xref: /netbsd/sys/arch/powerpc/fpu/fpu_emu.h (revision bf9ec67e)
1 /*	$NetBSD: fpu_emu.h,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Floating point emulator (tailored for SPARC, but structurally
49  * machine-independent).
50  *
51  * Floating point numbers are carried around internally in an `expanded'
52  * or `unpacked' form consisting of:
53  *	- sign
54  *	- unbiased exponent
55  *	- mantissa (`1.' + 112-bit fraction + guard + round)
56  *	- sticky bit
57  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
58  * always nonzero.  Additional low-order `guard' and `round' bits are
59  * scrunched in, making the entire mantissa 115 bits long.  This is divided
60  * into four 32-bit words, with `spare' bits left over in the upper part
61  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
62  * number is thus kept within the half-open interval [1.0,2.0) (but see
63  * the `number classes' below).  This holds even for denormalized numbers:
64  * when we explode an external denorm, we normalize it, introducing low-order
65  * zero bits, so that the rest of the code always sees normalized values.
66  *
67  * Note that a number of our algorithms use the `spare' bits at the top.
68  * The most demanding algorithm---the one for sqrt---depends on two such
69  * bits, so that it can represent values up to (but not including) 8.0,
70  * and then it needs a carry on top of that, so that we need three `spares'.
71  *
72  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
73  * whole words from the mantissa into it.
74  *
75  * All operations are done in this internal extended precision.  According
76  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
77  * it is OK to do a+b in extended precision and then round the result to
78  * single precision---provided single, double, and extended precisions are
79  * `far enough apart' (they always are), but we will try to avoid any such
80  * extra work where possible.
81  */
82 struct fpn {
83 	int	fp_class;		/* see below */
84 	int	fp_sign;		/* 0 => positive, 1 => negative */
85 	int	fp_exp;			/* exponent (unbiased) */
86 	int	fp_sticky;		/* nonzero bits lost at right end */
87 	u_int	fp_mant[4];		/* 115-bit mantissa */
88 };
89 
90 #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
91 #define	FP_NG		2		/* number of low-order guard bits */
92 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
93 #define	FP_LG2		((FP_NMANT - 1) & 63)	/* log2(1.0) for fp_mant[0] and fp_mant[1] */
94 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
95 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
96 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
97 
98 /*
99  * Number classes.  Since zero, Inf, and NaN cannot be represented using
100  * the above layout, we distinguish these from other numbers via a class.
101  * In addition, to make computation easier and to follow Appendix N of
102  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
103  */
104 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
105 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
106 #define	FPC_ZERO	0		/* zero (sign matters) */
107 #define	FPC_NUM		1		/* number (sign matters) */
108 #define	FPC_INF		2		/* infinity (sign matters) */
109 
110 #define	ISSNAN(fp)	((fp)->fp_class == FPC_SNAN)
111 #define	ISQNAN(fp)	((fp)->fp_class == FPC_QNAN)
112 #define	ISNAN(fp)	((fp)->fp_class < 0)
113 #define	ISZERO(fp)	((fp)->fp_class == 0)
114 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
115 
116 /*
117  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
118  * to the `more significant' operand for our purposes.  Appendix N says that
119  * the result of a computation involving two numbers are:
120  *
121  *	If both are SNaN: operand 2, converted to Quiet
122  *	If only one is SNaN: the SNaN operand, converted to Quiet
123  *	If both are QNaN: operand 2
124  *	If only one is QNaN: the QNaN operand
125  *
126  * In addition, in operations with an Inf operand, the result is usually
127  * Inf.  The class numbers are carefully arranged so that if
128  *	(unsigned)class(op1) > (unsigned)class(op2)
129  * then op1 is the one we want; otherwise op2 is the one we want.
130  */
131 #define	ORDER(x, y) { \
132 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
133 		SWAP(x, y); \
134 }
135 #define	SWAP(x, y) { \
136 	struct fpn *swap; \
137 	swap = (x), (x) = (y), (y) = swap; \
138 }
139 
140 /*
141  * Emulator state.
142  */
143 struct fpemu {
144 	struct	fpreg *fe_fpstate;	/* registers, etc */
145 	int	fe_fpscr;		/* fpscr copy (modified during op) */
146 	int	fe_cx;			/* keep track of exceptions */
147 	struct	fpn fe_f1;		/* operand 1 */
148 	struct	fpn fe_f2;		/* operand 2, if required */
149 	struct	fpn fe_f3;		/* available storage for result */
150 };
151 
152 /*
153  * Arithmetic functions.
154  * Each of these may modify its inputs (f1,f2) and/or the temporary.
155  * Each returns a pointer to the result and/or sets exceptions.
156  */
157 struct	fpn *fpu_add(struct fpemu *);
158 #define	fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
159 struct	fpn *fpu_mul(struct fpemu *);
160 struct	fpn *fpu_div(struct fpemu *);
161 struct	fpn *fpu_sqrt(struct fpemu *);
162 
163 /*
164  * Other functions.
165  */
166 
167 /* Perform a compare instruction (with or without unordered exception). */
168 void	fpu_compare(struct fpemu *, int);
169 
170 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
171 struct	fpn *fpu_newnan(struct fpemu *);
172 
173 /*
174  * Shift a number right some number of bits, taking care of round/sticky.
175  * Note that the result is probably not a well-formed number (it will lack
176  * the normal 1-bit mant[0]&FP_1).
177  */
178 int	fpu_shr(struct fpn *, int);
179 
180 void	fpu_explode(struct fpemu *, struct fpn *, int, int);
181 void	fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
182 
183 #ifdef DEBUG
184 #define	FPE_EX		0x1
185 #define	FPE_INSN	0x2
186 #define	FPE_OP		0x4
187 #define	FPE_REG		0x8
188 extern int fpe_debug;
189 void	fpu_dumpfpn(struct fpn *);
190 #define	DPRINTF(x, y)	if (fpe_debug & (x)) printf y
191 #define DUMPFPN(x, f)	if (fpe_debug & (x)) fpu_dumpfpn((f))
192 #else
193 #define	DPRINTF(x, y)
194 #define DUMPFPN(x, f)
195 #endif
196