xref: /netbsd/sys/arch/powerpc/powerpc/vm_machdep.c (revision bf9ec67e)
1 /*	$NetBSD: vm_machdep.c,v 1.37 2002/03/09 23:35:59 chs Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
5  * Copyright (C) 1995, 1996 TooLs GmbH.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by TooLs GmbH.
19  * 4. The name of TooLs GmbH may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "opt_altivec.h"
35 #include "opt_multiprocessor.h"
36 #include "opt_ppcarch.h"
37 
38 #include <sys/param.h>
39 #include <sys/core.h>
40 #include <sys/exec.h>
41 #include <sys/proc.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/vnode.h>
45 
46 #include <uvm/uvm_extern.h>
47 
48 #include <machine/fpu.h>
49 #include <machine/pcb.h>
50 
51 #if !defined(MULTIPROCESSOR) && defined(PPC_HAVE_FPU)
52 #define save_fpu_proc(p) save_fpu(p)		/* XXX */
53 #endif
54 
55 #ifdef PPC_IBM4XX
56 vaddr_t vmaprange(struct proc *, vaddr_t, vsize_t, int);
57 void vunmaprange(vaddr_t, vsize_t);
58 #endif
59 
60 /*
61  * Finish a fork operation, with process p2 nearly set up.
62  * Copy and update the pcb and trap frame, making the child ready to run.
63  *
64  * Rig the child's kernel stack so that it will start out in
65  * fork_trampoline() and call child_return() with p2 as an
66  * argument. This causes the newly-created child process to go
67  * directly to user level with an apparent return value of 0 from
68  * fork(), while the parent process returns normally.
69  *
70  * p1 is the process being forked; if p1 == &proc0, we are creating
71  * a kernel thread, and the return path and argument are specified with
72  * `func' and `arg'.
73  *
74  * If an alternate user-level stack is requested (with non-zero values
75  * in both the stack and stacksize args), set up the user stack pointer
76  * accordingly.
77  */
78 void
79 cpu_fork(p1, p2, stack, stacksize, func, arg)
80 	struct proc *p1, *p2;
81 	void *stack;
82 	size_t stacksize;
83 	void (*func)(void *);
84 	void *arg;
85 {
86 	struct trapframe *tf;
87 	struct callframe *cf;
88 	struct switchframe *sf;
89 	caddr_t stktop1, stktop2;
90 	void fork_trampoline(void);
91 	struct pcb *pcb = &p2->p_addr->u_pcb;
92 
93 #ifdef DIAGNOSTIC
94 	/*
95 	 * if p1 != curproc && p1 == &proc0, we're creating a kernel thread.
96 	 */
97 	if (p1 != curproc && p1 != &proc0)
98 		panic("cpu_fork: curproc");
99 #endif
100 
101 #ifdef PPC_HAVE_FPU
102 	if (p1->p_addr->u_pcb.pcb_fpcpu)
103 		save_fpu_proc(p1);
104 #endif
105 	*pcb = p1->p_addr->u_pcb;
106 #ifdef ALTIVEC
107 	if (p1->p1_addr->u_pcb.pcb_vr != NULL) {
108 		if (p1 == vecproc)
109 			save_vec(p1);
110 		pcb->pcb_vr = pool_get(vecpl, POOL_WAITOK);
111 		*pcb->pcb_vr = *p1->p1_addr->u_ucb.pcb_vr;
112 	}
113 #endif
114 
115 	pcb->pcb_pm = p2->p_vmspace->vm_map.pmap;
116 #ifndef OLDPMAP
117 	pcb->pcb_pmreal = pcb->pcb_pm;		/* XXX */
118 #else
119 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
120 	    (paddr_t *)&pcb->pcb_pmreal);
121 #endif
122 
123 	/*
124 	 * Setup the trap frame for the new process
125 	 */
126 	stktop1 = (caddr_t)trapframe(p1);
127 	stktop2 = (caddr_t)trapframe(p2);
128 	memcpy(stktop2, stktop1, sizeof(struct trapframe));
129 
130 	/*
131 	 * If specified, give the child a different stack.
132 	 */
133 	if (stack != NULL) {
134 		tf = trapframe(p2);
135 		tf->fixreg[1] = (register_t)stack + stacksize;
136 	}
137 
138 	stktop2 = (caddr_t)((u_long)stktop2 & ~15);	/* Align stack pointer */
139 
140 	/*
141 	 * There happens to be a callframe, too.
142 	 */
143 	cf = (struct callframe *)stktop2;
144 	cf->lr = (int)fork_trampoline;
145 
146 	/*
147 	 * Below the trap frame, there is another call frame:
148 	 */
149 	stktop2 -= 16;
150 	cf = (struct callframe *)stktop2;
151 	cf->r31 = (register_t)func;
152 	cf->r30 = (register_t)arg;
153 
154 	/*
155 	 * Below that, we allocate the switch frame:
156 	 */
157 	stktop2 -= roundup(sizeof *sf, 16);	/* must match SFRAMELEN in genassym */
158 	sf = (struct switchframe *)stktop2;
159 	memset((void *)sf, 0, sizeof *sf);		/* just in case */
160 	sf->sp = (int)cf;
161 #ifndef PPC_IBM4XX
162 	sf->user_sr = pmap_kernel()->pm_sr[USER_SR]; /* again, just in case */
163 #endif
164 	pcb->pcb_sp = (int)stktop2;
165 	pcb->pcb_spl = 0;
166 }
167 
168 void
169 cpu_swapin(p)
170 	struct proc *p;
171 {
172 	struct pcb *pcb = &p->p_addr->u_pcb;
173 
174 #ifndef OLDPMAP
175 	pcb->pcb_pmreal = pcb->pcb_pm;		/* XXX */
176 #else
177 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
178 	    (paddr_t *)&pcb->pcb_pmreal);
179 #endif
180 }
181 
182 /*
183  * Move pages from one kernel virtual address to another.
184  */
185 void
186 pagemove(from, to, size)
187 	caddr_t from, to;
188 	size_t size;
189 {
190 	paddr_t pa;
191 	vaddr_t va;
192 
193 	for (va = (vaddr_t)from; size > 0; size -= NBPG) {
194 		(void) pmap_extract(pmap_kernel(), va, &pa);
195 		pmap_kremove(va, NBPG);
196 		pmap_kenter_pa((vaddr_t)to, pa, VM_PROT_READ|VM_PROT_WRITE);
197 		va += NBPG;
198 		to += NBPG;
199 	}
200 	pmap_update(pmap_kernel());
201 }
202 
203 /*
204  * cpu_exit is called as the last action during exit.
205  *
206  * We clean up a little and then call switchexit() with the old proc
207  * as an argument.  switchexit() switches to the idle context, schedules
208  * the old vmspace and stack to be freed, then selects a new process to
209  * run.
210  */
211 void
212 cpu_exit(p)
213 	struct proc *p;
214 {
215 	void switchexit(struct proc *);		/* Defined in locore.S */
216 #ifdef ALTIVEC
217 	struct pcb *pcb = &p->p_addr->u_pcb;
218 #endif
219 
220 #ifdef PPC_HAVE_FPU
221 	if (p->p_addr->u_pcb.pcb_fpcpu)		/* release the FPU */
222 		fpuproc = NULL;
223 #endif
224 #ifdef ALTIVEC
225 	if (p == vecproc)			/* release the AltiVEC */
226 		vecproc = NULL;
227 	if (pcb->pcb_vr != NULL)
228 		pool_put(vecpl, pcb->pcb_vr);
229 #endif
230 
231 	splsched();
232 	switchexit(p);
233 }
234 
235 /*
236  * Write the machine-dependent part of a core dump.
237  */
238 int
239 cpu_coredump(p, vp, cred, chdr)
240 	struct proc *p;
241 	struct vnode *vp;
242 	struct ucred *cred;
243 	struct core *chdr;
244 {
245 	struct coreseg cseg;
246 	struct md_coredump md_core;
247 	struct pcb *pcb = &p->p_addr->u_pcb;
248 	int error;
249 
250 	CORE_SETMAGIC(*chdr, COREMAGIC, MID_POWERPC, 0);
251 	chdr->c_hdrsize = ALIGN(sizeof *chdr);
252 	chdr->c_seghdrsize = ALIGN(sizeof cseg);
253 	chdr->c_cpusize = sizeof md_core;
254 
255 	md_core.frame = *trapframe(p);
256 	if (pcb->pcb_flags & PCB_FPU) {
257 #ifdef PPC_HAVE_FPU
258 		if (p->p_addr->u_pcb.pcb_fpcpu)
259 			save_fpu_proc(p);
260 #endif
261 		md_core.fpstate = pcb->pcb_fpu;
262 	} else
263 		memset(&md_core.fpstate, 0, sizeof(md_core.fpstate));
264 
265 #ifdef ALTIVEC
266 	if (pcb->pcb_flags & PCB_ALTIVEC) {
267 		if (p == vecproc)
268 			save_vec(p);
269 		md_core.vstate = *pcb->pcb_vr;
270 	} else
271 #endif
272 		memset(&md_core.vstate, 0, sizeof(md_core.vstate));
273 
274 	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
275 	cseg.c_addr = 0;
276 	cseg.c_size = chdr->c_cpusize;
277 
278 	if ((error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
279 			    (off_t)chdr->c_hdrsize, UIO_SYSSPACE,
280 			    IO_NODELOCKED|IO_UNIT, cred, NULL, p)) != 0)
281 		return error;
282 	if ((error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof md_core,
283 			    (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
284 			    IO_NODELOCKED|IO_UNIT, cred, NULL, p)) != 0)
285 		return error;
286 
287 	chdr->c_nseg++;
288 	return 0;
289 }
290 
291 #ifdef PPC_IBM4XX
292 /*
293  * Map a range of user addresses into the kernel.
294  */
295 vaddr_t
296 vmaprange(p, uaddr, len, prot)
297 	struct proc *p;
298 	vaddr_t uaddr;
299 	vsize_t len;
300 	int prot;
301 {
302 	vaddr_t faddr, taddr, kaddr;
303 	vsize_t off;
304 	paddr_t pa;
305 
306 	faddr = trunc_page(uaddr);
307 	off = uaddr - faddr;
308 	len = round_page(off + len);
309 	taddr = uvm_km_valloc_wait(phys_map, len);
310 	kaddr = taddr + off;
311 	for (; len > 0; len -= NBPG) {
312 		(void) pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
313 		    faddr, &pa);
314 		pmap_kenter_pa(taddr, pa, prot);
315 		faddr += NBPG;
316 		taddr += NBPG;
317 	}
318 	return (kaddr);
319 }
320 
321 /*
322  * Undo vmaprange.
323  */
324 void
325 vunmaprange(kaddr, len)
326 	vaddr_t kaddr;
327 	vsize_t len;
328 {
329 	vaddr_t addr;
330 	vsize_t off;
331 
332 	addr = trunc_page(kaddr);
333 	off = kaddr - addr;
334 	len = round_page(off + len);
335 	pmap_kremove(addr, len);
336 	uvm_km_free_wakeup(phys_map, addr, len);
337 }
338 #endif /* PPC_IBM4XX */
339 
340 /*
341  * Map a user I/O request into kernel virtual address space.
342  * Note: these pages have already been locked by uvm_vslock.
343  */
344 void
345 vmapbuf(bp, len)
346 	struct buf *bp;
347 	vsize_t len;
348 {
349 	vaddr_t faddr, taddr;
350 	vsize_t off;
351 	paddr_t pa;
352 
353 #ifdef	DIAGNOSTIC
354 	if (!(bp->b_flags & B_PHYS))
355 		panic("vmapbuf");
356 #endif
357 	/*
358 	 * XXX Reimplement this with vmaprange (on at least PPC_IBM4XX CPUs).
359 	 */
360 	faddr = trunc_page((vaddr_t)bp->b_saveaddr = bp->b_data);
361 	off = (vaddr_t)bp->b_data - faddr;
362 	len = round_page(off + len);
363 	taddr = uvm_km_valloc_wait(phys_map, len);
364 	bp->b_data = (caddr_t)(taddr + off);
365 	for (; len > 0; len -= NBPG) {
366 		(void) pmap_extract(vm_map_pmap(&bp->b_proc->p_vmspace->vm_map),
367 		    faddr, &pa);
368 		pmap_kenter_pa(taddr, pa, VM_PROT_READ|VM_PROT_WRITE);
369 		faddr += NBPG;
370 		taddr += NBPG;
371 	}
372 	pmap_update(pmap_kernel());
373 }
374 
375 /*
376  * Unmap a previously-mapped user I/O request.
377  */
378 void
379 vunmapbuf(bp, len)
380 	struct buf *bp;
381 	vsize_t len;
382 {
383 	vaddr_t addr;
384 	vsize_t off;
385 
386 #ifdef	DIAGNOSTIC
387 	if (!(bp->b_flags & B_PHYS))
388 		panic("vunmapbuf");
389 #endif
390 	addr = trunc_page((vaddr_t)bp->b_data);
391 	off = (vaddr_t)bp->b_data - addr;
392 	len = round_page(off + len);
393 	pmap_kremove(addr, len);
394 	pmap_update(pmap_kernel());
395 	uvm_km_free_wakeup(phys_map, addr, len);
396 	bp->b_data = bp->b_saveaddr;
397 	bp->b_saveaddr = 0;
398 }
399