xref: /netbsd/sys/arch/sparc/fpu/fpu_implode.c (revision bf9ec67e)
1 /*	$NetBSD: fpu_implode.c,v 1.10 2002/01/19 03:02:34 eeh Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * FPU subroutines: `implode' internal format numbers into the machine's
49  * `packed binary' format.
50  */
51 
52 #if defined(_KERNEL_OPT)
53 #include "opt_sparc_arch.h"
54 #endif
55 
56 #include <sys/types.h>
57 #include <sys/systm.h>
58 
59 #include <machine/ieee.h>
60 #include <machine/instr.h>
61 #include <machine/reg.h>
62 
63 #include <sparc/fpu/fpu_arith.h>
64 #include <sparc/fpu/fpu_emu.h>
65 #include <sparc/fpu/fpu_extern.h>
66 
67 static int round __P((register struct fpemu *, register struct fpn *));
68 static int toinf __P((struct fpemu *, int));
69 
70 /*
71  * Round a number (algorithm from Motorola MC68882 manual, modified for
72  * our internal format).  Set inexact exception if rounding is required.
73  * Return true iff we rounded up.
74  *
75  * After rounding, we discard the guard and round bits by shifting right
76  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
77  * This saves effort later.
78  *
79  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
80  * responsibility to fix this if necessary.
81  */
82 static int
83 round(register struct fpemu *fe, register struct fpn *fp)
84 {
85 	register u_int m0, m1, m2, m3;
86 	register int gr, s;
87 
88 	m0 = fp->fp_mant[0];
89 	m1 = fp->fp_mant[1];
90 	m2 = fp->fp_mant[2];
91 	m3 = fp->fp_mant[3];
92 	gr = m3 & 3;
93 	s = fp->fp_sticky;
94 
95 	/* mant >>= FP_NG */
96 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
97 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
98 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
99 	m0 >>= FP_NG;
100 
101 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
102 		goto rounddown;
103 
104 	fe->fe_cx |= FSR_NX;	/* inexact */
105 
106 	/* Go to rounddown to round down; break to round up. */
107 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
108 
109 	case FSR_RD_RN:
110 	default:
111 		/*
112 		 * Round only if guard is set (gr & 2).  If guard is set,
113 		 * but round & sticky both clear, then we want to round
114 		 * but have a tie, so round to even, i.e., add 1 iff odd.
115 		 */
116 		if ((gr & 2) == 0)
117 			goto rounddown;
118 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
119 			break;
120 		goto rounddown;
121 
122 	case FSR_RD_RZ:
123 		/* Round towards zero, i.e., down. */
124 		goto rounddown;
125 
126 	case FSR_RD_RM:
127 		/* Round towards -Inf: up if negative, down if positive. */
128 		if (fp->fp_sign)
129 			break;
130 		goto rounddown;
131 
132 	case FSR_RD_RP:
133 		/* Round towards +Inf: up if positive, down otherwise. */
134 		if (!fp->fp_sign)
135 			break;
136 		goto rounddown;
137 	}
138 
139 	/* Bump low bit of mantissa, with carry. */
140 	FPU_ADDS(m3, m3, 1);
141 	FPU_ADDCS(m2, m2, 0);
142 	FPU_ADDCS(m1, m1, 0);
143 	FPU_ADDC(m0, m0, 0);
144 	fp->fp_mant[0] = m0;
145 	fp->fp_mant[1] = m1;
146 	fp->fp_mant[2] = m2;
147 	fp->fp_mant[3] = m3;
148 	return (1);
149 
150 rounddown:
151 	fp->fp_mant[0] = m0;
152 	fp->fp_mant[1] = m1;
153 	fp->fp_mant[2] = m2;
154 	fp->fp_mant[3] = m3;
155 	return (0);
156 }
157 
158 /*
159  * For overflow: return true if overflow is to go to +/-Inf, according
160  * to the sign of the overflowing result.  If false, overflow is to go
161  * to the largest magnitude value instead.
162  */
163 static int
164 toinf(struct fpemu *fe, int sign)
165 {
166 	int inf;
167 
168 	/* look at rounding direction */
169 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
170 
171 	default:
172 	case FSR_RD_RN:		/* the nearest value is always Inf */
173 		inf = 1;
174 		break;
175 
176 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
177 		inf = 0;
178 		break;
179 
180 	case FSR_RD_RP:		/* toward +Inf iff positive */
181 		inf = sign == 0;
182 		break;
183 
184 	case FSR_RD_RM:		/* toward -Inf iff negative */
185 		inf = sign;
186 		break;
187 	}
188 	return (inf);
189 }
190 
191 /*
192  * fpn -> int (int value returned as return value).
193  *
194  * N.B.: this conversion always rounds towards zero (this is a peculiarity
195  * of the SPARC instruction set).
196  */
197 u_int
198 fpu_ftoi(fe, fp)
199 	struct fpemu *fe;
200 	register struct fpn *fp;
201 {
202 	register u_int i;
203 	register int sign, exp;
204 
205 	sign = fp->fp_sign;
206 	switch (fp->fp_class) {
207 
208 	case FPC_ZERO:
209 		return (0);
210 
211 	case FPC_NUM:
212 		/*
213 		 * If exp >= 2^32, overflow.  Otherwise shift value right
214 		 * into last mantissa word (this will not exceed 0xffffffff),
215 		 * shifting any guard and round bits out into the sticky
216 		 * bit.  Then ``round'' towards zero, i.e., just set an
217 		 * inexact exception if sticky is set (see round()).
218 		 * If the result is > 0x80000000, or is positive and equals
219 		 * 0x80000000, overflow; otherwise the last fraction word
220 		 * is the result.
221 		 */
222 		if ((exp = fp->fp_exp) >= 32)
223 			break;
224 		/* NB: the following includes exp < 0 cases */
225 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
226 			fe->fe_cx |= FSR_NX;
227 		i = fp->fp_mant[3];
228 		if (i >= ((u_int)0x80000000 + sign))
229 			break;
230 		return (sign ? -i : i);
231 
232 	default:		/* Inf, qNaN, sNaN */
233 		break;
234 	}
235 	/* overflow: replace any inexact exception with invalid */
236 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
237 	return (0x7fffffff + sign);
238 }
239 
240 #ifdef SUN4U
241 /*
242  * fpn -> extended int (high bits of int value returned as return value).
243  *
244  * N.B.: this conversion always rounds towards zero (this is a peculiarity
245  * of the SPARC instruction set).
246  */
247 u_int
248 fpu_ftox(fe, fp, res)
249 	struct fpemu *fe;
250 	register struct fpn *fp;
251 	u_int *res;
252 {
253 	register u_int64_t i;
254 	register int sign, exp;
255 
256 	sign = fp->fp_sign;
257 	switch (fp->fp_class) {
258 
259 	case FPC_ZERO:
260 		res[1] = 0;
261 		return (0);
262 
263 	case FPC_NUM:
264 		/*
265 		 * If exp >= 2^64, overflow.  Otherwise shift value right
266 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
267 		 * shifting any guard and round bits out into the sticky
268 		 * bit.  Then ``round'' towards zero, i.e., just set an
269 		 * inexact exception if sticky is set (see round()).
270 		 * If the result is > 0x8000000000000000, or is positive and equals
271 		 * 0x8000000000000000, overflow; otherwise the last fraction word
272 		 * is the result.
273 		 */
274 		if ((exp = fp->fp_exp) >= 64)
275 			break;
276 		/* NB: the following includes exp < 0 cases */
277 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
278 			fe->fe_cx |= FSR_NX;
279 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
280 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
281 			break;
282 		if (sign) i = -i;
283 		res[1] = (int)i;
284 		return (i>>32);
285 
286 	default:		/* Inf, qNaN, sNaN */
287 		break;
288 	}
289 	/* overflow: replace any inexact exception with invalid */
290 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
291 	return (0x7fffffffffffffffLL + sign);
292 }
293 #endif /* SUN4U */
294 
295 /*
296  * fpn -> single (32 bit single returned as return value).
297  * We assume <= 29 bits in a single-precision fraction (1.f part).
298  */
299 u_int
300 fpu_ftos(fe, fp)
301 	struct fpemu *fe;
302 	register struct fpn *fp;
303 {
304 	register u_int sign = fp->fp_sign << 31;
305 	register int exp;
306 
307 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
308 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
309 
310 	/* Take care of non-numbers first. */
311 	if (ISNAN(fp)) {
312 		/*
313 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
314 		 * Note that fp->fp_mant[0] has the quiet bit set,
315 		 * even if it is classified as a signalling NaN.
316 		 */
317 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
318 		exp = SNG_EXP_INFNAN;
319 		goto done;
320 	}
321 	if (ISINF(fp))
322 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
323 	if (ISZERO(fp))
324 		return (sign);
325 
326 	/*
327 	 * Normals (including subnormals).  Drop all the fraction bits
328 	 * (including the explicit ``implied'' 1 bit) down into the
329 	 * single-precision range.  If the number is subnormal, move
330 	 * the ``implied'' 1 into the explicit range as well, and shift
331 	 * right to introduce leading zeroes.  Rounding then acts
332 	 * differently for normals and subnormals: the largest subnormal
333 	 * may round to the smallest normal (1.0 x 2^minexp), or may
334 	 * remain subnormal.  In the latter case, signal an underflow
335 	 * if the result was inexact or if underflow traps are enabled.
336 	 *
337 	 * Rounding a normal, on the other hand, always produces another
338 	 * normal (although either way the result might be too big for
339 	 * single precision, and cause an overflow).  If rounding a
340 	 * normal produces 2.0 in the fraction, we need not adjust that
341 	 * fraction at all, since both 1.0 and 2.0 are zero under the
342 	 * fraction mask.
343 	 *
344 	 * Note that the guard and round bits vanish from the number after
345 	 * rounding.
346 	 */
347 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
348 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
349 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
350 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
351 			return (sign | SNG_EXP(1) | 0);
352 		if ((fe->fe_cx & FSR_NX) ||
353 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
354 			fe->fe_cx |= FSR_UF;
355 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
356 	}
357 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
358 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
359 #ifdef DIAGNOSTIC
360 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
361 		panic("fpu_ftos");
362 #endif
363 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
364 		exp++;
365 	if (exp >= SNG_EXP_INFNAN) {
366 		/* overflow to inf or to max single */
367 		fe->fe_cx |= FSR_OF | FSR_NX;
368 		if (toinf(fe, sign))
369 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
370 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
371 	}
372 done:
373 	/* phew, made it */
374 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
375 }
376 
377 /*
378  * fpn -> double (32 bit high-order result returned; 32-bit low order result
379  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
380  *
381  * This code mimics fpu_ftos; see it for comments.
382  */
383 u_int
384 fpu_ftod(fe, fp, res)
385 	struct fpemu *fe;
386 	register struct fpn *fp;
387 	u_int *res;
388 {
389 	register u_int sign = fp->fp_sign << 31;
390 	register int exp;
391 
392 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
393 #define	DBL_MASK	(DBL_EXP(1) - 1)
394 
395 	if (ISNAN(fp)) {
396 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
397 		exp = DBL_EXP_INFNAN;
398 		goto done;
399 	}
400 	if (ISINF(fp)) {
401 		sign |= DBL_EXP(DBL_EXP_INFNAN);
402 		goto zero;
403 	}
404 	if (ISZERO(fp)) {
405 zero:		res[1] = 0;
406 		return (sign);
407 	}
408 
409 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
410 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
411 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
412 			res[1] = 0;
413 			return (sign | DBL_EXP(1) | 0);
414 		}
415 		if ((fe->fe_cx & FSR_NX) ||
416 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
417 			fe->fe_cx |= FSR_UF;
418 		exp = 0;
419 		goto done;
420 	}
421 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
422 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
423 		exp++;
424 	if (exp >= DBL_EXP_INFNAN) {
425 		fe->fe_cx |= FSR_OF | FSR_NX;
426 		if (toinf(fe, sign)) {
427 			res[1] = 0;
428 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
429 		}
430 		res[1] = ~0;
431 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
432 	}
433 done:
434 	res[1] = fp->fp_mant[3];
435 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
436 }
437 
438 /*
439  * fpn -> extended (32 bit high-order result returned; low-order fraction
440  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
441  * our internal format *is* extended precision, plus 2 bits for guard/round,
442  * so we can avoid a small bit of work.
443  */
444 u_int
445 fpu_ftoq(fe, fp, res)
446 	struct fpemu *fe;
447 	register struct fpn *fp;
448 	u_int *res;
449 {
450 	register u_int sign = fp->fp_sign << 31;
451 	register int exp;
452 
453 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
454 #define	EXT_MASK	(EXT_EXP(1) - 1)
455 
456 	if (ISNAN(fp)) {
457 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
458 		exp = EXT_EXP_INFNAN;
459 		goto done;
460 	}
461 	if (ISINF(fp)) {
462 		sign |= EXT_EXP(EXT_EXP_INFNAN);
463 		goto zero;
464 	}
465 	if (ISZERO(fp)) {
466 zero:		res[1] = res[2] = res[3] = 0;
467 		return (sign);
468 	}
469 
470 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
471 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
472 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
473 			res[1] = res[2] = res[3] = 0;
474 			return (sign | EXT_EXP(1) | 0);
475 		}
476 		if ((fe->fe_cx & FSR_NX) ||
477 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
478 			fe->fe_cx |= FSR_UF;
479 		exp = 0;
480 		goto done;
481 	}
482 	/* Since internal == extended, no need to shift here. */
483 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
484 		exp++;
485 	if (exp >= EXT_EXP_INFNAN) {
486 		fe->fe_cx |= FSR_OF | FSR_NX;
487 		if (toinf(fe, sign)) {
488 			res[1] = res[2] = res[3] = 0;
489 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
490 		}
491 		res[1] = res[2] = res[3] = ~0;
492 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
493 	}
494 done:
495 	res[1] = fp->fp_mant[1];
496 	res[2] = fp->fp_mant[2];
497 	res[3] = fp->fp_mant[3];
498 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
499 }
500 
501 /*
502  * Implode an fpn, writing the result into the given space.
503  */
504 void
505 fpu_implode(fe, fp, type, space)
506 	struct fpemu *fe;
507 	register struct fpn *fp;
508 	int type;
509 	register u_int *space;
510 {
511 
512 	DPRINTF(FPE_REG, ("\n imploding: "));
513 	DUMPFPN(FPE_REG, fp);
514 	DPRINTF(FPE_REG, ("\n"));
515 
516 	switch (type) {
517 
518 #ifdef SUN4U
519 	case FTYPE_LNG:
520 		space[0] = fpu_ftox(fe, fp, space);
521 		break;
522 #endif /* SUN4U */
523 
524 	case FTYPE_INT:
525 		space[0] = fpu_ftoi(fe, fp);
526 		break;
527 
528 	case FTYPE_SNG:
529 		space[0] = fpu_ftos(fe, fp);
530 		break;
531 
532 	case FTYPE_DBL:
533 		space[0] = fpu_ftod(fe, fp, space);
534 		break;
535 
536 	case FTYPE_EXT:
537 		/* funky rounding precision options ?? */
538 		space[0] = fpu_ftoq(fe, fp, space);
539 		break;
540 
541 	default:
542 		panic("fpu_implode");
543 	}
544 #ifdef SUN4U
545 	DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
546 		space[0], space[1], space[2], space[3]));
547 #else
548 	DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
549 		space[0], space[1]));
550 #endif
551 }
552