xref: /netbsd/sys/arch/sparc/fpu/fpu_sqrt.c (revision bf9ec67e)
1 /*	$NetBSD: fpu_sqrt.c,v 1.2 1994/11/20 20:52:46 deraadt Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Perform an FPU square root (return sqrt(x)).
49  */
50 
51 #include <sys/types.h>
52 
53 #include <machine/reg.h>
54 
55 #include <sparc/fpu/fpu_arith.h>
56 #include <sparc/fpu/fpu_emu.h>
57 
58 /*
59  * Our task is to calculate the square root of a floating point number x0.
60  * This number x normally has the form:
61  *
62  *		    exp
63  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
64  *
65  * This can be left as it stands, or the mantissa can be doubled and the
66  * exponent decremented:
67  *
68  *			  exp-1
69  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
70  *
71  * If the exponent `exp' is even, the square root of the number is best
72  * handled using the first form, and is by definition equal to:
73  *
74  *				exp/2
75  *	sqrt(x) = sqrt(mant) * 2
76  *
77  * If exp is odd, on the other hand, it is convenient to use the second
78  * form, giving:
79  *
80  *				    (exp-1)/2
81  *	sqrt(x) = sqrt(2 * mant) * 2
82  *
83  * In the first case, we have
84  *
85  *	1 <= mant < 2
86  *
87  * and therefore
88  *
89  *	sqrt(1) <= sqrt(mant) < sqrt(2)
90  *
91  * while in the second case we have
92  *
93  *	2 <= 2*mant < 4
94  *
95  * and therefore
96  *
97  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
98  *
99  * so that in any case, we are sure that
100  *
101  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
102  *
103  * or
104  *
105  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
106  *
107  * This root is therefore a properly formed mantissa for a floating
108  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
109  * as above.  This leaves us with the problem of finding the square root
110  * of a fixed-point number in the range [1..4).
111  *
112  * Though it may not be instantly obvious, the following square root
113  * algorithm works for any integer x of an even number of bits, provided
114  * that no overflows occur:
115  *
116  *	let q = 0
117  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
118  *		x *= 2			-- multiply by radix, for next digit
119  *		if x >= 2q + 2^k then	-- if adding 2^k does not
120  *			x -= 2q + 2^k	-- exceed the correct root,
121  *			q += 2^k	-- add 2^k and adjust x
122  *		fi
123  *	done
124  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
125  *
126  * If NBITS is odd (so that k is initially even), we can just add another
127  * zero bit at the top of x.  Doing so means that q is not going to acquire
128  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
129  * final value in x is not needed, or can be off by a factor of 2, this is
130  * equivalant to moving the `x *= 2' step to the bottom of the loop:
131  *
132  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
133  *
134  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
135  * (Since the algorithm is destructive on x, we will call x's initial
136  * value, for which q is some power of two times its square root, x0.)
137  *
138  * If we insert a loop invariant y = 2q, we can then rewrite this using
139  * C notation as:
140  *
141  *	q = y = 0; x = x0;
142  *	for (k = NBITS; --k >= 0;) {
143  * #if (NBITS is even)
144  *		x *= 2;
145  * #endif
146  *		t = y + (1 << k);
147  *		if (x >= t) {
148  *			x -= t;
149  *			q += 1 << k;
150  *			y += 1 << (k + 1);
151  *		}
152  * #if (NBITS is odd)
153  *		x *= 2;
154  * #endif
155  *	}
156  *
157  * If x0 is fixed point, rather than an integer, we can simply alter the
158  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
159  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
160  *
161  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
162  * integers, which adds some complication.  But note that q is built one
163  * bit at a time, from the top down, and is not used itself in the loop
164  * (we use 2q as held in y instead).  This means we can build our answer
165  * in an integer, one word at a time, which saves a bit of work.  Also,
166  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
167  * `new' bits in y and we can set them with an `or' operation rather than
168  * a full-blown multiword add.
169  *
170  * We are almost done, except for one snag.  We must prove that none of our
171  * intermediate calculations can overflow.  We know that x0 is in [1..4)
172  * and therefore the square root in q will be in [1..2), but what about x,
173  * y, and t?
174  *
175  * We know that y = 2q at the beginning of each loop.  (The relation only
176  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
177  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
178  * Furthermore, we can prove with a bit of work that x never exceeds y by
179  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
180  * an exercise to the reader, mostly because I have become tired of working
181  * on this comment.)
182  *
183  * If our floating point mantissas (which are of the form 1.frac) occupy
184  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
185  * In fact, we want even one more bit (for a carry, to avoid compares), or
186  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
187  * this, so we have some justification in assuming it.
188  */
189 struct fpn *
190 fpu_sqrt(fe)
191 	struct fpemu *fe;
192 {
193 	register struct fpn *x = &fe->fe_f1;
194 	register u_int bit, q, tt;
195 	register u_int x0, x1, x2, x3;
196 	register u_int y0, y1, y2, y3;
197 	register u_int d0, d1, d2, d3;
198 	register int e;
199 
200 	/*
201 	 * Take care of special cases first.  In order:
202 	 *
203 	 *	sqrt(NaN) = NaN
204 	 *	sqrt(+0) = +0
205 	 *	sqrt(-0) = -0
206 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
207 	 *	sqrt(+Inf) = +Inf
208 	 *
209 	 * Then all that remains are numbers with mantissas in [1..2).
210 	 */
211 	if (ISNAN(x) || ISZERO(x))
212 		return (x);
213 	if (x->fp_sign)
214 		return (fpu_newnan(fe));
215 	if (ISINF(x))
216 		return (x);
217 
218 	/*
219 	 * Calculate result exponent.  As noted above, this may involve
220 	 * doubling the mantissa.  We will also need to double x each
221 	 * time around the loop, so we define a macro for this here, and
222 	 * we break out the multiword mantissa.
223 	 */
224 #ifdef FPU_SHL1_BY_ADD
225 #define	DOUBLE_X { \
226 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
227 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
228 }
229 #else
230 #define	DOUBLE_X { \
231 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
232 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
233 }
234 #endif
235 #if (FP_NMANT & 1) != 0
236 # define ODD_DOUBLE	DOUBLE_X
237 # define EVEN_DOUBLE	/* nothing */
238 #else
239 # define ODD_DOUBLE	/* nothing */
240 # define EVEN_DOUBLE	DOUBLE_X
241 #endif
242 	x0 = x->fp_mant[0];
243 	x1 = x->fp_mant[1];
244 	x2 = x->fp_mant[2];
245 	x3 = x->fp_mant[3];
246 	e = x->fp_exp;
247 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
248 		DOUBLE_X;
249 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
250 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
251 
252 	/*
253 	 * Now calculate the mantissa root.  Since x is now in [1..4),
254 	 * we know that the first trip around the loop will definitely
255 	 * set the top bit in q, so we can do that manually and start
256 	 * the loop at the next bit down instead.  We must be sure to
257 	 * double x correctly while doing the `known q=1.0'.
258 	 *
259 	 * We do this one mantissa-word at a time, as noted above, to
260 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
261 	 * outside of each per-word loop.
262 	 *
263 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
264 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
265 	 * is always a `new' one, this means that three of the `t?'s are
266 	 * just the corresponding `y?'; we use `#define's here for this.
267 	 * The variable `tt' holds the actual `t?' variable.
268 	 */
269 
270 	/* calculate q0 */
271 #define	t0 tt
272 	bit = FP_1;
273 	EVEN_DOUBLE;
274 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
275 		q = bit;
276 		x0 -= bit;
277 		y0 = bit << 1;
278 	/* } */
279 	ODD_DOUBLE;
280 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
281 		EVEN_DOUBLE;
282 		t0 = y0 | bit;		/* t = y + bit */
283 		if (x0 >= t0) {		/* if x >= t then */
284 			x0 -= t0;	/*	x -= t */
285 			q |= bit;	/*	q += bit */
286 			y0 |= bit << 1;	/*	y += bit << 1 */
287 		}
288 		ODD_DOUBLE;
289 	}
290 	x->fp_mant[0] = q;
291 #undef t0
292 
293 	/* calculate q1.  note (y0&1)==0. */
294 #define t0 y0
295 #define t1 tt
296 	q = 0;
297 	y1 = 0;
298 	bit = 1 << 31;
299 	EVEN_DOUBLE;
300 	t1 = bit;
301 	FPU_SUBS(d1, x1, t1);
302 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
303 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
304 		x0 = d0, x1 = d1;	/*	x -= t */
305 		q = bit;		/*	q += bit */
306 		y0 |= 1;		/*	y += bit << 1 */
307 	}
308 	ODD_DOUBLE;
309 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
310 		EVEN_DOUBLE;		/* as before */
311 		t1 = y1 | bit;
312 		FPU_SUBS(d1, x1, t1);
313 		FPU_SUBC(d0, x0, t0);
314 		if ((int)d0 >= 0) {
315 			x0 = d0, x1 = d1;
316 			q |= bit;
317 			y1 |= bit << 1;
318 		}
319 		ODD_DOUBLE;
320 	}
321 	x->fp_mant[1] = q;
322 #undef t1
323 
324 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
325 #define t1 y1
326 #define t2 tt
327 	q = 0;
328 	y2 = 0;
329 	bit = 1 << 31;
330 	EVEN_DOUBLE;
331 	t2 = bit;
332 	FPU_SUBS(d2, x2, t2);
333 	FPU_SUBCS(d1, x1, t1);
334 	FPU_SUBC(d0, x0, t0);
335 	if ((int)d0 >= 0) {
336 		x0 = d0, x1 = d1, x2 = d2;
337 		q |= bit;
338 		y1 |= 1;		/* now t1, y1 are set in concrete */
339 	}
340 	ODD_DOUBLE;
341 	while ((bit >>= 1) != 0) {
342 		EVEN_DOUBLE;
343 		t2 = y2 | bit;
344 		FPU_SUBS(d2, x2, t2);
345 		FPU_SUBCS(d1, x1, t1);
346 		FPU_SUBC(d0, x0, t0);
347 		if ((int)d0 >= 0) {
348 			x0 = d0, x1 = d1, x2 = d2;
349 			q |= bit;
350 			y2 |= bit << 1;
351 		}
352 		ODD_DOUBLE;
353 	}
354 	x->fp_mant[2] = q;
355 #undef t2
356 
357 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
358 #define t2 y2
359 #define t3 tt
360 	q = 0;
361 	y3 = 0;
362 	bit = 1 << 31;
363 	EVEN_DOUBLE;
364 	t3 = bit;
365 	FPU_SUBS(d3, x3, t3);
366 	FPU_SUBCS(d2, x2, t2);
367 	FPU_SUBCS(d1, x1, t1);
368 	FPU_SUBC(d0, x0, t0);
369 	ODD_DOUBLE;
370 	if ((int)d0 >= 0) {
371 		x0 = d0, x1 = d1, x2 = d2;
372 		q |= bit;
373 		y2 |= 1;
374 	}
375 	while ((bit >>= 1) != 0) {
376 		EVEN_DOUBLE;
377 		t3 = y3 | bit;
378 		FPU_SUBS(d3, x3, t3);
379 		FPU_SUBCS(d2, x2, t2);
380 		FPU_SUBCS(d1, x1, t1);
381 		FPU_SUBC(d0, x0, t0);
382 		if ((int)d0 >= 0) {
383 			x0 = d0, x1 = d1, x2 = d2;
384 			q |= bit;
385 			y3 |= bit << 1;
386 		}
387 		ODD_DOUBLE;
388 	}
389 	x->fp_mant[3] = q;
390 
391 	/*
392 	 * The result, which includes guard and round bits, is exact iff
393 	 * x is now zero; any nonzero bits in x represent sticky bits.
394 	 */
395 	x->fp_sticky = x0 | x1 | x2 | x3;
396 	return (x);
397 }
398