xref: /netbsd/sys/arch/powerpc/fpu/fpu_sqrt.c (revision bf9ec67e)
1 /*	$NetBSD: fpu_sqrt.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Perform an FPU square root (return sqrt(x)).
49  */
50 
51 #include <sys/types.h>
52 #if defined(DIAGNOSTIC)||defined(DEBUG)
53 #include <sys/systm.h>
54 #endif
55 
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
58 
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 
62 /*
63  * Our task is to calculate the square root of a floating point number x0.
64  * This number x normally has the form:
65  *
66  *		    exp
67  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
68  *
69  * This can be left as it stands, or the mantissa can be doubled and the
70  * exponent decremented:
71  *
72  *			  exp-1
73  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
74  *
75  * If the exponent `exp' is even, the square root of the number is best
76  * handled using the first form, and is by definition equal to:
77  *
78  *				exp/2
79  *	sqrt(x) = sqrt(mant) * 2
80  *
81  * If exp is odd, on the other hand, it is convenient to use the second
82  * form, giving:
83  *
84  *				    (exp-1)/2
85  *	sqrt(x) = sqrt(2 * mant) * 2
86  *
87  * In the first case, we have
88  *
89  *	1 <= mant < 2
90  *
91  * and therefore
92  *
93  *	sqrt(1) <= sqrt(mant) < sqrt(2)
94  *
95  * while in the second case we have
96  *
97  *	2 <= 2*mant < 4
98  *
99  * and therefore
100  *
101  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
102  *
103  * so that in any case, we are sure that
104  *
105  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
106  *
107  * or
108  *
109  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
110  *
111  * This root is therefore a properly formed mantissa for a floating
112  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
113  * as above.  This leaves us with the problem of finding the square root
114  * of a fixed-point number in the range [1..4).
115  *
116  * Though it may not be instantly obvious, the following square root
117  * algorithm works for any integer x of an even number of bits, provided
118  * that no overflows occur:
119  *
120  *	let q = 0
121  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
122  *		x *= 2			-- multiply by radix, for next digit
123  *		if x >= 2q + 2^k then	-- if adding 2^k does not
124  *			x -= 2q + 2^k	-- exceed the correct root,
125  *			q += 2^k	-- add 2^k and adjust x
126  *		fi
127  *	done
128  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
129  *
130  * If NBITS is odd (so that k is initially even), we can just add another
131  * zero bit at the top of x.  Doing so means that q is not going to acquire
132  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
133  * final value in x is not needed, or can be off by a factor of 2, this is
134  * equivalant to moving the `x *= 2' step to the bottom of the loop:
135  *
136  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
137  *
138  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
139  * (Since the algorithm is destructive on x, we will call x's initial
140  * value, for which q is some power of two times its square root, x0.)
141  *
142  * If we insert a loop invariant y = 2q, we can then rewrite this using
143  * C notation as:
144  *
145  *	q = y = 0; x = x0;
146  *	for (k = NBITS; --k >= 0;) {
147  * #if (NBITS is even)
148  *		x *= 2;
149  * #endif
150  *		t = y + (1 << k);
151  *		if (x >= t) {
152  *			x -= t;
153  *			q += 1 << k;
154  *			y += 1 << (k + 1);
155  *		}
156  * #if (NBITS is odd)
157  *		x *= 2;
158  * #endif
159  *	}
160  *
161  * If x0 is fixed point, rather than an integer, we can simply alter the
162  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
163  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
164  *
165  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
166  * integers, which adds some complication.  But note that q is built one
167  * bit at a time, from the top down, and is not used itself in the loop
168  * (we use 2q as held in y instead).  This means we can build our answer
169  * in an integer, one word at a time, which saves a bit of work.  Also,
170  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
171  * `new' bits in y and we can set them with an `or' operation rather than
172  * a full-blown multiword add.
173  *
174  * We are almost done, except for one snag.  We must prove that none of our
175  * intermediate calculations can overflow.  We know that x0 is in [1..4)
176  * and therefore the square root in q will be in [1..2), but what about x,
177  * y, and t?
178  *
179  * We know that y = 2q at the beginning of each loop.  (The relation only
180  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
181  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
182  * Furthermore, we can prove with a bit of work that x never exceeds y by
183  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
184  * an exercise to the reader, mostly because I have become tired of working
185  * on this comment.)
186  *
187  * If our floating point mantissas (which are of the form 1.frac) occupy
188  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
189  * In fact, we want even one more bit (for a carry, to avoid compares), or
190  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
191  * this, so we have some justification in assuming it.
192  */
193 struct fpn *
194 fpu_sqrt(struct fpemu *fe)
195 {
196 	struct fpn *x = &fe->fe_f1;
197 	u_int bit, q, tt;
198 	u_int x0, x1, x2, x3;
199 	u_int y0, y1, y2, y3;
200 	u_int d0, d1, d2, d3;
201 	int e;
202 	FPU_DECL_CARRY;
203 
204 	/*
205 	 * Take care of special cases first.  In order:
206 	 *
207 	 *	sqrt(NaN) = NaN
208 	 *	sqrt(+0) = +0
209 	 *	sqrt(-0) = -0
210 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
211 	 *	sqrt(+Inf) = +Inf
212 	 *
213 	 * Then all that remains are numbers with mantissas in [1..2).
214 	 */
215 	DPRINTF(FPE_REG, ("fpu_sqer:\n"));
216 	DUMPFPN(FPE_REG, x);
217 	DPRINTF(FPE_REG, ("=>\n"));
218 	if (ISNAN(x)) {
219 		fe->fe_cx |= FPSCR_VXSNAN;
220 		DUMPFPN(FPE_REG, x);
221 		return (x);
222 	}
223 	if (ISZERO(x)) {
224 		fe->fe_cx |= FPSCR_ZX;
225 		x->fp_class = FPC_INF;
226 		DUMPFPN(FPE_REG, x);
227 		return (x);
228 	}
229 	if (x->fp_sign) {
230 		return (fpu_newnan(fe));
231 	}
232 	if (ISINF(x)) {
233 		fe->fe_cx |= FPSCR_VXSQRT;
234 		DUMPFPN(FPE_REG, 0);
235 		return (0);
236 	}
237 
238 	/*
239 	 * Calculate result exponent.  As noted above, this may involve
240 	 * doubling the mantissa.  We will also need to double x each
241 	 * time around the loop, so we define a macro for this here, and
242 	 * we break out the multiword mantissa.
243 	 */
244 #ifdef FPU_SHL1_BY_ADD
245 #define	DOUBLE_X { \
246 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
247 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
248 }
249 #else
250 #define	DOUBLE_X { \
251 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
252 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
253 }
254 #endif
255 #if (FP_NMANT & 1) != 0
256 # define ODD_DOUBLE	DOUBLE_X
257 # define EVEN_DOUBLE	/* nothing */
258 #else
259 # define ODD_DOUBLE	/* nothing */
260 # define EVEN_DOUBLE	DOUBLE_X
261 #endif
262 	x0 = x->fp_mant[0];
263 	x1 = x->fp_mant[1];
264 	x2 = x->fp_mant[2];
265 	x3 = x->fp_mant[3];
266 	e = x->fp_exp;
267 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
268 		DOUBLE_X;
269 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
270 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
271 
272 	/*
273 	 * Now calculate the mantissa root.  Since x is now in [1..4),
274 	 * we know that the first trip around the loop will definitely
275 	 * set the top bit in q, so we can do that manually and start
276 	 * the loop at the next bit down instead.  We must be sure to
277 	 * double x correctly while doing the `known q=1.0'.
278 	 *
279 	 * We do this one mantissa-word at a time, as noted above, to
280 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
281 	 * outside of each per-word loop.
282 	 *
283 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
284 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
285 	 * is always a `new' one, this means that three of the `t?'s are
286 	 * just the corresponding `y?'; we use `#define's here for this.
287 	 * The variable `tt' holds the actual `t?' variable.
288 	 */
289 
290 	/* calculate q0 */
291 #define	t0 tt
292 	bit = FP_1;
293 	EVEN_DOUBLE;
294 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
295 		q = bit;
296 		x0 -= bit;
297 		y0 = bit << 1;
298 	/* } */
299 	ODD_DOUBLE;
300 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
301 		EVEN_DOUBLE;
302 		t0 = y0 | bit;		/* t = y + bit */
303 		if (x0 >= t0) {		/* if x >= t then */
304 			x0 -= t0;	/*	x -= t */
305 			q |= bit;	/*	q += bit */
306 			y0 |= bit << 1;	/*	y += bit << 1 */
307 		}
308 		ODD_DOUBLE;
309 	}
310 	x->fp_mant[0] = q;
311 #undef t0
312 
313 	/* calculate q1.  note (y0&1)==0. */
314 #define t0 y0
315 #define t1 tt
316 	q = 0;
317 	y1 = 0;
318 	bit = 1 << 31;
319 	EVEN_DOUBLE;
320 	t1 = bit;
321 	FPU_SUBS(d1, x1, t1);
322 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
323 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
324 		x0 = d0, x1 = d1;	/*	x -= t */
325 		q = bit;		/*	q += bit */
326 		y0 |= 1;		/*	y += bit << 1 */
327 	}
328 	ODD_DOUBLE;
329 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
330 		EVEN_DOUBLE;		/* as before */
331 		t1 = y1 | bit;
332 		FPU_SUBS(d1, x1, t1);
333 		FPU_SUBC(d0, x0, t0);
334 		if ((int)d0 >= 0) {
335 			x0 = d0, x1 = d1;
336 			q |= bit;
337 			y1 |= bit << 1;
338 		}
339 		ODD_DOUBLE;
340 	}
341 	x->fp_mant[1] = q;
342 #undef t1
343 
344 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
345 #define t1 y1
346 #define t2 tt
347 	q = 0;
348 	y2 = 0;
349 	bit = 1 << 31;
350 	EVEN_DOUBLE;
351 	t2 = bit;
352 	FPU_SUBS(d2, x2, t2);
353 	FPU_SUBCS(d1, x1, t1);
354 	FPU_SUBC(d0, x0, t0);
355 	if ((int)d0 >= 0) {
356 		x0 = d0, x1 = d1, x2 = d2;
357 		q |= bit;
358 		y1 |= 1;		/* now t1, y1 are set in concrete */
359 	}
360 	ODD_DOUBLE;
361 	while ((bit >>= 1) != 0) {
362 		EVEN_DOUBLE;
363 		t2 = y2 | bit;
364 		FPU_SUBS(d2, x2, t2);
365 		FPU_SUBCS(d1, x1, t1);
366 		FPU_SUBC(d0, x0, t0);
367 		if ((int)d0 >= 0) {
368 			x0 = d0, x1 = d1, x2 = d2;
369 			q |= bit;
370 			y2 |= bit << 1;
371 		}
372 		ODD_DOUBLE;
373 	}
374 	x->fp_mant[2] = q;
375 #undef t2
376 
377 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
378 #define t2 y2
379 #define t3 tt
380 	q = 0;
381 	y3 = 0;
382 	bit = 1 << 31;
383 	EVEN_DOUBLE;
384 	t3 = bit;
385 	FPU_SUBS(d3, x3, t3);
386 	FPU_SUBCS(d2, x2, t2);
387 	FPU_SUBCS(d1, x1, t1);
388 	FPU_SUBC(d0, x0, t0);
389 	ODD_DOUBLE;
390 	if ((int)d0 >= 0) {
391 		x0 = d0, x1 = d1, x2 = d2;
392 		q |= bit;
393 		y2 |= 1;
394 	}
395 	while ((bit >>= 1) != 0) {
396 		EVEN_DOUBLE;
397 		t3 = y3 | bit;
398 		FPU_SUBS(d3, x3, t3);
399 		FPU_SUBCS(d2, x2, t2);
400 		FPU_SUBCS(d1, x1, t1);
401 		FPU_SUBC(d0, x0, t0);
402 		if ((int)d0 >= 0) {
403 			x0 = d0, x1 = d1, x2 = d2;
404 			q |= bit;
405 			y3 |= bit << 1;
406 		}
407 		ODD_DOUBLE;
408 	}
409 	x->fp_mant[3] = q;
410 
411 	/*
412 	 * The result, which includes guard and round bits, is exact iff
413 	 * x is now zero; any nonzero bits in x represent sticky bits.
414 	 */
415 	x->fp_sticky = x0 | x1 | x2 | x3;
416 	DUMPFPN(FPE_REG, x);
417 	return (x);
418 }
419