xref: /netbsd/sys/arch/powerpc/fpu/fpu_mul.c (revision bf9ec67e)
1 /*	$NetBSD: fpu_mul.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Perform an FPU multiply (return x * y).
49  */
50 
51 #include <sys/types.h>
52 #if defined(DIAGNOSTIC)||defined(DEBUG)
53 #include <sys/systm.h>
54 #endif
55 
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
58 
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 
62 /*
63  * The multiplication algorithm for normal numbers is as follows:
64  *
65  * The fraction of the product is built in the usual stepwise fashion.
66  * Each step consists of shifting the accumulator right one bit
67  * (maintaining any guard bits) and, if the next bit in y is set,
68  * adding the multiplicand (x) to the accumulator.  Then, in any case,
69  * we advance one bit leftward in y.  Algorithmically:
70  *
71  *	A = 0;
72  *	for (bit = 0; bit < FP_NMANT; bit++) {
73  *		sticky |= A & 1, A >>= 1;
74  *		if (Y & (1 << bit))
75  *			A += X;
76  *	}
77  *
78  * (X and Y here represent the mantissas of x and y respectively.)
79  * The resultant accumulator (A) is the product's mantissa.  It may
80  * be as large as 11.11111... in binary and hence may need to be
81  * shifted right, but at most one bit.
82  *
83  * Since we do not have efficient multiword arithmetic, we code the
84  * accumulator as four separate words, just like any other mantissa.
85  * We use local variables in the hope that this is faster than memory.
86  * We keep x->fp_mant in locals for the same reason.
87  *
88  * In the algorithm above, the bits in y are inspected one at a time.
89  * We will pick them up 32 at a time and then deal with those 32, one
90  * at a time.  Note, however, that we know several things about y:
91  *
92  *    - the guard and round bits at the bottom are sure to be zero;
93  *
94  *    - often many low bits are zero (y is often from a single or double
95  *	precision source);
96  *
97  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
98  *
99  * We can also test for 32-zero-bits swiftly.  In this case, the center
100  * part of the loop---setting sticky, shifting A, and not adding---will
101  * run 32 times without adding X to A.  We can do a 32-bit shift faster
102  * by simply moving words.  Since zeros are common, we optimize this case.
103  * Furthermore, since A is initially zero, we can omit the shift as well
104  * until we reach a nonzero word.
105  */
106 struct fpn *
107 fpu_mul(struct fpemu *fe)
108 {
109 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
110 	u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
111 	int sticky;
112 	FPU_DECL_CARRY;
113 
114 	/*
115 	 * Put the `heavier' operand on the right (see fpu_emu.h).
116 	 * Then we will have one of the following cases, taken in the
117 	 * following order:
118 	 *
119 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
120 	 *	The result is y.
121 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
122 	 *    case was taken care of earlier).
123 	 *	If x = 0, the result is NaN.  Otherwise the result
124 	 *	is y, with its sign reversed if x is negative.
125 	 *  - x = 0.  Implied: y is 0 or number.
126 	 *	The result is 0 (with XORed sign as usual).
127 	 *  - other.  Implied: both x and y are numbers.
128 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
129 	 */
130 	DPRINTF(FPE_REG, ("fpu_mul:\n"));
131 	DUMPFPN(FPE_REG, x);
132 	DUMPFPN(FPE_REG, y);
133 	DPRINTF(FPE_REG, ("=>\n"));
134 
135 	ORDER(x, y);
136 	if (ISNAN(y)) {
137 		y->fp_sign ^= x->fp_sign;
138 		fe->fe_cx |= FPSCR_VXSNAN;
139 		DUMPFPN(FPE_REG, y);
140 		return (y);
141 	}
142 	if (ISINF(y)) {
143 		if (ISZERO(x)) {
144 			fe->fe_cx |= FPSCR_VXIMZ;
145 			return (fpu_newnan(fe));
146 		}
147 		y->fp_sign ^= x->fp_sign;
148 			DUMPFPN(FPE_REG, y);
149 		return (y);
150 	}
151 	if (ISZERO(x)) {
152 		x->fp_sign ^= y->fp_sign;
153 		DUMPFPN(FPE_REG, x);
154 		return (x);
155 	}
156 
157 	/*
158 	 * Setup.  In the code below, the mask `m' will hold the current
159 	 * mantissa byte from y.  The variable `bit' denotes the bit
160 	 * within m.  We also define some macros to deal with everything.
161 	 */
162 	x3 = x->fp_mant[3];
163 	x2 = x->fp_mant[2];
164 	x1 = x->fp_mant[1];
165 	x0 = x->fp_mant[0];
166 	sticky = a3 = a2 = a1 = a0 = 0;
167 
168 #define	ADD	/* A += X */ \
169 	FPU_ADDS(a3, a3, x3); \
170 	FPU_ADDCS(a2, a2, x2); \
171 	FPU_ADDCS(a1, a1, x1); \
172 	FPU_ADDC(a0, a0, x0)
173 
174 #define	SHR1	/* A >>= 1, with sticky */ \
175 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
176 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
177 
178 #define	SHR32	/* A >>= 32, with sticky */ \
179 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
180 
181 #define	STEP	/* each 1-bit step of the multiplication */ \
182 	SHR1; if (bit & m) { ADD; }; bit <<= 1
183 
184 	/*
185 	 * We are ready to begin.  The multiply loop runs once for each
186 	 * of the four 32-bit words.  Some words, however, are special.
187 	 * As noted above, the low order bits of Y are often zero.  Even
188 	 * if not, the first loop can certainly skip the guard bits.
189 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
190 	 * so we stop the loop when we move past that bit.
191 	 */
192 	if ((m = y->fp_mant[3]) == 0) {
193 		/* SHR32; */			/* unneeded since A==0 */
194 	} else {
195 		bit = 1 << FP_NG;
196 		do {
197 			STEP;
198 		} while (bit != 0);
199 	}
200 	if ((m = y->fp_mant[2]) == 0) {
201 		SHR32;
202 	} else {
203 		bit = 1;
204 		do {
205 			STEP;
206 		} while (bit != 0);
207 	}
208 	if ((m = y->fp_mant[1]) == 0) {
209 		SHR32;
210 	} else {
211 		bit = 1;
212 		do {
213 			STEP;
214 		} while (bit != 0);
215 	}
216 	m = y->fp_mant[0];		/* definitely != 0 */
217 	bit = 1;
218 	do {
219 		STEP;
220 	} while (bit <= m);
221 
222 	/*
223 	 * Done with mantissa calculation.  Get exponent and handle
224 	 * 11.111...1 case, then put result in place.  We reuse x since
225 	 * it already has the right class (FP_NUM).
226 	 */
227 	m = x->fp_exp + y->fp_exp;
228 	if (a0 >= FP_2) {
229 		SHR1;
230 		m++;
231 	}
232 	x->fp_sign ^= y->fp_sign;
233 	x->fp_exp = m;
234 	x->fp_sticky = sticky;
235 	x->fp_mant[3] = a3;
236 	x->fp_mant[2] = a2;
237 	x->fp_mant[1] = a1;
238 	x->fp_mant[0] = a0;
239 
240 	DUMPFPN(FPE_REG, x);
241 	return (x);
242 }
243