ex_dnrm:
282	move.w	ETEMP_EX(a6),d0 ;get source exponent
283	andi.w	#$7fff,d0	;mask sign, check if exp = 0000
284	beq.w	end_getop	;if denorm then exit, denorms are
285*				;handled in do_func
286	lea.l	ETEMP(a6),a0	;point a0 to sop - used in mk_norm
287	bsr	mk_norm		;go normalize - mk_norm returns:
288*				;L_SCR1{7:5} = operand tag
289*				;	(000 = norm, 100 = denorm)
290*				;L_SCR1{4} = fpte15 or ete15
291*				;	0 = exp >  $3fff
292*				;	1 = exp <= $3fff
293*				;and puts the normalized num back
294*				;on the fsave stack
295*
296	move.b	L_SCR1(a6),STAG(a6) ;write the new tag & ete15
297	rts			;end_getop
298
299*
300* At this point, only single or double denorms are possible.
301* If the inst is not fmove, normalize the source.  If it is,
302* do nothing to the input.
303*
304src_sd_dnrm:
305	btst.b	#4,CMDREG1B(a6)	;differentiate between sgl/dbl denorm
306	bne.b	is_double
307is_single:
308	move.w	#$3f81,d1	;write bias for sgl denorm
309	bra.b	common		;goto the common code
310is_double:
311	move.w	#$3c01,d1	;write the bias for a dbl denorm
312common:
313	btst.b	#sign_bit,ETEMP_EX(a6) ;grab sign bit of mantissa
314	beq.b	pos
315	bset	#15,d1		;set sign bit because it is negative
316pos:
317	move.w	d1,ETEMP_EX(a6)
318*				;put exponent on stack
319
320	move.w	CMDREG1B(a6),d1
321	and.w	#$e3ff,d1	;clear out source specifier
322	or.w	#$0800,d1	;set source specifier to extended prec
323	move.w	d1,CMDREG1B(a6)	;write back to the command word in stack
324*				;this is needed to fix unsupp data stack
325	lea.l	ETEMP(a6),a0	;point a0 to sop
326
327	bsr	mk_norm		;convert sgl/dbl denorm to norm
328	move.b	L_SCR1(a6),STAG(a6) ;put tag into source tag reg - d0
329	rts			;end_getop
330*
331* At this point, the source is definitely packed, whether
332* instruction is dyadic or monadic is still unknown
333*
334pack_source:
335	move.l	FPTEMP_LO(a6),ETEMP(a6)	;write ms part of packed
336*				;number to etemp slot
337	bsr	chk_dy_mo	;set dyadic/monadic flag
338	bsr	unpack
339
340	tst.b	DY_MO_FLG(a6)
341	beq.b	end_getop	;if monadic, exit
342*				;else, fix FPTEMP
343pack_dya:
344	bfextu	CMDREG1B(a6){6:3},d0 ;extract dest fp reg
345	move.l	#7,d1
346	sub.l	d0,d1
347	clr.l	d0
348	bset.l	d1,d0		;set up d0 as a dynamic register mask
349	fmovem.x d0,FPTEMP(a6)	;write to FPTEMP
350
351	btst.b	#7,DTAG(a6)	;check dest tag for unnorm or denorm
352	bne.w	dst_ex_dnrm	;else, handle the unnorm or ext denorm
353*
354* Dest is not denormalized.  Check for norm, and set fpte15
355* accordingly.
356*
357	move.b	DTAG(a6),d0
358	andi.b	#$f0,d0		;strip to only dtag:fpte15
359	tst.b	d0		;check for normalized value
360	bne.b	end_getop	;if inf/nan/zero leave get_op
361	move.w	FPTEMP_EX(a6),d0
362	andi.w	#$7fff,d0
363	cmpi.w	#$3fff,d0	;check if fpte15 needs setting
364	bge.b	end_getop	;if >= $3fff, leave fpte15=0
365	or.b	#$10,DTAG(a6)
366	bra.b	end_getop
367
368*
369* At this point, it is either an fmoveout packed, unnorm or denorm
370*
371opclass3:
372	clr.b	DY_MO_FLG(a6)	;set dyadic/monadic flag to monadic
373	bfextu	CMDREG1B(a6){4:2},d0
374	cmpi.b	#3,d0
375	bne.w	src_ex_dnrm	;if not equal, must be unnorm or denorm
376*				;else it is a packed move out
377*				;exit
378end_getop:
379	rts
380
381*
382* Sets the DY_MO_FLG correctly. This is used only on if it is an
383* unuspported data type exception.  Set if dyadic.
384*
385chk_dy_mo:
386	move.w	CMDREG1B(a6),d0
387	btst.l	#5,d0		;testing extension command word
388	beq.b	set_mon		;if bit 5 = 0 then monadic
389	btst.l	#4,d0		;know that bit 5 = 1
390	beq.b	set_dya		;if bit 4 = 0 then dyadic
391	andi.w	#$007f,d0	;get rid of all but extension bits {6:0}
392	cmpi.w 	#$0038,d0	;if extension = $38 then fcmp (dyadic)
393	bne.b	set_mon
394set_dya:
395	st.b	DY_MO_FLG(a6)	;set the inst flag type to dyadic
396	rts
397set_mon:
398	clr.b	DY_MO_FLG(a6)	;set the inst flag type to monadic
399	rts
400*
401*	MK_NORM
402*
403* Normalizes unnormalized numbers, sets tag to norm or denorm, sets unfl
404* exception if denorm.
405*
406* CASE opclass 0x0 unsupp
407*	mk_norm till msb set
408*	set tag = norm
409*
410* CASE opclass 0x0 unimp
411*	mk_norm till msb set or exp = 0
412*	if integer bit = 0
413*	   tag = denorm
414*	else
415*	   tag = norm
416*
417* CASE opclass 011 unsupp
418*	mk_norm till msb set or exp = 0
419*	if integer bit = 0
420*	   tag = denorm
421*	   set unfl_nmcexe = 1
422*	else
423*	   tag = norm
424*
425* if exp <= $3fff
426*   set ete15 or fpte15 = 1
427* else set ete15 or fpte15 = 0
428
429* input:
430*	a0 = points to operand to be normalized
431* output:
432*	L_SCR1{7:5} = operand tag (000 = norm, 100 = denorm)
433*	L_SCR1{4}   = fpte15 or ete15 (0 = exp > $3fff, 1 = exp <=$3fff)
434*	the normalized operand is placed back on the fsave stack
435mk_norm:
436	clr.l	L_SCR1(a6)
437	bclr.b	#sign_bit,LOCAL_EX(a0)
438	sne	LOCAL_SGN(a0)	;transform into internal extended format
439
440	cmpi.b	#$2c,1+EXC_VEC(a6) ;check if unimp
441	bne.b	uns_data	;branch if unsupp
442	bsr	uni_inst	;call if unimp (opclass 0x0)
443	bra.b	reload
444uns_data:
445	btst.b	#direction_bit,CMDREG1B(a6) ;check transfer direction
446	bne.b	bit_set		;branch if set (opclass 011)
447	bsr	uns_opx		;call if opclass 0x0
448	bra.b	reload
449bit_set:
450	bsr	uns_op3		;opclass 011
451reload:
452	cmp.w	#$3fff,LOCAL_EX(a0) ;if exp > $3fff
453	bgt.b	end_mk		;   fpte15/ete15 already set to 0
454	bset.b	#4,L_SCR1(a6)	;else set fpte15/ete15 to 1
455*				;calling routine actually sets the
456*				;value on the stack (along with the
457*				;tag), since this routine doesn't
458*				;know if it should set ete15 or fpte15
459*				;ie, it doesn't know if this is the
460*				;src op or dest op.
461end_mk:
462	bfclr	LOCAL_SGN(a0){0:8}
463	beq.b	end_mk_pos
464	bset.b	#sign_bit,LOCAL_EX(a0) ;convert back to IEEE format
465end_mk_pos:
466	rts
467*
468*     CASE opclass 011 unsupp
469*
470uns_op3:
471	bsr	nrm_zero	;normalize till msb = 1 or exp = zero
472	btst.b	#7,LOCAL_HI(a0)	;if msb = 1
473	bne.b	no_unfl		;then branch
474set_unfl:
475	or.b	#dnrm_tag,L_SCR1(a6) ;set denorm tag
476	bset.b	#unfl_bit,FPSR_EXCEPT(a6) ;set unfl exception bit
477no_unfl:
478	rts
479*
480*     CASE opclass 0x0 unsupp
481*
482uns_opx:
483	bsr	nrm_zero	;normalize the number
484	btst.b	#7,LOCAL_HI(a0)	;check if integer bit (j-bit) is set
485	beq.b	uns_den		;if clear then now have a denorm
486uns_nrm:
487	or.b	#norm_tag,L_SCR1(a6) ;set tag to norm
488	rts
489uns_den:
490	or.b	#dnrm_tag,L_SCR1(a6) ;set tag to denorm
491	rts
492*
493*     CASE opclass 0x0 unimp
494*
495uni_inst:
496	bsr	nrm_zero
497	btst.b	#7,LOCAL_HI(a0)	;check if integer bit (j-bit) is set
498	beq.b	uni_den		;if clear then now have a denorm
499uni_nrm:
500	or.b	#norm_tag,L_SCR1(a6) ;set tag to norm
501	rts
502uni_den:
503	or.b	#dnrm_tag,L_SCR1(a6) ;set tag to denorm
504	rts
505
506*
507*	Decimal to binary conversion
508*
509* Special cases of inf and NaNs are completed outside of decbin.
510* If the input is an snan, the snan bit is not set.
511*
512* input:
513*	ETEMP(a6)	- points to packed decimal string in memory
514* output:
515*	fp0	- contains packed string converted to extended precision
516*	ETEMP	- same as fp0
517unpack:
518	move.w	CMDREG1B(a6),d0	;examine command word, looking for fmove's
519	and.w	#$3b,d0
520	beq	move_unpack	;special handling for fmove: must set FPSR_CC
521
522	move.w	ETEMP(a6),d0	;get word with inf information
523	bfextu	d0{20:12},d1	;get exponent into d1
524	cmpi.w	#$0fff,d1	;test for inf or NaN
525	bne.b	try_zero	;if not equal, it is not special
526	bfextu	d0{17:3},d1	;get SE and y bits into d1
527	cmpi.w	#7,d1		;SE and y bits must be on for special
528	bne.b	try_zero	;if not on, it is not special
529*input is of the special cases of inf and NaN
530	tst.l	ETEMP_HI(a6)	;check ms mantissa
531	bne.b	fix_nan		;if non-zero, it is a NaN
532	tst.l	ETEMP_LO(a6)	;check ls mantissa
533	bne.b	fix_nan		;if non-zero, it is a NaN
534	bra.w	finish		;special already on stack
535fix_nan:
536	btst.b	#signan_bit,ETEMP_HI(a6) ;test for snan
537	bne.w	finish
538	or.l	#snaniop_mask,USER_FPSR(a6) ;always set snan if it is so
539	bra.w	finish
540try_zero:
541	move.w	ETEMP_EX+2(a6),d0 ;get word 4
542	andi.w	#$000f,d0	;clear all but last ni(y)bble
543	tst.w	d0		;check for zero.
544	bne.w	not_spec
545	tst.l	ETEMP_HI(a6)	;check words 3 and 2
546	bne.w	not_spec
547	tst.l	ETEMP_LO(a6)	;check words 1 and 0
548	bne.w	not_spec
549	tst.l	ETEMP(a6)	;test sign of the zero
550	bge.b	pos_zero
551	move.l	#$80000000,ETEMP(a6) ;write neg zero to etemp
552	clr.l	ETEMP_HI(a6)
553	clr.l	ETEMP_LO(a6)
554	bra.w	finish
555pos_zero:
556	clr.l	ETEMP(a6)
557	clr.l	ETEMP_HI(a6)
558	clr.l	ETEMP_LO(a6)
559	bra.w	finish
560
561not_spec:
562	fmovem.x fp0-fp1,-(a7)	;save fp0 - decbin returns in it
563	bsr	decbin
564	fmove.x fp0,ETEMP(a6)	;put the unpacked sop in the fsave stack
565	fmovem.x (a7)+,fp0-fp1
566	fmove.l	#0,FPSR		;clr fpsr from decbin
567	bra	finish
568
569*
570* Special handling for packed move in:  Same results as all other
571* packed cases, but we must set the FPSR condition codes properly.
572*
573move_unpack:
574	move.w	ETEMP(a6),d0	;get word with inf information
575	bfextu	d0{20:12},d1	;get exponent into d1
576	cmpi.w	#$0fff,d1	;test for inf or NaN
577	bne.b	mtry_zero	;if not equal, it is not special
578	bfextu	d0{17:3},d1	;get SE and y bits into d1
579	cmpi.w	#7,d1		;SE and y bits must be on for special
580	bne.b	mtry_zero	;if not on, it is not special
581*input is of the special cases of inf and NaN
582	tst.l	ETEMP_HI(a6)	;check ms mantissa
583	bne.b	mfix_nan		;if non-zero, it is a NaN
584	tst.l	ETEMP_LO(a6)	;check ls mantissa
585	bne.b	mfix_nan		;if non-zero, it is a NaN
586*input is inf
587	or.l	#inf_mask,USER_FPSR(a6) ;set I bit
588	tst.l	ETEMP(a6)	;check sign
589	bge.w	finish
590	or.l	#neg_mask,USER_FPSR(a6) ;set N bit
591	bra.w	finish		;special already on stack
592mfix_nan:
593	or.l	#nan_mask,USER_FPSR(a6) ;set NaN bit
594	move.b	#nan_tag,STAG(a6)	;set stag to NaN
595	btst.b	#signan_bit,ETEMP_HI(a6) ;test for snan
596	bne.b	mn_snan
597	or.l	#snaniop_mask,USER_FPSR(a6) ;set snan bit
598	btst.b	#snan_bit,FPCR_ENABLE(a6) ;test for snan enabled
599	bne.b	mn_snan
600	bset.b	#signan_bit,ETEMP_HI(a6) ;force snans to qnans
601mn_snan:
602	tst.l	ETEMP(a6)	;check for sign
603	bge.w	finish		;if clr, go on
604	or.l	#neg_mask,USER_FPSR(a6) ;set N bit
605	bra.w	finish
606
607mtry_zero:
608	move.w	ETEMP_EX+2(a6),d0 ;get word 4
609	andi.w	#$000f,d0	;clear all but last ni(y)bble
610	tst.w	d0		;check for zero.
611	bne.b	mnot_spec
612	tst.l	ETEMP_HI(a6)	;check words 3 and 2
613	bne.b	mnot_spec
614	tst.l	ETEMP_LO(a6)	;check words 1 and 0
615	bne.b	mnot_spec
616	tst.l	ETEMP(a6)	;test sign of the zero
617	bge.b	mpos_zero
618	or.l	#neg_mask+z_mask,USER_FPSR(a6) ;set N and Z
619	move.l	#$80000000,ETEMP(a6) ;write neg zero to etemp
620	clr.l	ETEMP_HI(a6)
621	clr.l	ETEMP_LO(a6)
622	bra.b	finish
623mpos_zero:
624	or.l	#z_mask,USER_FPSR(a6) ;set Z
625	clr.l	ETEMP(a6)
626	clr.l	ETEMP_HI(a6)
627	clr.l	ETEMP_LO(a6)
628	bra.b	finish
629
630mnot_spec:
631	fmovem.x fp0-fp1,-(a7)	;save fp0 ,fp1 - decbin returns in fp0
632	bsr	decbin
633	fmove.x fp0,ETEMP(a6)
634*				;put the unpacked sop in the fsave stack
635	fmovem.x (a7)+,fp0-fp1
636
637finish:
638	move.w	CMDREG1B(a6),d0	;get the command word
639	and.w	#$fbff,d0	;change the source specifier field to
640*				;extended (was packed).
641	move.w	d0,CMDREG1B(a6)	;write command word back to fsave stack
642*				;we need to do this so the 040 will
643*				;re-execute the inst. without taking
644*				;another packed trap.
645
646fix_stag:
647*Converted result is now in etemp on fsave stack, now set the source
648*tag (stag)
649*	if (ete =$7fff) then INF or NAN
650*		if (etemp = $x.0----0) then
651*			stag = INF
652*		else
653*			stag = NAN
654*	else
655*		if (ete = $0000) then
656*			stag = ZERO
657*		else
658*			stag = NORM
659*
660* Note also that the etemp_15 bit (just right of the stag) must
661* be set accordingly.
662*
663	move.w		ETEMP_EX(a6),d1
664	andi.w		#$7fff,d1   ;strip sign
665	cmp.w  		#$7fff,d1
666	bne.b  		z_or_nrm
667	move.l		ETEMP_HI(a6),d1
668	bne.b		is_nan
669	move.l		ETEMP_LO(a6),d1
670	bne.b		is_nan
671is_inf:
672	move.b		#$40,STAG(a6)
673	move.l		#$40,d0
674	rts
675is_nan:
676	move.b		#$60,STAG(a6)
677	move.l		#$60,d0
678	rts
679z_or_nrm:
680	tst.w		d1
681	bne.b		is_nrm
682is_zro:
683* For a zero, set etemp_15
684	move.b		#$30,STAG(a6)
685	move.l		#$20,d0
686	rts
687is_nrm:
688* For a norm, check if the exp <= $3fff; if so, set etemp_15
689	cmpi.w		#$3fff,d1
690	ble.b		set_bit15
691	clr.b		STAG(a6)
692	bra.b		end_is_nrm
693set_bit15:
694	move.b		#$10,STAG(a6)
695end_is_nrm:
696	clr.l		d0
697end_fix:
698	rts
699
700end_get:
701	rts
702	end
703