1 /*	$NetBSD: pmap_bootstrap.c,v 1.18 2002/11/05 07:41:33 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
40  */
41 
42 #include <sys/param.h>
43 #include <sys/kcore.h>
44 #include <machine/kcore.h>
45 #include <machine/pte.h>
46 #include <machine/vmparam.h>
47 #include <machine/cpu.h>
48 
49 #include <mvme68k/mvme68k/seglist.h>
50 
51 #include <uvm/uvm_extern.h>
52 
53 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
54 
55 extern char *kernel_text, *etext;
56 extern int Sysptsize;
57 extern char *proc0paddr;
58 extern st_entry_t *Sysseg;
59 extern pt_entry_t *Sysptmap, *Sysmap;
60 
61 extern int maxmem, physmem;
62 extern paddr_t avail_start, avail_end;
63 extern vaddr_t virtual_avail, virtual_end;
64 extern vsize_t mem_size;
65 extern phys_ram_seg_t mem_clusters[];
66 extern int mem_cluster_cnt;
67 extern paddr_t msgbufpa;
68 extern int protection_codes[];
69 
70 /*
71  * Special purpose kernel virtual addresses, used for mapping
72  * physical pages for a variety of temporary or permanent purposes:
73  *
74  *	CADDR1, CADDR2:	pmap zero/copy operations
75  *	vmmap:		/dev/mem, crash dumps, parity error checking
76  *	msgbufaddr:	kernel message buffer
77  */
78 caddr_t		CADDR1, CADDR2, vmmap;
79 extern caddr_t	msgbufaddr;
80 
81 void	pmap_bootstrap __P((paddr_t, paddr_t));
82 
83 /*
84  * Bootstrap the VM system.
85  *
86  * Called with MMU off so we must relocate all global references by `firstpa'
87  * (don't call any functions here!)  `nextpa' is the first available physical
88  * memory address.  Returns an updated first PA reflecting the memory we
89  * have allocated.  MMU is still off when we return.
90  *
91  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
92  * XXX a PIC compiler would make this much easier.
93  */
94 void
95 pmap_bootstrap(nextpa, firstpa)
96 	paddr_t nextpa;
97 	paddr_t firstpa;
98 {
99 	paddr_t kstpa, kptpa, iiopa, kptmpa, lkptpa, p0upa;
100 	u_int nptpages, kstsize;
101 	st_entry_t protoste, *ste;
102 	pt_entry_t protopte, *pte, *epte;
103 	psize_t size;
104 	u_int iiomappages;
105 	int i;
106 
107 	/*
108 	 * Calculate important physical addresses:
109 	 *
110 	 *	kstpa		kernel segment table	1 page (!040)
111 	 *						N pages (040)
112 	 *
113 	 *	kptpa		statically allocated
114 	 *			kernel PT pages		Sysptsize+ pages
115 	 *
116 	 *	iiopa		internal IO space
117 	 *			PT pages		iiomappages pages
118 	 *
119 	 * [ Sysptsize is the number of pages of PT, iiomappages is the
120 	 *   number of PTEs, hence we need to round the total to a page
121 	 *   boundary with IO maps at the end. ]
122 	 *
123 	 *	kptmpa		kernel PT map		1 page
124 	 *
125 	 *	lkptpa		last kernel PT page	1 page
126 	 *
127 	 *	p0upa		proc 0 u-area		UPAGES pages
128 	 *
129 	 * The KVA corresponding to any of these PAs is:
130 	 *	(PA - firstpa + KERNBASE).
131 	 */
132 	iiomappages = m68k_btop(RELOC(intiotop_phys, u_int) -
133 			       RELOC(intiobase_phys, u_int));
134 
135 #if defined(M68040) || defined(M68060)
136 	if (RELOC(mmutype, int) == MMU_68040)
137 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
138 	else
139 #endif
140 		kstsize = 1;
141 	kstpa = nextpa;
142 	nextpa += kstsize * NBPG;
143 	kptpa = nextpa;
144 	nptpages = RELOC(Sysptsize, int) +
145 		(iiomappages + NPTEPG - 1) / NPTEPG;
146 	nextpa += nptpages * NBPG;
147 	iiopa = nextpa - iiomappages * sizeof(pt_entry_t);
148 	kptmpa = nextpa;
149 	nextpa += NBPG;
150 	lkptpa = nextpa;
151 	nextpa += NBPG;
152 	p0upa = nextpa;
153 	nextpa += USPACE;
154 
155 	/*
156 	 * Clear all PTEs to zero
157 	 */
158 	for (pte = (pt_entry_t *)kstpa; pte < (pt_entry_t *)nextpa; pte++)
159 		*pte = 0;
160 
161 	/*
162 	 * Initialize segment table and kernel page table map.
163 	 *
164 	 * On 68030s and earlier MMUs the two are identical except for
165 	 * the valid bits so both are initialized with essentially the
166 	 * same values.  On the 68040, which has a mandatory 3-level
167 	 * structure, the segment table holds the level 1 table and part
168 	 * (or all) of the level 2 table and hence is considerably
169 	 * different.  Here the first level consists of 128 descriptors
170 	 * (512 bytes) each mapping 32mb of address space.  Each of these
171 	 * points to blocks of 128 second level descriptors (512 bytes)
172 	 * each mapping 256kb.  Note that there may be additional "segment
173 	 * table" pages depending on how large MAXKL2SIZE is.
174 	 *
175 	 * Portions of the last segment of KVA space (0xFFF00000 -
176 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
177 	 * for UPAGES is used for mapping the current process u-area
178 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
179 	 * to the last physical page of RAM to give us a region in which
180 	 * PA == VA.  We use the first part of this page for enabling
181 	 * and disabling mapping.  The last part of this page also contains
182 	 * info left by the boot ROM.
183 	 *
184 	 * XXX cramming two levels of mapping into the single "segment"
185 	 * table on the 68040 is intended as a temporary hack to get things
186 	 * working.  The 224mb of address space that this allows will most
187 	 * likely be insufficient in the future (at least for the kernel).
188 	 */
189 #if defined(M68040) || defined(M68060)
190 	if (RELOC(mmutype, int) == MMU_68040) {
191 		int num;
192 
193 		/*
194 		 * First invalidate the entire "segment table" pages
195 		 * (levels 1 and 2 have the same "invalid" value).
196 		 */
197 		pte = (u_int *)kstpa;
198 		epte = &pte[kstsize * NPTEPG];
199 		while (pte < epte)
200 			*pte++ = SG_NV;
201 		/*
202 		 * Initialize level 2 descriptors (which immediately
203 		 * follow the level 1 table).  We need:
204 		 *	NPTEPG / SG4_LEV3SIZE
205 		 * level 2 descriptors to map each of the nptpages+1
206 		 * pages of PTEs.  Note that we set the "used" bit
207 		 * now to save the HW the expense of doing it.
208 		 */
209 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
210 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
211 		epte = &pte[num];
212 		protoste = kptpa | SG_U | SG_RW | SG_V;
213 		while (pte < epte) {
214 			*pte++ = protoste;
215 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
216 		}
217 		/*
218 		 * Initialize level 1 descriptors.  We need:
219 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
220 		 * level 1 descriptors to map the `num' level 2's.
221 		 */
222 		pte = (u_int *)kstpa;
223 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
224 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
225 		while (pte < epte) {
226 			*pte++ = protoste;
227 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
228 		}
229 		/*
230 		 * Initialize the final level 1 descriptor to map the last
231 		 * block of level 2 descriptors.
232 		 */
233 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
234 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
235 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
236 		/*
237 		 * Now initialize the final portion of that block of
238 		 * descriptors to map the "last PT page".
239 		 */
240 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
241 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
242 		protoste = lkptpa | SG_U | SG_RW | SG_V;
243 		while (pte < epte) {
244 			*pte++ = protoste;
245 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
246 		}
247 		/*
248 		 * Initialize Sysptmap
249 		 */
250 		pte = (u_int *)kptmpa;
251 		epte = &pte[nptpages+1];
252 		protopte = kptpa | PG_RW | PG_CI | PG_U | PG_V;
253 		while (pte < epte) {
254 			*pte++ = protopte;
255 			protopte += NBPG;
256 		}
257 		/*
258 		 * Invalidate all but the last remaining entry.
259 		 */
260 		epte = &((u_int *)kptmpa)[NPTEPG-1];
261 		while (pte < epte) {
262 			*pte++ = PG_NV;
263 		}
264 		*pte = lkptpa | PG_RW | PG_CI | PG_U | PG_V;
265 	} else
266 #endif /* M68040 || M68060 */
267 	{
268 		/*
269 		 * Map the page table pages in both the HW segment table
270 		 * and the software Sysptmap.  Note that Sysptmap is also
271 		 * considered a PT page hence the +1.
272 		 */
273 		ste = (u_int *)kstpa;
274 		pte = (u_int *)kptmpa;
275 		epte = &pte[nptpages+1];
276 		protoste = kptpa | SG_RW | SG_V;
277 		protopte = kptpa | PG_RW | PG_CI | PG_V;
278 		while (pte < epte) {
279 			*ste++ = protoste;
280 			*pte++ = protopte;
281 			protoste += NBPG;
282 			protopte += NBPG;
283 		}
284 		/*
285 		 * Invalidate all but the last remaining entries in both.
286 		 */
287 		epte = &((u_int *)kptmpa)[NPTEPG-1];
288 		while (pte < epte) {
289 			*ste++ = SG_NV;
290 			*pte++ = PG_NV;
291 		}
292 		/*
293 		 * Initialize the last to point to point to the page
294 		 * table page allocated earlier.
295 		 */
296 		*ste = lkptpa | SG_RW | SG_V;
297 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
298 	}
299 	/*
300 	 * Invalidate all but the final entry in the last kernel PT page
301 	 * (u-area PTEs will be validated later).  The final entry maps
302 	 * the last page of physical memory.
303 	 */
304 	pte = (u_int *)lkptpa;
305 	epte = &pte[NPTEPG-1];
306 	while (pte < epte)
307 		*pte++ = PG_NV;
308 
309 	/*
310 	 * Initialize kernel page table.
311 	 * Start by invalidating the `nptpages' that we have allocated.
312 	 */
313 	pte = (u_int *)kptpa;
314 	epte = &pte[nptpages * NPTEPG];
315 	while (pte < epte)
316 		*pte++ = PG_NV;
317 	/*
318 	 * Validate PTEs for kernel text (RO)
319 	 */
320 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
321 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
322 	protopte = firstpa | PG_RO | PG_U | PG_V;
323 	while (pte < epte) {
324 		*pte++ = protopte;
325 		protopte += NBPG;
326 	}
327 	/*
328 	 * Validate PTEs for kernel data/bss, dynamic data allocated
329 	 * by us so far (kstpa - firstpa bytes), and pages for proc0
330 	 * u-area and page table allocated below (RW).
331 	 */
332 	epte = &((u_int *)kptpa)[m68k_btop(kstpa - firstpa)];
333 	protopte = (protopte & ~PG_PROT) | PG_RW;
334 	/*
335 	 * Enable copy-back caching of data pages
336 	 */
337 	if (RELOC(mmutype, int) == MMU_68040)
338 		protopte |= PG_CCB;
339 	while (pte < epte) {
340 		*pte++ = protopte;
341 		protopte += NBPG;
342 	}
343 	/*
344 	 * map the kernel segment table cache invalidated for
345 	 * these machines (for the 68040 not strictly necessary, but
346 	 * recommended by Motorola; for the 68060 mandatory)
347 	 */
348 	epte = &((u_int *)kptpa)[m68k_btop(nextpa - firstpa)];
349 	protopte = (protopte & ~PG_PROT) | PG_RW;
350 	if (RELOC(mmutype, int) == MMU_68040) {
351 		protopte &= ~PG_CMASK;
352 		protopte |= PG_CI;
353 	}
354 	while (pte < epte) {
355 		*pte++ = protopte;
356 		protopte += NBPG;
357 	}
358 	/*
359 	 * Finally, validate the internal IO space PTEs (RW+CI).
360 	 */
361 	pte = (u_int *)iiopa;
362 	epte = (u_int *)kptmpa;
363 	protopte = RELOC(intiobase_phys, u_int) | PG_RW | PG_CI | PG_U | PG_V;
364 	while (pte < epte) {
365 		*pte++ = protopte;
366 		protopte += NBPG;
367 	}
368 
369 	/*
370 	 * Calculate important exported kernel virtual addresses
371 	 */
372 	/*
373 	 * Sysseg: base of kernel segment table
374 	 */
375 	RELOC(Sysseg, st_entry_t *) =
376 		(st_entry_t *)(kstpa - firstpa);
377 	/*
378 	 * Sysptmap: base of kernel page table map
379 	 */
380 	RELOC(Sysptmap, pt_entry_t *) =
381 		(pt_entry_t *)(kptmpa - firstpa);
382 	/*
383 	 * Sysmap: kernel page table (as mapped through Sysptmap)
384 	 * Immediately follows `nptpages' of static kernel page table.
385 	 */
386 	RELOC(Sysmap, pt_entry_t *) =
387 		(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
388 	/*
389 	 * intiobase, intiolimit: base and end of internal IO space.
390 	 * iiomappages pages prior to VMEbus IO space at end of static
391 	 * kernel page table.
392 	 */
393 	RELOC(intiobase, char *) =
394 	    (char *)m68k_ptob(nptpages*NPTEPG - iiomappages);
395 	RELOC(intiolimit, char *) =
396 	    (char *)m68k_ptob(nptpages*NPTEPG);
397 
398 	/*
399 	 * Setup u-area for process 0.
400 	 */
401 	/*
402 	 * Zero the u-area.
403 	 * NOTE: `pte' and `epte' aren't PTEs here.
404 	 */
405 	pte = (u_int *)p0upa;
406 	epte = (u_int *)(p0upa + USPACE);
407 	while (pte < epte)
408 		*pte++ = 0;
409 	/*
410 	 * Remember the u-area address so it can be loaded in the
411 	 * proc struct p_addr field later.
412 	 */
413 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
414 
415 	/*
416 	 * Initialize the mem_clusters[] array for the crash dump
417 	 * code.  While we're at it, compute the total amount of
418 	 * physical memory in the system.
419 	 */
420 	for (i = 0; i < VM_PHYSSEG_MAX; i++) {
421 		if (RELOC(phys_seg_list[i].ps_start, paddr_t) ==
422 		    RELOC(phys_seg_list[i].ps_end, paddr_t)) {
423 			/*
424 			 * No more memory.
425 			 */
426 			break;
427 		}
428 
429 		/*
430 		 * Make sure these are properly rounded.
431 		 */
432 		RELOC(phys_seg_list[i].ps_start, paddr_t) =
433 		    m68k_round_page(RELOC(phys_seg_list[i].ps_start,
434 					  paddr_t));
435 		RELOC(phys_seg_list[i].ps_end, paddr_t) =
436 		    m68k_trunc_page(RELOC(phys_seg_list[i].ps_end,
437 					  paddr_t));
438 
439 		size = RELOC(phys_seg_list[i].ps_end, paddr_t) -
440 		    RELOC(phys_seg_list[i].ps_start, paddr_t);
441 
442 		RELOC(mem_clusters[i].start, u_quad_t) =
443 		    RELOC(phys_seg_list[i].ps_start, paddr_t);
444 		RELOC(mem_clusters[i].size, u_quad_t) = size;
445 
446 		RELOC(physmem, int) += size >> PGSHIFT;
447 
448 		RELOC(mem_cluster_cnt, int) += 1;
449 	}
450 
451 	/*
452 	 * Scoot the start of available on-board RAM forward to
453 	 * account for:
454 	 *
455 	 *	(1) The bootstrap programs in low memory (so
456 	 *	    that we can jump back to them without
457 	 *	    reloading).
458 	 *
459 	 *	(2) The kernel text, data, and bss.
460 	 *
461 	 *	(3) The pages we stole above for pmap data
462 	 *	    structures.
463 	 */
464 	RELOC(phys_seg_list[0].ps_start, paddr_t) = nextpa;
465 
466 	/*
467 	 * Reserve space at the end of on-board RAM for the message
468 	 * buffer.  We force it into on-board RAM because VME RAM
469 	 * gets cleared very early on in locore.s (to initialise
470 	 * parity on boards that need it). This would clobber the
471 	 * messages from a previous running NetBSD system.
472 	 */
473 	RELOC(phys_seg_list[0].ps_end, paddr_t) -=
474 	    m68k_round_page(MSGBUFSIZE);
475 	RELOC(msgbufpa, paddr_t) =
476 	    RELOC(phys_seg_list[0].ps_end, paddr_t);
477 
478 	/*
479 	 * Initialize avail_start and avail_end.
480 	 */
481 	i = RELOC(mem_cluster_cnt, int) - 1;
482 	RELOC(avail_start, paddr_t) =
483 	    RELOC(phys_seg_list[0].ps_start, paddr_t);
484 	RELOC(avail_end, paddr_t) =
485 	    RELOC(phys_seg_list[i].ps_end, paddr_t);
486 
487 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
488 
489 	RELOC(virtual_avail, vaddr_t) =
490 		VM_MIN_KERNEL_ADDRESS + (vaddr_t)(nextpa - firstpa);
491 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
492 
493 	/*
494 	 * Initialize protection array.
495 	 * XXX don't use a switch statement, it might produce an
496 	 * absolute "jmp" table.
497 	 */
498 	{
499 		int *kp;
500 
501 		kp = &RELOC(protection_codes, int);
502 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
503 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
504 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
505 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
506 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
507 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
508 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
509 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
510 	}
511 
512 	/*
513 	 * Kernel page/segment table allocated above,
514 	 * just initialize pointers.
515 	 */
516 	{
517 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
518 
519 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
520 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
521 		simple_lock_init(&kpm->pm_lock);
522 		kpm->pm_count = 1;
523 		kpm->pm_stpa = (st_entry_t *)kstpa;
524 #if defined(M68040) || defined(M68060)
525 		/*
526 		 * For the 040 we also initialize the free level 2
527 		 * descriptor mask noting that we have used:
528 		 *	0:		level 1 table
529 		 *	1 to `num':	map page tables
530 		 *	MAXKL2SIZE-1:	maps last-page page table
531 		 */
532 		if (RELOC(mmutype, int) == MMU_68040) {
533 			int num;
534 
535 			kpm->pm_stfree = ~l2tobm(0);
536 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
537 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
538 			while (num)
539 				kpm->pm_stfree &= ~l2tobm(num--);
540 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
541 			for (num = MAXKL2SIZE;
542 			     num < sizeof(kpm->pm_stfree)*NBBY;
543 			     num++)
544 				kpm->pm_stfree &= ~l2tobm(num);
545 		}
546 #endif
547 	}
548 
549 	/*
550 	 * Allocate some fixed, special purpose kernel virtual addresses
551 	 */
552 	{
553 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
554 
555 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
556 		va += NBPG;
557 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
558 		va += NBPG;
559 		RELOC(vmmap, caddr_t) = (caddr_t)va;
560 		va += NBPG;
561 		RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
562 		va += m68k_round_page(MSGBUFSIZE);
563 		RELOC(virtual_avail, vaddr_t) = va;
564 	}
565 }
566 
567 void
568 pmap_init_md(void)
569 {
570 	vaddr_t addr;
571 
572 	addr = (vaddr_t) intiobase;
573 	if (uvm_map(kernel_map, &addr,
574 		    (intiotop_phys - intiobase_phys),
575 		    NULL, UVM_UNKNOWN_OFFSET, 0,
576 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE,
577 				UVM_INH_NONE, UVM_ADV_RANDOM,
578 				UVM_FLAG_FIXED)) != 0)
579 		panic("pmap_init_md: uvm_map failed");
580 }
581