xref: /netbsd/sys/arch/sparc/sparc/vm_machdep.c (revision bf9ec67e)
1 /*	$NetBSD: vm_machdep.c,v 1.62 2001/12/30 18:52:54 pk Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  *	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *	This product includes software developed by Harvard University.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by Harvard University.
30  *	This product includes software developed by the University of
31  *	California, Berkeley and its contributors.
32  * 4. Neither the name of the University nor the names of its contributors
33  *    may be used to endorse or promote products derived from this software
34  *    without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  *
48  *	@(#)vm_machdep.c	8.2 (Berkeley) 9/23/93
49  */
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/user.h>
55 #include <sys/core.h>
56 #include <sys/malloc.h>
57 #include <sys/buf.h>
58 #include <sys/exec.h>
59 #include <sys/vnode.h>
60 #include <sys/map.h>
61 
62 #include <uvm/uvm_extern.h>
63 
64 #include <machine/cpu.h>
65 #include <machine/frame.h>
66 #include <machine/trap.h>
67 
68 #include <sparc/sparc/cpuvar.h>
69 
70 /*
71  * Move pages from one kernel virtual address to another.
72  */
73 void
74 pagemove(from, to, size)
75 	caddr_t from, to;
76 	size_t size;
77 {
78 	paddr_t pa;
79 
80 	if (size & PGOFSET || (int)from & PGOFSET || (int)to & PGOFSET)
81 		panic("pagemove 1");
82 	while (size > 0) {
83 		if (pmap_extract(pmap_kernel(), (vaddr_t)from, &pa) == FALSE)
84 			panic("pagemove 2");
85 		pmap_kremove((vaddr_t)from, PAGE_SIZE);
86 		pmap_kenter_pa((vaddr_t)to, pa, VM_PROT_READ | VM_PROT_WRITE);
87 		from += PAGE_SIZE;
88 		to += PAGE_SIZE;
89 		size -= PAGE_SIZE;
90 	}
91 	pmap_update(pmap_kernel());
92 }
93 
94 
95 /*
96  * Map a user I/O request into kernel virtual address space.
97  * Note: the pages are already locked by uvm_vslock(), so we
98  * do not need to pass an access_type to pmap_enter().
99  */
100 void
101 vmapbuf(bp, len)
102 	struct buf *bp;
103 	vsize_t len;
104 {
105 	struct pmap *upmap, *kpmap;
106 	vaddr_t uva;	/* User VA (map from) */
107 	vaddr_t kva;	/* Kernel VA (new to) */
108 	paddr_t pa; 	/* physical address */
109 	vsize_t off;
110 
111 	if ((bp->b_flags & B_PHYS) == 0)
112 		panic("vmapbuf");
113 
114 	/*
115 	 * XXX:  It might be better to round/trunc to a
116 	 * segment boundary to avoid VAC problems!
117 	 */
118 	bp->b_saveaddr = bp->b_data;
119 	uva = trunc_page((vaddr_t)bp->b_data);
120 	off = (vaddr_t)bp->b_data - uva;
121 	len = round_page(off + len);
122 	kva = uvm_km_valloc_wait(kernel_map, len);
123 	bp->b_data = (caddr_t)(kva + off);
124 
125 	/*
126 	 * We have to flush any write-back cache on the
127 	 * user-space mappings so our new mappings will
128 	 * have the correct contents.
129 	 */
130 	if (CACHEINFO.c_vactype != VAC_NONE)
131 		cpuinfo.cache_flush((caddr_t)uva, len);
132 
133 	upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map);
134 	kpmap = vm_map_pmap(kernel_map);
135 	do {
136 		if (pmap_extract(upmap, uva, &pa) == FALSE)
137 			panic("vmapbuf: null page frame");
138 		/* Now map the page into kernel space. */
139 		pmap_enter(kpmap, kva, pa,
140 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
141 		uva += PAGE_SIZE;
142 		kva += PAGE_SIZE;
143 		len -= PAGE_SIZE;
144 	} while (len);
145 	pmap_update(kpmap);
146 }
147 
148 /*
149  * Unmap a previously-mapped user I/O request.
150  */
151 void
152 vunmapbuf(bp, len)
153 	struct buf *bp;
154 	vsize_t len;
155 {
156 	vaddr_t kva;
157 	vsize_t off;
158 
159 	if ((bp->b_flags & B_PHYS) == 0)
160 		panic("vunmapbuf");
161 
162 	kva = trunc_page((vaddr_t)bp->b_data);
163 	off = (vaddr_t)bp->b_data - kva;
164 	len = round_page(off + len);
165 	pmap_remove(vm_map_pmap(kernel_map), kva, kva + len);
166 	pmap_update(vm_map_pmap(kernel_map));
167 	uvm_km_free_wakeup(kernel_map, kva, len);
168 	bp->b_data = bp->b_saveaddr;
169 	bp->b_saveaddr = NULL;
170 
171 #if 0	/* XXX: The flush above is sufficient, right? */
172 	if (CACHEINFO.c_vactype != VAC_NONE)
173 		cpuinfo.cache_flush(bp->b_data, len);
174 #endif
175 }
176 
177 
178 /*
179  * The offset of the topmost frame in the kernel stack.
180  */
181 #define	TOPFRAMEOFF (USPACE-sizeof(struct trapframe)-sizeof(struct frame))
182 
183 /*
184  * Finish a fork operation, with process p2 nearly set up.
185  * Copy and update the pcb and trap frame, making the child ready to run.
186  *
187  * Rig the child's kernel stack so that it will start out in
188  * proc_trampoline() and call child_return() with p2 as an
189  * argument. This causes the newly-created child process to go
190  * directly to user level with an apparent return value of 0 from
191  * fork(), while the parent process returns normally.
192  *
193  * p1 is the process being forked; if p1 == &proc0, we are creating
194  * a kernel thread, and the return path and argument are specified with
195  * `func' and `arg'.
196  *
197  * If an alternate user-level stack is requested (with non-zero values
198  * in both the stack and stacksize args), set up the user stack pointer
199  * accordingly.
200  */
201 void
202 cpu_fork(p1, p2, stack, stacksize, func, arg)
203 	struct proc *p1, *p2;
204 	void *stack;
205 	size_t stacksize;
206 	void (*func) __P((void *));
207 	void *arg;
208 {
209 	struct pcb *opcb = &p1->p_addr->u_pcb;
210 	struct pcb *npcb = &p2->p_addr->u_pcb;
211 	struct trapframe *tf2;
212 	struct rwindow *rp;
213 
214 	/*
215 	 * Save all user registers to p1's stack or, in the case of
216 	 * user registers and invalid stack pointers, to opcb.
217 	 * We then copy the whole pcb to p2; when switch() selects p2
218 	 * to run, it will run at the `proc_trampoline' stub, rather
219 	 * than returning at the copying code below.
220 	 *
221 	 * If process p1 has an FPU state, we must copy it.  If it is
222 	 * the FPU user, we must save the FPU state first.
223 	 */
224 
225 	if (p1 == curproc) {
226 		write_user_windows();
227 		opcb->pcb_psr = getpsr();
228 	}
229 #ifdef DIAGNOSTIC
230 	else if (p1 != &proc0)
231 		panic("cpu_fork: curproc");
232 #endif
233 
234 	bcopy((caddr_t)opcb, (caddr_t)npcb, sizeof(struct pcb));
235 	if (p1->p_md.md_fpstate) {
236 		if (p1 == cpuinfo.fpproc)
237 			savefpstate(p1->p_md.md_fpstate);
238 		else if (p1->p_md.md_fpumid != -1)
239 			panic("FPU on module %d; fix this", p1->p_md.md_fpumid);
240 		p2->p_md.md_fpstate = malloc(sizeof(struct fpstate),
241 		    M_SUBPROC, M_WAITOK);
242 		bcopy(p1->p_md.md_fpstate, p2->p_md.md_fpstate,
243 		    sizeof(struct fpstate));
244 	} else
245 		p2->p_md.md_fpstate = NULL;
246 
247 	p2->p_md.md_fpumid = -1;
248 
249 	/*
250 	 * Setup (kernel) stack frame that will by-pass the child
251 	 * out of the kernel. (The trap frame invariably resides at
252 	 * the tippity-top of the u. area.)
253 	 */
254 	tf2 = p2->p_md.md_tf = (struct trapframe *)
255 			((int)npcb + USPACE - sizeof(*tf2));
256 
257 	/* Copy parent's trapframe */
258 	*tf2 = *(struct trapframe *)((int)opcb + USPACE - sizeof(*tf2));
259 
260 	/*
261 	 * If specified, give the child a different stack.
262 	 */
263 	if (stack != NULL)
264 		tf2->tf_out[6] = (u_int)stack + stacksize;
265 
266 	/*
267 	 * The fork system call always uses the old system call
268 	 * convention; clear carry and skip trap instruction as
269 	 * in syscall().
270 	 * note: proc_trampoline() sets a fresh psr when returning
271 	 * to user mode.
272 	 */
273 	/*tf2->tf_psr &= ~PSR_C;   -* success */
274 	tf2->tf_pc = tf2->tf_npc;
275 	tf2->tf_npc = tf2->tf_pc + 4;
276 
277 	/* Set return values in child mode */
278 	tf2->tf_out[0] = 0;
279 	tf2->tf_out[1] = 1;
280 
281 	/* Construct kernel frame to return to in cpu_switch() */
282 	rp = (struct rwindow *)((u_int)npcb + TOPFRAMEOFF);
283 	rp->rw_local[0] = (int)func;		/* Function to call */
284 	rp->rw_local[1] = (int)arg;		/* and its argument */
285 
286 	npcb->pcb_pc = (int)proc_trampoline - 8;
287 	npcb->pcb_sp = (int)rp;
288 	npcb->pcb_psr &= ~PSR_CWP;	/* Run in window #0 */
289 	npcb->pcb_wim = 1;		/* Fence at window #1 */
290 }
291 
292 /*
293  * cpu_exit is called as the last action during exit.
294  *
295  * We clean up a little and then call switchexit() with the old proc
296  * as an argument.  switchexit() switches to the idle context, schedules
297  * the old vmspace and stack to be freed, then selects a new process to
298  * run.
299  */
300 void
301 cpu_exit(p)
302 	struct proc *p;
303 {
304 	struct fpstate *fs;
305 
306 	if ((fs = p->p_md.md_fpstate) != NULL) {
307 		if (p == cpuinfo.fpproc) {
308 			savefpstate(fs);
309 			cpuinfo.fpproc = NULL;
310 		}
311 		free((void *)fs, M_SUBPROC);
312 	}
313 	switchexit(p);
314 	/* NOTREACHED */
315 }
316 
317 /*
318  * cpu_coredump is called to write a core dump header.
319  * (should this be defined elsewhere?  machdep.c?)
320  */
321 int
322 cpu_coredump(p, vp, cred, chdr)
323 	struct proc *p;
324 	struct vnode *vp;
325 	struct ucred *cred;
326 	struct core *chdr;
327 {
328 	int error;
329 	struct md_coredump md_core;
330 	struct coreseg cseg;
331 
332 	CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
333 	chdr->c_hdrsize = ALIGN(sizeof(*chdr));
334 	chdr->c_seghdrsize = ALIGN(sizeof(cseg));
335 	chdr->c_cpusize = sizeof(md_core);
336 
337 	md_core.md_tf = *p->p_md.md_tf;
338 	if (p->p_md.md_fpstate) {
339 		if (p == cpuinfo.fpproc)
340 			savefpstate(p->p_md.md_fpstate);
341 		md_core.md_fpstate = *p->p_md.md_fpstate;
342 	} else
343 		bzero((caddr_t)&md_core.md_fpstate, sizeof(struct fpstate));
344 
345 	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
346 	cseg.c_addr = 0;
347 	cseg.c_size = chdr->c_cpusize;
348 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
349 	    (off_t)chdr->c_hdrsize, UIO_SYSSPACE,
350 	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
351 	if (error)
352 		return error;
353 
354 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core),
355 	    (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
356 	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
357 	if (!error)
358 		chdr->c_nseg++;
359 
360 	return error;
361 }
362