xref: /netbsd/sys/arch/powerpc/fpu/fpu_div.c (revision bf9ec67e)
1 /*	$NetBSD: fpu_div.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Perform an FPU divide (return x / y).
49  */
50 
51 #include <sys/types.h>
52 #if defined(DIAGNOSTIC)||defined(DEBUG)
53 #include <sys/systm.h>
54 #endif
55 
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
58 
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 
62 /*
63  * Division of normal numbers is done as follows:
64  *
65  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
66  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
67  *
68  *	q = (X / Y) * 2^((x exponent) - (y exponent))
69  *
70  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
71  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
72  * if X < Y.  In that case, it will have to be shifted left one bit to
73  * become a normal number, and the exponent decremented.  Thus, the
74  * desired exponent is:
75  *
76  *	left_shift = x->fp_mant < y->fp_mant;
77  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
78  *
79  * The quotient mantissa X/Y can then be computed one bit at a time
80  * using the following algorithm:
81  *
82  *	Q = 0;			-- Initial quotient.
83  *	R = X;			-- Initial remainder,
84  *	if (left_shift)		--   but fixed up in advance.
85  *		R *= 2;
86  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
87  *		if (R >= Y) {
88  *			Q |= 1 << bit;
89  *			R -= Y;
90  *		}
91  *	}
92  *
93  * The subtraction R -= Y always removes the uppermost bit from R (and
94  * can sometimes remove additional lower-order 1 bits); this proof is
95  * left to the reader.
96  *
97  * This loop correctly calculates the guard and round bits since they are
98  * included in the expanded internal representation.  The sticky bit
99  * is to be set if and only if any other bits beyond guard and round
100  * would be set.  From the above it is obvious that this is true if and
101  * only if the remainder R is nonzero when the loop terminates.
102  *
103  * Examining the loop above, we can see that the quotient Q is built
104  * one bit at a time ``from the top down''.  This means that we can
105  * dispense with the multi-word arithmetic and just build it one word
106  * at a time, writing each result word when it is done.
107  *
108  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
109  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
110  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
111  * set, and R can be set initially to either X - Y (when X >= Y) or
112  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
113  * so we will simply calculate R - Y and see if that underflows.
114  * This leads to the following revised version of the algorithm:
115  *
116  *	R = X;
117  *	bit = FP_1;
118  *	D = R - Y;
119  *	if (D >= 0) {
120  *		result_exp = x->fp_exp - y->fp_exp;
121  *		R = D;
122  *		q = bit;
123  *		bit >>= 1;
124  *	} else {
125  *		result_exp = x->fp_exp - y->fp_exp - 1;
126  *		q = 0;
127  *	}
128  *	R <<= 1;
129  *	do  {
130  *		D = R - Y;
131  *		if (D >= 0) {
132  *			q |= bit;
133  *			R = D;
134  *		}
135  *		R <<= 1;
136  *	} while ((bit >>= 1) != 0);
137  *	Q[0] = q;
138  *	for (i = 1; i < 4; i++) {
139  *		q = 0, bit = 1 << 31;
140  *		do {
141  *			D = R - Y;
142  *			if (D >= 0) {
143  *				q |= bit;
144  *				R = D;
145  *			}
146  *			R <<= 1;
147  *		} while ((bit >>= 1) != 0);
148  *		Q[i] = q;
149  *	}
150  *
151  * This can be refined just a bit further by moving the `R <<= 1'
152  * calculations to the front of the do-loops and eliding the first one.
153  * The process can be terminated immediately whenever R becomes 0, but
154  * this is relatively rare, and we do not bother.
155  */
156 
157 struct fpn *
158 fpu_div(struct fpemu *fe)
159 {
160 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
161 	u_int q, bit;
162 	u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
163 	FPU_DECL_CARRY
164 
165 	/*
166 	 * Since divide is not commutative, we cannot just use ORDER.
167 	 * Check either operand for NaN first; if there is at least one,
168 	 * order the signalling one (if only one) onto the right, then
169 	 * return it.  Otherwise we have the following cases:
170 	 *
171 	 *	Inf / Inf = NaN, plus NV exception
172 	 *	Inf / num = Inf [i.e., return x]
173 	 *	Inf / 0   = Inf [i.e., return x]
174 	 *	0 / Inf = 0 [i.e., return x]
175 	 *	0 / num = 0 [i.e., return x]
176 	 *	0 / 0   = NaN, plus NV exception
177 	 *	num / Inf = 0
178 	 *	num / num = num (do the divide)
179 	 *	num / 0   = Inf, plus DZ exception
180 	 */
181 	DPRINTF(FPE_REG, ("fpu_div:\n"));
182 	DUMPFPN(FPE_REG, x);
183 	DUMPFPN(FPE_REG, y);
184 	DPRINTF(FPE_REG, ("=>\n"));
185 	if (ISNAN(x) || ISNAN(y)) {
186 		ORDER(x, y);
187 		fe->fe_cx |= FPSCR_VXSNAN;
188 		DUMPFPN(FPE_REG, y);
189 		return (y);
190 	}
191 	/*
192 	 * Need to split the following out cause they generate different
193 	 * exceptions.
194 	 */
195 	if (ISINF(x)) {
196 		if (x->fp_class == y->fp_class) {
197 			fe->fe_cx |= FPSCR_VXIDI;
198 			return (fpu_newnan(fe));
199 		}
200 		DUMPFPN(FPE_REG, x);
201 		return (x);
202 	}
203 	if (ISZERO(x)) {
204 		fe->fe_cx |= FPSCR_ZX;
205 		if (x->fp_class == y->fp_class) {
206 			fe->fe_cx |= FPSCR_VXZDZ;
207 			return (fpu_newnan(fe));
208 		}
209 		DUMPFPN(FPE_REG, x);
210 		return (x);
211 	}
212 
213 	/* all results at this point use XOR of operand signs */
214 	x->fp_sign ^= y->fp_sign;
215 	if (ISINF(y)) {
216 		x->fp_class = FPC_ZERO;
217 		DUMPFPN(FPE_REG, x);
218 		return (x);
219 	}
220 	if (ISZERO(y)) {
221 		fe->fe_cx = FPSCR_ZX;
222 		x->fp_class = FPC_INF;
223 		DUMPFPN(FPE_REG, x);
224 		return (x);
225 	}
226 
227 	/*
228 	 * Macros for the divide.  See comments at top for algorithm.
229 	 * Note that we expand R, D, and Y here.
230 	 */
231 
232 #define	SUBTRACT		/* D = R - Y */ \
233 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
234 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
235 
236 #define	NONNEGATIVE		/* D >= 0 */ \
237 	((int)d0 >= 0)
238 
239 #ifdef FPU_SHL1_BY_ADD
240 #define	SHL1			/* R <<= 1 */ \
241 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
242 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
243 #else
244 #define	SHL1 \
245 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
246 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
247 #endif
248 
249 #define	LOOP			/* do ... while (bit >>= 1) */ \
250 	do { \
251 		SHL1; \
252 		SUBTRACT; \
253 		if (NONNEGATIVE) { \
254 			q |= bit; \
255 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
256 		} \
257 	} while ((bit >>= 1) != 0)
258 
259 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
260 	q = 0; \
261 	bit = 1 << 31; \
262 	LOOP; \
263 	(x)->fp_mant[i] = q
264 
265 	/* Setup.  Note that we put our result in x. */
266 	r0 = x->fp_mant[0];
267 	r1 = x->fp_mant[1];
268 	r2 = x->fp_mant[2];
269 	r3 = x->fp_mant[3];
270 	y0 = y->fp_mant[0];
271 	y1 = y->fp_mant[1];
272 	y2 = y->fp_mant[2];
273 	y3 = y->fp_mant[3];
274 
275 	bit = FP_1;
276 	SUBTRACT;
277 	if (NONNEGATIVE) {
278 		x->fp_exp -= y->fp_exp;
279 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
280 		q = bit;
281 		bit >>= 1;
282 	} else {
283 		x->fp_exp -= y->fp_exp + 1;
284 		q = 0;
285 	}
286 	LOOP;
287 	x->fp_mant[0] = q;
288 	WORD(x, 1);
289 	WORD(x, 2);
290 	WORD(x, 3);
291 	x->fp_sticky = r0 | r1 | r2 | r3;
292 
293 	DUMPFPN(FPE_REG, x);
294 	return (x);
295 }
296