xref: /netbsd/sys/arch/sparc64/include/ctlreg.h (revision bf9ec67e)
1 /*	$NetBSD: ctlreg.h,v 1.30 2002/04/24 23:54:24 eeh Exp $ */
2 
3 /*
4  * Copyright (c) 1996-2002 Eduardo Horvath
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
13  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
16  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
19  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22  * SUCH DAMAGE.
23  *
24  */
25 
26 /*
27  * Sun 4u control registers. (includes address space definitions
28  * and some registers in control space).
29  */
30 
31 /*
32  * The Alternate address spaces.
33  *
34  * 0x00-0x7f are privileged
35  * 0x80-0xff can be used by users
36  */
37 
38 #define	ASI_LITTLE	0x08		/* This bit should make an ASI little endian */
39 
40 #define	ASI_NUCLEUS			0x04	/* [4u] kernel address space */
41 #define	ASI_NUCLEUS_LITTLE		0x0c	/* [4u] kernel address space, little endian */
42 
43 #define	ASI_AS_IF_USER_PRIMARY		0x10	/* [4u] primary user address space */
44 #define	ASI_AS_IF_USER_SECONDARY	0x11	/* [4u] secondary user address space */
45 
46 #define	ASI_PHYS_CACHED			0x14	/* [4u] MMU bypass to main memory */
47 #define	ASI_PHYS_NON_CACHED		0x15	/* [4u] MMU bypass to I/O location */
48 
49 #define	ASI_AS_IF_USER_PRIMARY_LITTLE	0x18	/* [4u] primary user address space, little endian  */
50 #define	ASI_AS_IF_USER_SECONDARY_LITTIE	0x19	/* [4u] secondary user address space, little endian  */
51 
52 #define	ASI_PHYS_CACHED_LITTLE		0x1c	/* [4u] MMU bypass to main memory, little endian */
53 #define	ASI_PHYS_NON_CACHED_LITTLE	0x1d	/* [4u] MMU bypass to I/O location, little endian */
54 
55 #define	ASI_NUCLEUS_QUAD_LDD		0x24	/* [4u] use w/LDDA to load 128-bit item */
56 #define	ASI_NUCLEUS_QUAD_LDD_LITTLE	0x2c	/* [4u] use w/LDDA to load 128-bit item, little endian */
57 
58 #define	ASI_FLUSH_D_PAGE_PRIMARY	0x38	/* [4u] flush D-cache page using primary context */
59 #define	ASI_FLUSH_D_PAGE_SECONDARY	0x39	/* [4u] flush D-cache page using secondary context */
60 #define	ASI_FLUSH_D_CTX_PRIMARY		0x3a	/* [4u] flush D-cache context using primary context */
61 #define	ASI_FLUSH_D_CTX_SECONDARY	0x3b	/* [4u] flush D-cache context using secondary context */
62 
63 #define	ASI_LSU_CONTROL_REGISTER	0x45	/* [4u] load/store unit control register */
64 
65 #define	ASI_DCACHE_DATA			0x46	/* [4u] diagnostic access to D-cache data RAM */
66 #define	ASI_DCACHE_TAG			0x47	/* [4u] diagnostic access to D-cache tag RAM */
67 
68 #define	ASI_INTR_DISPATCH_STATUS	0x48	/* [4u] interrupt dispatch status register */
69 #define	ASI_INTR_RECEIVE		0x49	/* [4u] interrupt receive status register */
70 #define	ASI_MID_REG			0x4a	/* [4u] hardware config and MID */
71 #define	ASI_ERROR_EN_REG		0x4b	/* [4u] asynchronous error enables */
72 #define	ASI_AFSR			0x4c	/* [4u] asynchronous fault status register */
73 #define	ASI_AFAR			0x4d	/* [4u] asynchronous fault address register */
74 
75 #define	ASI_ICACHE_DATA			0x66	/* [4u] diagnostic access to D-cache data RAM */
76 #define	ASI_ICACHE_TAG			0x67	/* [4u] diagnostic access to D-cache tag RAM */
77 #define	ASI_FLUSH_I_PAGE_PRIMARY	0x68	/* [4u] flush D-cache page using primary context */
78 #define	ASI_FLUSH_I_PAGE_SECONDARY	0x69	/* [4u] flush D-cache page using secondary context */
79 #define	ASI_FLUSH_I_CTX_PRIMARY		0x6a	/* [4u] flush D-cache context using primary context */
80 #define	ASI_FLUSH_I_CTX_SECONDARY	0x6b	/* [4u] flush D-cache context using secondary context */
81 
82 #define	ASI_BLOCK_AS_IF_USER_PRIMARY	0x70	/* [4u] primary user address space, block loads/stores */
83 #define	ASI_BLOCK_AS_IF_USER_SECONDARY	0x71	/* [4u] secondary user address space, block loads/stores */
84 
85 #define	ASI_ECACHE_DIAG			0x76	/* [4u] diag access to E-cache tag and data */
86 #define	ASI_DATAPATH_ERR_REG_WRITE	0x77	/* [4u] ASI is reused */
87 
88 #define	ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE	0x78	/* [4u] primary user address space, block loads/stores */
89 #define	ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE	0x79	/* [4u] secondary user address space, block loads/stores */
90 
91 #define	ASI_INTERRUPT_RECEIVE_DATA	0x7f	/* [4u] interrupt receive data registers {0,1,2} */
92 #define	ASI_DATAPATH_ERR_REG_READ	0x7f	/* [4u] read access to datapath error registers (ASI reused) */
93 
94 #define	ASI_PRIMARY			0x80	/* [4u] primary address space */
95 #define	ASI_SECONDARY			0x81	/* [4u] secondary address space */
96 #define	ASI_PRIMARY_NOFAULT		0x82	/* [4u] primary address space, no fault */
97 #define	ASI_SECONDARY_NOFAULT		0x83	/* [4u] secondary address space, no fault */
98 
99 #define	ASI_PRIMARY_LITTLE		0x88	/* [4u] primary address space, little endian */
100 #define	ASI_SECONDARY_LITTLE		0x89	/* [4u] secondary address space, little endian */
101 #define	ASI_PRIMARY_NOFAULT_LITTLE	0x8a	/* [4u] primary address space, no fault, little endian */
102 #define	ASI_SECONDARY_NOFAULT_LITTLE	0x8b	/* [4u] secondary address space, no fault, little endian */
103 
104 #define	ASI_PST8_PRIMARY		0xc0	/* [VIS] Eight 8-bit partial store, primary */
105 #define	ASI_PST8_SECONDARY		0xc1	/* [VIS] Eight 8-bit partial store, secondary */
106 #define	ASI_PST16_PRIMARY		0xc2	/* [VIS] Four 16-bit partial store, primary */
107 #define	ASI_PST16_SECONDARY		0xc3	/* [VIS] Fout 16-bit partial store, secondary */
108 #define	ASI_PST32_PRIMARY		0xc4	/* [VIS] Two 32-bit partial store, primary */
109 #define	ASI_PST32_SECONDARY		0xc5	/* [VIS] Two 32-bit partial store, secondary */
110 
111 #define	ASI_PST8_PRIMARY_LITTLE		0xc8	/* [VIS] Eight 8-bit partial store, primary, little endian */
112 #define	ASI_PST8_SECONDARY_LITTLE	0xc9	/* [VIS] Eight 8-bit partial store, secondary, little endian */
113 #define	ASI_PST16_PRIMARY_LITTLE	0xca	/* [VIS] Four 16-bit partial store, primary, little endian */
114 #define	ASI_PST16_SECONDARY_LITTLE	0xcb	/* [VIS] Fout 16-bit partial store, secondary, little endian */
115 #define	ASI_PST32_PRIMARY_LITTLE	0xcc	/* [VIS] Two 32-bit partial store, primary, little endian */
116 #define	ASI_PST32_SECONDARY_LITTLE	0xcd	/* [VIS] Two 32-bit partial store, secondary, little endian */
117 
118 #define	ASI_FL8_PRIMARY			0xd0	/* [VIS] One 8-bit load/store floating, primary */
119 #define	ASI_FL8_SECONDARY		0xd1	/* [VIS] One 8-bit load/store floating, secondary */
120 #define	ASI_FL16_PRIMARY		0xd2	/* [VIS] One 16-bit load/store floating, primary */
121 #define	ASI_FL16_SECONDARY		0xd3	/* [VIS] One 16-bit load/store floating, secondary */
122 
123 #define	ASI_FL8_PRIMARY_LITTLE		0xd8	/* [VIS] One 8-bit load/store floating, primary, little endian */
124 #define	ASI_FL8_SECONDARY_LITTLE	0xd9	/* [VIS] One 8-bit load/store floating, secondary, little endian */
125 #define	ASI_FL16_PRIMARY_LITTLE		0xda	/* [VIS] One 16-bit load/store floating, primary, little endian */
126 #define	ASI_FL16_SECONDARY_LITTLE	0xdb	/* [VIS] One 16-bit load/store floating, secondary, little endian */
127 
128 #define	ASI_BLOCK_COMMIT_PRIMARY	0xe0	/* [4u] block store with commit, primary */
129 #define	ASI_BLOCK_COMMIT_SECONDARY	0xe1	/* [4u] block store with commit, secondary */
130 #define	ASI_BLOCK_PRIMARY		0xf0	/* [4u] block load/store, primary */
131 #define	ASI_BLOCK_SECONDARY		0xf1	/* [4u] block load/store, secondary */
132 #define	ASI_BLOCK_PRIMARY_LITTLE	0xf8	/* [4u] block load/store, primary, little endian */
133 #define	ASI_BLOCK_SECONDARY_LITTLE	0xf9	/* [4u] block load/store, secondary, little endian */
134 
135 
136 /*
137  * These are the shorter names used by Solaris
138  */
139 
140 #define	ASI_N		ASI_NUCLEUS
141 #define	ASI_NL		ASI_NUCLEUS_LITTLE
142 #define	ASI_AIUP	ASI_AS_IF_USER_PRIMARY
143 #define	ASI_AIUS	ASI_AS_IF_USER_SECONDARY
144 #define	ASI_AIUPL	ASI_AS_IF_USER_PRIMARY_LITTLE
145 #define	ASI_AIUSL	ASI_AS_IF_USER_SECONDARY_LITTLE
146 #define	ASI_P		ASI_PRIMARY
147 #define	ASI_S		ASI_SECONDARY
148 #define	ASI_PNF		ASI_PRIMARY_NOFAULT
149 #define	ASI_SNF		ASI_SECONDARY_NOFAULT
150 #define	ASI_PL		ASI_PRIMARY_LITTLE
151 #define	ASI_SL		ASI_SECONDARY_LITTLE
152 #define	ASI_PNFL	ASI_PRIMARY_NOFAULT_LITTLE
153 #define	ASI_SNFL	ASI_SECONDARY_NOFAULT_LITTLE
154 #define	ASI_FL8_P	ASI_FL8_PRIMARY
155 #define	ASI_FL8_S	ASI_FL8_SECONDARY
156 #define	ASI_FL16_P	ASI_FL16_PRIMARY
157 #define	ASI_FL16_S	ASI_FL16_SECONDARY
158 #define	ASI_FL8_PL	ASI_FL8_PRIMARY_LITTLE
159 #define	ASI_FL8_SL	ASI_FL8_SECONDARY_LITTLE
160 #define	ASI_FL16_PL	ASI_FL16_PRIMARY_LITTLE
161 #define	ASI_FL16_SL	ASI_FL16_SECONDARY_LITTLE
162 #define	ASI_BLK_AIUP	ASI_BLOCK_AS_IF_USER_PRIMARY
163 #define	ASI_BLK_AIUPL	ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
164 #define	ASI_BLK_AIUS	ASI_BLOCK_AS_IF_USER_SECONDARY
165 #define	ASI_BLK_AIUSL	ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
166 #define	ASI_BLK_COMMIT_P		ASI_BLOCK_COMMIT_PRIMARY
167 #define	ASI_BLK_COMMIT_PRIMARY		ASI_BLOCK_COMMIT_PRIMARY
168 #define	ASI_BLK_COMMIT_S		ASI_BLOCK_COMMIT_SECONDARY
169 #define	ASI_BLK_COMMIT_SECONDARY	ASI_BLOCK_COMMIT_SECONDARY
170 #define	ASI_BLK_P			ASI_BLOCK_PRIMARY
171 #define	ASI_BLK_PL			ASI_BLOCK_PRIMARY_LITTLE
172 #define	ASI_BLK_S			ASI_BLOCK_SECONDARY
173 #define	ASI_BLK_SL			ASI_BLOCK_SECONDARY_LITTLE
174 
175 /* Alternative spellings */
176 #define ASI_PRIMARY_NO_FAULT		ASI_PRIMARY_NOFAULT
177 #define ASI_PRIMARY_NO_FAULT_LITTLE	ASI_PRIMARY_NOFAULT_LITTLE
178 #define ASI_SECONDARY_NO_FAULT		ASI_SECONDARY_NOFAULT
179 #define ASI_SECONDARY_NO_FAULT_LITTLE	ASI_SECONDARY_NOFAULT_LITTLE
180 
181 #define	PHYS_ASI(x)	(((x) | 0x09) == 0x1d)
182 #define	LITTLE_ASI(x)	((x) & ASI_LITTLE)
183 
184 /*
185  * The following are 4u control registers
186  */
187 
188 
189 /* Get the CPU's UPAID */
190 #define	UPA_CR_MID(x)	(((x)>>17)&0x1f)
191 #define	CPU_UPAID	UPA_CR_MID(ldxa(0, ASI_MID_REG))
192 
193 /*
194  * [4u] MMU and Cache Control Register (MCCR)
195  * use ASI = 0x45
196  */
197 #define	ASI_MCCR	ASI_LSU_CONTROL_REGISTER
198 #define	MCCR		0x00
199 
200 /* MCCR Bits and their meanings */
201 #define	MCCR_DMMU_EN	0x08
202 #define	MCCR_IMMU_EN	0x04
203 #define	MCCR_DCACHE_EN	0x02
204 #define	MCCR_ICACHE_EN	0x01
205 
206 
207 /*
208  * MMU control registers
209  */
210 
211 /* Choose an MMU */
212 #define	ASI_DMMU		0x58
213 #define	ASI_IMMU		0x50
214 
215 /* Other assorted MMU ASIs */
216 #define	ASI_IMMU_8KPTR		0x51
217 #define	ASI_IMMU_64KPTR		0x52
218 #define	ASI_IMMU_DATA_IN	0x54
219 #define	ASI_IMMU_TLB_DATA	0x55
220 #define	ASI_IMMU_TLB_TAG	0x56
221 #define	ASI_DMMU_8KPTR		0x59
222 #define	ASI_DMMU_64KPTR		0x5a
223 #define	ASI_DMMU_DATA_IN	0x5c
224 #define	ASI_DMMU_TLB_DATA	0x5d
225 #define	ASI_DMMU_TLB_TAG	0x5e
226 
227 /*
228  * The following are the control registers
229  * They work on both MMUs unless noted.
230  *
231  * Register contents are defined later on individual registers.
232  */
233 #define	TSB_TAG_TARGET		0x0
234 #define	TLB_DATA_IN		0x0
235 #define	CTX_PRIMARY		0x08	/* primary context -- DMMU only */
236 #define	CTX_SECONDARY		0x10	/* secondary context -- DMMU only */
237 #define	SFSR			0x18
238 #define	SFAR			0x20	/* fault address -- DMMU only */
239 #define	TSB			0x28
240 #define	TLB_TAG_ACCESS		0x30
241 #define	VIRTUAL_WATCHPOINT	0x38
242 #define	PHYSICAL_WATCHPOINT	0x40
243 
244 /* Tag Target bits */
245 #define	TAG_TARGET_VA_MASK	0x03ffffffffffffffffLL
246 #define	TAG_TARGET_VA(x)	(((x)<<22)&TAG_TARGET_VA_MASK)
247 #define	TAG_TARGET_CONTEXT(x)	((x)>>48)
248 #define	TAG_TARGET(c,v)		((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
249 
250 /* SFSR bits for both D_SFSR and I_SFSR */
251 #define	SFSR_ASI(x)		((x)>>16)
252 #define	SFSR_FT_VA_OOR_2	0x02000 /* IMMU: jumpl or return to unsupportd VA */
253 #define	SFSR_FT_VA_OOR_1	0x01000 /* fault at unsupported VA */
254 #define	SFSR_FT_NFO		0x00800	/* DMMU: Access to page marked NFO */
255 #define	SFSR_ILL_ASI		0x00400	/* DMMU: Illegal (unsupported) ASI */
256 #define	SFSR_FT_IO_ATOMIC	0x00200	/* DMMU: Atomic access to noncacheable page */
257 #define	SFSR_FT_ILL_NF		0x00100	/* DMMU: NF load or flush to page marked E (has side effects) */
258 #define	SFSR_FT_PRIV		0x00080	/* Privilege violation */
259 #define	SFSR_FT_E		0x00040	/* DMUU: value of E bit associated address */
260 #define	SFSR_CTXT(x)		(((x)>>4)&0x3)
261 #define	SFSR_CTXT_IS_PRIM(x)	(SFSR_CTXT(x)==0x00)
262 #define	SFSR_CTXT_IS_SECOND(x)	(SFSR_CTXT(x)==0x01)
263 #define	SFSR_CTXT_IS_NUCLEUS(x)	(SFSR_CTXT(x)==0x02)
264 #define	SFSR_PRIV		0x00008	/* value of PSTATE.PRIV for faulting access */
265 #define	SFSR_W			0x00004 /* DMMU: attempted write */
266 #define	SFSR_OW			0x00002 /* Overwrite; prev vault was still valid */
267 #define	SFSR_FV			0x00001	/* Fault is valid */
268 #define	SFSR_FT	(SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
269 
270 #if 0
271 /* Old bits */
272 #define	SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
273 #else
274 /* New bits */
275 #define	SFSR_BITS "\177\20" \
276 	"f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
277 	 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
278 #endif
279 
280 /* ASFR bits */
281 #define	ASFR_ME			0x100000000LL
282 #define	ASFR_PRIV		0x080000000LL
283 #define	ASFR_ISAP		0x040000000LL
284 #define	ASFR_ETP		0x020000000LL
285 #define	ASFR_IVUE		0x010000000LL
286 #define	ASFR_TO			0x008000000LL
287 #define	ASFR_BERR		0x004000000LL
288 #define	ASFR_LDP		0x002000000LL
289 #define	ASFR_CP			0x001000000LL
290 #define	ASFR_WP			0x000800000LL
291 #define	ASFR_EDP		0x000400000LL
292 #define	ASFR_UE			0x000200000LL
293 #define	ASFR_CE			0x000100000LL
294 #define	ASFR_ETS		0x0000f0000LL
295 #define	ASFT_P_SYND		0x00000ffffLL
296 
297 #define	AFSR_BITS "\177\20" \
298         "b\40ME\0"      "b\37PRIV\0"    "b\36ISAP\0"    "b\35ETP\0" \
299         "b\34IVUE\0"    "b\33TO\0"      "b\32BERR\0"    "b\31LDP\0" \
300         "b\30CP\0"      "b\27WP\0"      "b\26EDP\0"     "b\25UE\0" \
301         "b\24CE\0"      "f\20\4ETS\0"   "f\0\20P_SYND\0"
302 
303 /*
304  * Here's the spitfire TSB control register bits.
305  *
306  * Each TSB entry is 16-bytes wide.  The TSB must be size aligned
307  */
308 #define	TSB_SIZE_512		0x0	/* 8kB, etc. */
309 #define	TSB_SIZE_1K		0x01
310 #define	TSB_SIZE_2K		0x02
311 #define	TSB_SIZE_4K		0x03
312 #define	TSB_SIZE_8K		0x04
313 #define	TSB_SIZE_16K		0x05
314 #define	TSB_SIZE_32K		0x06
315 #define	TSB_SIZE_64K		0x07
316 #define	TSB_SPLIT		0x1000
317 #define	TSB_BASE		0xffffffffffffe000
318 
319 /*  TLB Tag Access bits */
320 #define	TLB_TAG_ACCESS_VA	0xffffffffffffe000
321 #define	TLB_TAG_ACCESS_CTX	0x0000000000001fff
322 
323 /*
324  * TLB demap registers.  TTEs are defined in v9pte.h
325  *
326  * Use the address space to select between IMMU and DMMU.
327  * The address of the register selects which context register
328  * to read the ASI from.
329  *
330  * The data stored in the register is interpreted as the VA to
331  * use.  The DEMAP_CTX_<> registers ignore the address and demap the
332  * entire ASI.
333  *
334  */
335 #define	ASI_IMMU_DEMAP			0x57	/* [4u] IMMU TLB demap */
336 #define	ASI_DMMU_DEMAP			0x5f	/* [4u] IMMU TLB demap */
337 
338 #define	DEMAP_PAGE_NUCLEUS		((0x02)<<4)	/* Demap page from kernel AS */
339 #define	DEMAP_PAGE_PRIMARY		((0x00)<<4)	/* Demap a page from primary CTXT */
340 #define	DEMAP_PAGE_SECONDARY		((0x01)<<4)	/* Demap page from secondary CTXT (DMMU only) */
341 #define	DEMAP_CTX_NUCLEUS		((0x06)<<4)	/* Demap all of kernel CTXT */
342 #define	DEMAP_CTX_PRIMARY		((0x04)<<4)	/* Demap all of primary CTXT */
343 #define	DEMAP_CTX_SECONDARY		((0x05)<<4)	/* Demap all of secondary CTXT */
344 
345 /*
346  * Interrupt registers.  This really gets hairy.
347  */
348 
349 /* IRSR -- Interrupt Receive Status Ragister */
350 #define	ASI_IRSR	0x49
351 #define	IRSR		0x00
352 #define	IRSR_BUSY	0x020
353 #define	IRSR_MID(x)	(x&0x1f)
354 
355 /* IRDR -- Interrupt Receive Data Registers */
356 #define	ASI_IRDR	0x7f
357 #define	IRDR_0H		0x40
358 #define	IRDR_0L		0x48	/* unimplemented */
359 #define	IRDR_1H		0x50
360 #define	IRDR_1L		0x58	/* unimplemented */
361 #define	IRDR_2H		0x60
362 #define	IRDR_2L		0x68	/* unimplemented */
363 #define	IRDR_3H		0x70	/* unimplemented */
364 #define	IRDR_3L		0x78	/* unimplemented */
365 
366 /* SOFTINT ASRs */
367 #define	SET_SOFTINT	%asr20	/* Sets these bits */
368 #define	CLEAR_SOFTINT	%asr21	/* Clears these bits */
369 #define	SOFTINT		%asr22	/* Reads the register */
370 #define	TICK_CMPR	%asr23
371 
372 #define	TICK_INT	0x01	/* level-14 clock tick */
373 #define	SOFTINT1	(0x1<<1)
374 #define	SOFTINT2	(0x1<<2)
375 #define	SOFTINT3	(0x1<<3)
376 #define	SOFTINT4	(0x1<<4)
377 #define	SOFTINT5	(0x1<<5)
378 #define	SOFTINT6	(0x1<<6)
379 #define	SOFTINT7	(0x1<<7)
380 #define	SOFTINT8	(0x1<<8)
381 #define	SOFTINT9	(0x1<<9)
382 #define	SOFTINT10	(0x1<<10)
383 #define	SOFTINT11	(0x1<<11)
384 #define	SOFTINT12	(0x1<<12)
385 #define	SOFTINT13	(0x1<<13)
386 #define	SOFTINT14	(0x1<<14)
387 #define	SOFTINT15	(0x1<<15)
388 
389 /* Interrupt Dispatch -- usually reserved for cross-calls */
390 #define	ASR_IDSR	0x48 /* Interrupt dispatch status reg */
391 #define	IDSR		0x00
392 #define	IDSR_NACK	0x02
393 #define	IDSR_BUSY	0x01
394 
395 #define	ASI_INTERRUPT_DISPATCH		0x77	/* [4u] spitfire interrupt dispatch regs */
396 #define	IDCR(x)		(((x)<<14)&0x70)	/* Store anything to this address to dispatch crosscall to CPU (x) */
397 #define	IDDR_0H		0x40			/* Store data to send in these regs */
398 #define	IDDR_0L		0x48	/* unimplemented */
399 #define	IDDR_1H		0x50
400 #define	IDDR_1L		0x58	/* unimplemented */
401 #define	IDDR_2H		0x60
402 #define	IDDR_2L		0x68	/* unimplemented */
403 #define	IDDR_3H		0x70	/* unimplemented */
404 #define	IDDR_3L		0x78	/* unimplemented */
405 
406 /*
407  * Error registers
408  */
409 
410 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
411 #define	ASI_AFAR	0x4d	/* Asynchronous fault address register */
412 #define	AFAR		0x00
413 #define	ASI_AFSR	0x4c	/* Asynchronous fault status register */
414 #define	AFSR		0x00
415 
416 #define	ASI_P_EER	0x4b	/* Error enable register */
417 #define	P_EER		0x00
418 #define	P_EER_ISAPEN	0x04	/* Enable fatal on ISAP */
419 #define	P_EER_NCEEN	0x02	/* Enable trap on uncorrectable errs */
420 #define	P_EER_CEEN	0x01	/* Enable trap on correctable errs */
421 
422 #define	ASI_DATAPATH_READ	0x7f /* Read the regs */
423 #define	ASI_DATAPATH_WRITE	0x77 /* Write to the regs */
424 #define	P_DPER_0	0x00	/* Datapath err reg 0 */
425 #define	P_DPER_1	0x18	/* Datapath err reg 1 */
426 #define	P_DCR_0		0x20	/* Datapath control reg 0 */
427 #define	P_DCR_1		0x38	/* Datapath control reg 0 */
428 
429 
430 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
431 
432 #ifndef _LOCORE
433 /*
434  * GCC __asm constructs for doing assembly stuff.
435  */
436 
437 /*
438  * ``Routines'' to load and store from/to alternate address space.
439  * The location can be a variable, the asi value (address space indicator)
440  * must be a constant.
441  *
442  * N.B.: You can put as many special functions here as you like, since
443  * they cost no kernel space or time if they are not used.
444  *
445  * These were static inline functions, but gcc screws up the constraints
446  * on the address space identifiers (the "n"umeric value part) because
447  * it inlines too late, so we have to use the funny valued-macro syntax.
448  */
449 
450 /*
451  * Apparently the definition of bypass ASIs is that they all use the
452  * D$ so we need to flush the D$ to make sure we don't get data pollution.
453  */
454 
455 static __inline__ u_char lduba __P((paddr_t loc, int asi));
456 static __inline__ u_short lduha __P((paddr_t loc, int asi));
457 static __inline__ u_int lda __P((paddr_t loc, int asi));
458 static __inline__ int ldswa __P((paddr_t loc, int asi));
459 static __inline__ u_int64_t ldxa __P((paddr_t loc, int asi));
460 static __inline__ u_int64_t ldda __P((paddr_t loc, int asi));
461 
462 static __inline__ void stba __P((paddr_t loc, int asi, u_char value));
463 static __inline__ void stha __P((paddr_t loc, int asi, u_short value));
464 static __inline__ void sta __P((paddr_t loc, int asi, u_int value));
465 static __inline__ void stxa __P((paddr_t loc, int asi, u_int64_t value));
466 static __inline__ void stda __P((paddr_t loc, int asi, u_int64_t value));
467 
468 #if 0
469 static __inline__ unsigned int casa __P((paddr_t loc, int asi,
470 	unsigned int value, unsigned int oldvalue));
471 static __inline__ u_int64_t casxa __P((paddr_t loc, int asi,
472 	u_int64_t value, u_int64_t oldvalue));
473 #endif
474 
475 #ifdef __arch64__
476 static __inline__ u_char
477 lduba(paddr_t loc, int asi)
478 {
479 	register unsigned int _lduba_v;
480 
481 	__asm __volatile("wr %2,%%g0,%%asi; "
482 		" lduba [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
483 		"=r" (_lduba_v) :
484 		"r" ((unsigned long)(loc)), "r" (asi));
485 	return (_lduba_v);
486 }
487 #else
488 static __inline__ u_char
489 lduba(paddr_t loc, int asi)
490 {
491 	register unsigned int _lduba_v, _loc_hi, _pstate;
492 
493 	_loc_hi = (((u_int64_t)loc)>>32);
494 	if (PHYS_ASI(asi)) {
495 		__asm __volatile("wr %4,%%g0,%%asi;  sllx %3,32,%0; "
496 " rdpr %%pstate,%1; or %0,%2,%0; wrpr %1,8,%%pstate; "
497 " membar #Sync; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate; "
498 " membar #Sync; wr %%g0, 0x82, %%asi" :
499 				 "=&r" (_lduba_v),  "=&r" (_pstate) :
500 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
501 				 "r" (asi));
502 	} else {
503 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
504 " or %0,%1,%0; lduba [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduba_v) :
505 				 "r" ((unsigned long)(loc)),
506 				 "r" (_loc_hi), "r" (asi));
507 	}
508 	return (_lduba_v);
509 }
510 #endif
511 
512 #ifdef __arch64__
513 /* load half-word from alternate address space */
514 static __inline__ u_short
515 lduha(paddr_t loc, int asi)
516 {
517 	register unsigned int _lduha_v;
518 
519 	__asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0; "
520 		" wr %%g0, 0x82, %%asi" :
521 		"=r" (_lduha_v) :
522 		"r" ((unsigned long)(loc)), "r" (asi));
523 	return (_lduha_v);
524 }
525 #else
526 /* load half-word from alternate address space */
527 static __inline__ u_short
528 lduha(paddr_t loc, int asi) {
529 	register unsigned int _lduha_v, _loc_hi, _pstate;
530 
531 	_loc_hi = (((u_int64_t)loc)>>32);
532 
533 	if (PHYS_ASI(asi)) {
534 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
535 " rdpr %%pstate,%1; wrpr %1,8,%%pstate; "
536 " or %0,%2,%0; membar #Sync; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate; "
537 " membar #Sync; wr %%g0, 0x82, %%asi" :
538 				 "=&r" (_lduha_v), "=&r" (_pstate) :
539 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
540 				 "r" (asi));
541 	} else {
542 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
543 " or %0,%1,%0; lduha [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduha_v) :
544 				 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
545 	}
546 	return (_lduha_v);
547 }
548 #endif
549 
550 
551 #ifdef __arch64__
552 /* load unsigned int from alternate address space */
553 static __inline__ u_int
554 lda(paddr_t loc, int asi)
555 {
556 	register unsigned int _lda_v;
557 
558 	__asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" :
559 		"=r" (_lda_v) :
560 		"r" ((unsigned long)(loc)), "r" (asi));
561 	return (_lda_v);
562 }
563 
564 /* load signed int from alternate address space */
565 static __inline__ int
566 ldswa(paddr_t loc, int asi)
567 {
568 	register int _lda_v;
569 
570 	__asm __volatile("wr %2,%%g0,%%asi; "
571 		" ldswa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
572 		"=r" (_lda_v) :
573 		"r" ((unsigned long)(loc)), "r" (asi));
574 	return (_lda_v);
575 }
576 #else	/* __arch64__ */
577 /* load unsigned int from alternate address space */
578 static __inline__ u_int
579 lda(paddr_t loc, int asi)
580 {
581 	register unsigned int _lda_v, _loc_hi, _pstate;
582 
583 	_loc_hi = (((u_int64_t)loc)>>32);
584 	if (PHYS_ASI(asi)) {
585 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
586 " sllx %3,32,%0;  wrpr %1,8,%%pstate;  or %0,%2,%0; membar #Sync; "
587 " lda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
588 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=&r" (_pstate) :
589 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
590 				 "r" (asi));
591 	} else {
592 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
593 " or %0,%1,%0; lda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
594 				 "r" ((unsigned long)(loc)),
595 				 "r" (_loc_hi), "r" (asi));
596 	}
597 	return (_lda_v);
598 }
599 
600 /* load signed int from alternate address space */
601 static __inline__ int
602 ldswa(paddr_t loc, int asi)
603 {
604 	register int _lda_v, _loc_hi, _pstate;
605 
606 	_loc_hi = (((u_int64_t)loc)>>32);
607 	if (PHYS_ASI(asi)) {
608 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
609 " wrpr %1,8,%%pstate; sllx %3,32,%0;"
610 " or %0,%2,%0; membar #Sync; ldswa [%0]%%asi,%0; wrpr %1,0,%%pstate; "
611 " membar #Sync; wr %%g0, 0x82, %%asi" :
612 				 "=&r" (_lda_v), "=&r" (_pstate) :
613 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
614 				 "r" (asi));
615 	} else {
616 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
617 " or %0,%1,%0; ldswa [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
618 				 "r" ((unsigned long)(loc)),
619 				 "r" (_loc_hi), "r" (asi));
620 	}
621 	return (_lda_v);
622 }
623 #endif /* __arch64__ */
624 
625 #ifdef	__arch64__
626 /* load 64-bit int from alternate address space -- these should never be used */
627 static __inline__ u_int64_t
628 ldda(paddr_t loc, int asi)
629 {
630 	register long long _lda_v;
631 
632 	__asm __volatile("wr %2,%%g0,%%asi; "
633 		" ldda [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
634 		"=r" (_lda_v) :
635 		"r" ((unsigned long)(loc)), "r" (asi));
636 	return (_lda_v);
637 }
638 #else
639 /* load 64-bit int from alternate address space */
640 static __inline__ u_int64_t
641 ldda(paddr_t loc, int asi)
642 {
643 	register long long _lda_v, _loc_hi, _pstate;
644 
645 	_loc_hi = (((u_int64_t)loc)>>32);
646 	if (PHYS_ASI(asi)) {
647 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
648 " wrpr %1,8,%%pstate; sllx %3,32,%0; or %0,%2,%0; membar #Sync;"
649 " ldda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync;  wr %%g0, 0x82, %%asi" :
650 				 "=&r" (_lda_v), "=&r" (_pstate) :
651 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
652 				 "r" (asi));
653 	} else {
654 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
655 " or %0,%1,%0; ldda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
656 				 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
657 	}
658 	return (_lda_v);
659 }
660 #endif
661 
662 
663 #ifdef __arch64__
664 /* native load 64-bit int from alternate address space w/64-bit compiler*/
665 static __inline__ u_int64_t
666 ldxa(paddr_t loc, int asi)
667 {
668 	register unsigned long _lda_v;
669 
670 	__asm __volatile("wr %2,%%g0,%%asi; "
671 		" ldxa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
672 		"=r" (_lda_v) :
673 		"r" ((unsigned long)(loc)), "r" (asi));
674 	return (_lda_v);
675 }
676 #else
677 /* native load 64-bit int from alternate address space w/32-bit compiler*/
678 static __inline__ u_int64_t
679 ldxa(paddr_t loc, int asi)
680 {
681 	register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi;
682 
683 	_loc_hi = (((u_int64_t)loc)>>32);
684 	if (PHYS_ASI(asi)) {
685 		__asm __volatile("wr %4,%%g0,%%asi;  rdpr %%pstate,%1; "
686 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; "
687 " ldxa [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
688 " srlx %0,32,%1; srl %0,0,%0; wr %%g0, 0x82, %%asi" :
689 				 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
690 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
691 				 "r" (asi));
692 	} else {
693 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
694 " or %0,%2,%0; ldxa [%0]%%asi,%0; srlx %0,32,%1; "
695 " srl %0,0,%0;; wr %%g0, 0x82, %%asi" :
696 				 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
697 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
698 				 "r" (asi));
699 	}
700 	return ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo);
701 }
702 #endif
703 
704 /* store byte to alternate address space */
705 #ifdef __arch64__
706 static __inline__ void
707 stba(paddr_t loc, int asi, u_char value)
708 {
709 	__asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi; "
710 		" wr %%g0, 0x82, %%asi" : :
711 		"r" ((int)(value)), "r" ((unsigned long)(loc)),
712 		"r" (asi));
713 }
714 #else
715 static __inline__ void
716 stba(paddr_t loc, int asi, u_char value)
717 {
718 	register int _loc_hi, _pstate;
719 
720 	_loc_hi = (((u_int64_t)loc)>>32);
721 	if (PHYS_ASI(asi)) {
722 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
723 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stba %2,[%0]%%asi; "
724 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
725 				 "=&r" (_loc_hi), "=&r" (_pstate) :
726 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
727 				 "r" (_loc_hi), "r" (asi));
728 	} else {
729 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
730 " or %2,%0,%0; stba %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
731 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
732 				 "r" (_loc_hi), "r" (asi));
733 	}
734 }
735 #endif
736 
737 /* store half-word to alternate address space */
738 #ifdef __arch64__
739 static __inline__ void
740 stha(paddr_t loc, int asi, u_short value)
741 {
742 	__asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi; "
743 		" wr %%g0, 0x82, %%asi" : :
744 		"r" ((int)(value)), "r" ((unsigned long)(loc)),
745 		"r" (asi) : "memory");
746 }
747 #else
748 static __inline__ void
749 stha(paddr_t loc, int asi, u_short value)
750 {
751 	register int _loc_hi, _pstate;
752 
753 	_loc_hi = (((u_int64_t)loc)>>32);
754 	if (PHYS_ASI(asi)) {
755 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
756 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stha %2,[%0]%%asi; "
757 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
758 			"=&r" (_loc_hi), "=&r" (_pstate) :
759 			"r" ((int)(value)), "r" ((unsigned long)(loc)),
760 			"r" (_loc_hi), "r" (asi) : "memory");
761 	} else {
762 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
763 " or %2,%0,%0; stha %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
764 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
765 				 "r" (_loc_hi), "r" (asi) : "memory");
766 	}
767 }
768 #endif
769 
770 
771 /* store int to alternate address space */
772 #ifdef __arch64__
773 static __inline__ void
774 sta(paddr_t loc, int asi, u_int value)
775 {
776 	__asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi; "
777 		" wr %%g0, 0x82, %%asi" : :
778 		"r" ((int)(value)), "r" ((unsigned long)(loc)),
779 		"r" (asi) : "memory");
780 }
781 #else
782 static __inline__ void
783 sta(paddr_t loc, int asi, u_int value)
784 {
785 	register int _loc_hi, _pstate;
786 
787 	_loc_hi = (((u_int64_t)loc)>>32);
788 	if (PHYS_ASI(asi)) {
789 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
790 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; sta %2,[%0]%%asi; "
791 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
792 			"=&r" (_loc_hi), "=&r" (_pstate) :
793 			"r" ((int)(value)), "r" ((unsigned long)(loc)),
794 			"r" (_loc_hi), "r" (asi) : "memory");
795 	} else {
796 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
797 " or %2,%0,%0; sta %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
798 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
799 				 "r" (_loc_hi), "r" (asi) : "memory");
800 	}
801 }
802 #endif
803 
804 /* store 64-bit int to alternate address space */
805 #ifdef __arch64__
806 static __inline__ void
807 stda(paddr_t loc, int asi, u_int64_t value)
808 {
809 	__asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi; "
810 		" wr %%g0, 0x82, %%asi" : :
811 		"r" ((long long)(value)), "r" ((unsigned long)(loc)),
812 		"r" (asi) : "memory");
813 }
814 #else
815 static __inline__ void
816 stda(paddr_t loc, int asi, u_int64_t value)
817 {
818 	register int _loc_hi, _pstate;
819 
820 	_loc_hi = (((u_int64_t)loc)>>32);
821 	if (PHYS_ASI(asi)) {
822 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
823 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stda %2,[%0]%%asi; "
824 " wrpr %1,0,%%pstate; membar #Sync;  wr %%g0, 0x82, %%asi" :
825 			"=&r" (_loc_hi), "=&r" (_pstate) :
826 			"r" ((long long)(value)), "r" ((unsigned long)(loc)),
827 			"r" (_loc_hi), "r" (asi) : "memory");
828 	} else {
829 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
830 " or %2,%0,%0; stda %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
831 			"=&r" (_loc_hi) :
832 			"r" ((long long)(value)), "r" ((unsigned long)(loc)),
833 			"r" (_loc_hi), "r" (asi) : "memory");
834 	}
835 }
836 #endif
837 
838 #ifdef __arch64__
839 /* native store 64-bit int to alternate address space w/64-bit compiler*/
840 static __inline__ void
841 stxa(paddr_t loc, int asi, u_int64_t value)
842 {
843 	__asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi; "
844 		" wr %%g0, 0x82, %%asi" : :
845 		"r" ((unsigned long)(value)),
846 		"r" ((unsigned long)(loc)), "r" (asi) : "memory");
847 }
848 #else
849 /* native store 64-bit int to alternate address space w/32-bit compiler*/
850 static __inline__ void
851 stxa(paddr_t loc, int asi, u_int64_t value)
852 {
853 	int _stxa_lo, _stxa_hi, _loc_hi;
854 
855 	_stxa_lo = value;
856 	_stxa_hi = ((u_int64_t)value)>>32;
857 	_loc_hi = (((u_int64_t)(u_long)loc)>>32);
858 
859 	if (PHYS_ASI(asi)) {
860 		__asm __volatile("wr %7,%%g0,%%asi; sllx %4,32,%1; "
861 " sllx %6,32,%0;  or %1,%3,%1; rdpr %%pstate,%2; or %0,%5,%0; "
862 " wrpr %2,8,%%pstate; stxa %1,[%0]%%asi; wrpr %2,0,%%pstate; "
863 " membar #Sync; wr %%g0, 0x82, %%asi" :
864 				 "=&r" (_loc_hi), "=&r" (_stxa_hi),
865 				 "=&r" ((int)(_stxa_lo)) :
866 				 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
867 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
868 				 "r" (asi) : "memory");
869 	} else {
870 		__asm __volatile("wr %6,%%g0,%%asi; sllx %3,32,%1; sllx %5,32,%0; "
871 " or %1,%2,%1; or %0,%4,%0; stxa %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
872 				 "=&r" (_loc_hi), "=&r" (_stxa_hi) :
873 				 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
874 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
875 				 "r" (asi) : "memory");
876 	}
877 }
878 #endif
879 
880 #if 0
881 #ifdef __arch64__
882 /* native store 64-bit int to alternate address space w/64-bit compiler*/
883 static __inline__ u_int64_t
884 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
885 {
886 	__asm __volatile("wr %3,%%g0,%%asi; casxa [%1]%%asi,%2,%0; "
887 		" wr %%g0, 0x82, %%asi" :
888 		"+r" (value) :
889 		"r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi) :
890 		"memory");
891 	return (value);
892 }
893 #else
894 /* native store 64-bit int to alternate address space w/32-bit compiler*/
895 static __inline__ u_int64_t
896 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
897 {
898 	int _casxa_lo, _casxa_hi, _loc_hi, _oval_hi;
899 
900 	_casxa_lo = value;
901 	_casxa_hi = ((u_int64_t)value)>>32;
902 	_oval_hi = ((u_int64_t)oldvalue)>>32;
903 	_loc_hi = (((u_int64_t)(u_long)loc)>>32);
904 
905 #ifdef __notyet
906 /*
907  * gcc cannot handle this since it thinks it has >10 asm operands.
908  */
909 	if (PHYS_ASI(asi)) {
910 		__asm __volatile("wr %6,%%g0,%%asi; sllx %1,32,%1; rdpr %%pstate,%2; "
911 " sllx %0,32,%0; or %1,%2,%1; sllx %3,32,%3; or %0,%4,%0; or %3,%5,%3; "
912 " wrpr %2,8,%%pstate; casxa [%0]%%asi,%3,%1; wrpr %2,0,%%pstate; "
913 " andn %0,0x1f,%3; membar #Sync; "
914 " sll %1,0,%2; srax %1,32,%1; wr %%g0, 0x82, %%asi " :
915 			"+r" (_loc_hi), "+r" (_casxa_hi),
916 			"+r" (_casxa_lo), "+r" (_oval_hi) :
917 			"r" ((unsigned long)(loc)),
918 			"r" ((unsigned int)(oldvalue)),
919 			"r" (asi));
920 	} else {
921 		__asm __volatile("wr %7,%%g0,%%asi; sllx %1,32,%1; sllx %5,32,%0; "
922 " or %1,%2,%1; sllx %3,32,%2; or %0,%4,%0; or %2,%4,%2; "
923 " casxa [%0]%%asi,%2,%1; sll %1,0,%2; srax %o1,32,%o1; wr %%g0, 0x82, %%asi " :
924 			"=&r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo) :
925 			"r" ((int)(_oval_hi)), "r" ((int)(oldvalue)),
926 			"r" ((unsigned long)(loc)), "r" (_loc_hi),
927 			"r" (asi) : "memory");
928 	}
929 #endif
930 	return (((u_int64_t)_casxa_hi<<32)|(u_int64_t)_casxa_lo);
931 }
932 #endif
933 #endif /* 0 */
934 
935 
936 
937 /* flush address from data cache */
938 #define	flush(loc) ({ \
939 	__asm __volatile("flush %0" : : \
940 	     "r" ((unsigned long)(loc))); \
941 })
942 
943 /* Flush a D$ line */
944 #if 0
945 #define	flushline(loc) ({ \
946 	stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
947         membar_sync(); \
948 })
949 #else
950 #define	flushline(loc)
951 #endif
952 
953 /* The following two enable or disable the dcache in the LSU control register */
954 #define	dcenable() ({ \
955 	int res; \
956 	__asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
957 		: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
958 })
959 #define	dcdisable() ({ \
960 	int res; \
961 	__asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
962 		: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
963 })
964 
965 /*
966  * SPARC V9 memory barrier instructions.
967  */
968 /* Make all stores complete before next store */
969 #define	membar_storestore() __asm __volatile("membar #StoreStore" : :)
970 /* Make all loads complete before next store */
971 #define	membar_loadstore() __asm __volatile("membar #LoadStore" : :)
972 /* Make all stores complete before next load */
973 #define	membar_storeload() __asm __volatile("membar #StoreLoad" : :)
974 /* Make all loads complete before next load */
975 #define	membar_loadload() __asm __volatile("membar #LoadLoad" : :)
976 /* Complete all outstanding memory operations and exceptions */
977 #define	membar_sync() __asm __volatile("membar #Sync" : :)
978 /* Complete all outstanding memory operations */
979 #define	membar_memissue() __asm __volatile("membar #MemIssue" : :)
980 /* Complete all outstanding stores before any new loads */
981 #define	membar_lookaside() __asm __volatile("membar #Lookaside" : :)
982 
983 #ifdef __arch64__
984 /* read 64-bit %tick register */
985 #define	tick() ({ \
986 	register u_long _tick_tmp; \
987 	__asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
988 	_tick_tmp; \
989 })
990 #else
991 /* read 64-bit %tick register on 32-bit system */
992 #define	tick() ({ \
993 	register u_int _tick_hi = 0, _tick_lo = 0; \
994 	__asm __volatile("rdpr %%tick, %0; srl %0,0,%1; srlx %0,32,%0 " \
995 		: "=r" (_tick_hi), "=r" (_tick_lo) : ); \
996 	(((u_int64_t)_tick_hi)<<32)|((u_int64_t)_tick_lo); \
997 })
998 #endif
999 
1000 extern void next_tick __P((long));
1001 #endif
1002