xref: /netbsd/sys/arch/sparc64/dev/zsvar.h (revision bf9ec67e)
1 /*	$NetBSD: zsvar.h,v 1.2 2000/07/09 21:55:24 eeh Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)zsvar.h	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Register layout is machine-dependent...
49  */
50 
51 struct zschan {
52 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
53 	u_char		zc_xxx0;
54 	volatile u_char	zc_data;	/* data */
55 	u_char		zc_xxx1;
56 };
57 
58 struct zsdevice {
59 	struct	zschan zs_chan[2];
60 };
61 
62 /*
63  * Software state, per zs channel.
64  *
65  * The zs chip has insufficient buffering, so we provide a software
66  * buffer using a two-level interrupt scheme.  The hardware (high priority)
67  * interrupt simply grabs the `cause' of the interrupt and stuffs it into
68  * a ring buffer.  It then schedules a software interrupt; the latter
69  * empties the ring as fast as it can, hoping to avoid overflow.
70  *
71  * Interrupts can happen because of:
72  *	- received data;
73  *	- transmit pseudo-DMA done; and
74  *	- status change.
75  * These are all stored together in the (single) ring.  The size of the
76  * ring is a power of two, to make % operations fast.  Since we need two
77  * bits to distinguish the interrupt type, and up to 16 for the received
78  * data plus RR1 status, we use 32 bits per ring entry.
79  *
80  * When the value is a character + RR1 status, the character is in the
81  * upper 8 bits of the RR1 status.
82  */
83 
84 /* 0 is reserved (means "no interrupt") */
85 #define	ZRING_RINT	1		/* receive data interrupt */
86 #define	ZRING_XINT	2		/* transmit done interrupt */
87 #define	ZRING_SINT	3		/* status change interrupt */
88 
89 #define	ZRING_TYPE(x)	((x) & 3)
90 #define	ZRING_VALUE(x)	((x) >> 8)
91 #define	ZRING_MAKE(t, v)	((t) | (v) << 8)
92 
93 /* forard decl */
94 struct zs_softc;
95 
96 struct zs_chanstate {
97 	struct	zs_chanstate *cs_next;	/* linked list for zshard() */
98 	struct	zs_softc *cs_sc;	/* pointer to softc */
99 	volatile struct zschan *cs_zc;	/* points to hardware regs */
100 	struct	tty *cs_ttyp;		/* ### */
101 	int	cs_unit;		/* unit number */
102 
103 	/*
104 	 * We must keep a copy of the write registers as they are
105 	 * mostly write-only and we sometimes need to set and clear
106 	 * individual bits (e.g., in WR3).  Not all of these are
107 	 * needed but 16 bytes is cheap and this makes the addressing
108 	 * simpler.  Unfortunately, we can only write to some registers
109 	 * when the chip is not actually transmitting, so whenever
110 	 * we are expecting a `transmit done' interrupt the preg array
111 	 * is allowed to `get ahead' of the current values.  In a
112 	 * few places we must change the current value of a register,
113 	 * rather than (or in addition to) the pending value; for these
114 	 * cs_creg[] contains the current value.
115 	 */
116 	u_char	cs_creg[16];		/* current values */
117 	u_char	cs_preg[16];		/* pending values */
118 	u_char	cs_heldchange;		/* change pending (creg != preg) */
119 	u_char	cs_rr0;			/* last rr0 processed */
120 
121 	/* pure software data, per channel */
122 	char	cs_softcar;		/* software carrier */
123 	char	cs_conk;		/* is console keyboard, decode L1-A */
124 	char	cs_brkabort;		/* abort (as if via L1-A) on BREAK */
125 	char	cs_kgdb;		/* enter debugger on frame char */
126 	char	cs_consio;		/* port does /dev/console I/O */
127 	char	cs_xxx;			/* (spare) */
128 	int	cs_speed;		/* default baud rate (from ROM) */
129 
130 	/*
131 	 * The transmit byte count and address are used for pseudo-DMA
132 	 * output in the hardware interrupt code.  PDMA can be suspended
133 	 * to get pending changes done; heldtbc is used for this.  It can
134 	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
135 	 */
136 	int	cs_tbc;			/* transmit byte count */
137 	int	cs_heldtbc;		/* held tbc while xmission stopped */
138 	caddr_t	cs_tba;			/* transmit buffer address */
139 
140 	/*
141 	 * Printing an overrun error message often takes long enough to
142 	 * cause another overrun, so we only print one per second.
143 	 */
144 	long	cs_rotime;		/* time of last ring overrun */
145 	long	cs_fotime;		/* time of last fifo overrun */
146 
147 	/*
148 	 * The ring buffer.
149 	 */
150 	u_int	cs_rbget;		/* ring buffer `get' index */
151 	volatile u_int cs_rbput;	/* ring buffer `put' index */
152 	u_int	cs_ringmask;		/* mask, reflecting size of `rbuf' */
153 	int	*cs_rbuf;		/* type, value pairs */
154 };
155 
156 /*
157  * N.B.: the keyboard is channel 1, the mouse channel 0; ttyb is 1, ttya
158  * is 0.  In other words, the things are BACKWARDS.
159  */
160 #define	ZS_CHAN_A	1
161 #define	ZS_CHAN_B	0
162 
163 /*
164  * Macros to read and write individual registers (except 0) in a channel.
165  *
166  * On the SparcStation the 1.6 microsecond recovery time is
167  * handled in hardware. On the older Sun4 machine it isn't, and
168  * software must deal with the problem.
169  *
170  * However, it *is* a problem on some Sun4m's (i.e. the SS20) (XXX: why?).
171  * Thus we leave in the delay.
172  *
173  * XXX: (ABB) Think about this more.
174  */
175 #if 0
176 
177 #define	ZS_READ(c, r)		zs_read(c, r)
178 #define	ZS_WRITE(c, r, v)	zs_write(c, r, v)
179 /*#define	ZS_DELAY()		(CPU_ISSUN4C ? (0) : delay(1))*/
180 #define	ZS_DELAY()		(delay(1))
181 
182 #else /* SUN4 */
183 
184 #define	ZS_READ(c, r)		((c)->zc_csr = (r), (c)->zc_csr)
185 #define	ZS_WRITE(c, r, v)	((c)->zc_csr = (r), (c)->zc_csr = (v))
186 /* #define	ZS_DELAY()		(CPU_ISSUN4M ? delay(1) : 0) */
187 #define	ZS_DELAY()		(0)
188 
189 #endif /* SUN4 */
190