xref: /netbsd/sys/arch/sun3/sun3x/dvma.c (revision bf9ec67e)
1 /*	$NetBSD: dvma.c,v 1.23 2001/09/11 20:37:13 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Gordon W. Ross and Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * DVMA (Direct Virtual Memory Access - like DMA)
41  *
42  * In the Sun3 architecture, memory cycles initiated by secondary bus
43  * masters (DVMA devices) passed through the same MMU that governed CPU
44  * accesses.  All DVMA devices were wired in such a way so that an offset
45  * was added to the addresses they issued, causing them to access virtual
46  * memory starting at address 0x0FF00000 - the offset.  The task of
47  * enabling a DVMA device to access main memory only involved creating
48  * valid mapping in the MMU that translated these high addresses into the
49  * appropriate physical addresses.
50  *
51  * The Sun3x presents a challenge to programming DVMA because the MMU is no
52  * longer shared by both secondary bus masters and the CPU.  The MC68030's
53  * built-in MMU serves only to manage virtual memory accesses initiated by
54  * the CPU.  Secondary bus master bus accesses pass through a different MMU,
55  * aptly named the 'I/O Mapper'.  To enable every device driver that uses
56  * DVMA to understand that these two address spaces are disconnected would
57  * require a tremendous amount of code re-writing. To avoid this, we will
58  * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
59  * so that DVMA mappings are consistent in both the CPU virtual address
60  * space and secondary bus master address space - creating an environment
61  * just like the Sun3 system.
62  *
63  * The maximum address space that any DVMA device in the Sun3x architecture
64  * is capable of addressing is 24 bits wide (16 Megabytes.)  We can alias
65  * all of the mappings that exist in the I/O mapper by duplicating them in
66  * a specially reserved section of the CPU's virtual address space, 16
67  * Megabytes in size.  Whenever a DVMA buffer is allocated, the allocation
68  * code will enter in a mapping both in the MC68030 MMU page tables and the
69  * I/O mapper.
70  *
71  * The address returned by the allocation routine is a virtual address that
72  * the requesting driver must use to access the buffer.  It is up to the
73  * device driver to convert this virtual address into the appropriate slave
74  * address that its device should issue to access the buffer.  (There will be
75  * routines that assist the driver in doing so.)
76  */
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/device.h>
81 #include <sys/proc.h>
82 #include <sys/malloc.h>
83 #include <sys/map.h>
84 #include <sys/buf.h>
85 #include <sys/vnode.h>
86 #include <sys/user.h>
87 #include <sys/core.h>
88 #include <sys/exec.h>
89 
90 #include <uvm/uvm_extern.h>
91 
92 #include <machine/autoconf.h>
93 #include <machine/cpu.h>
94 #include <machine/dvma.h>
95 #include <machine/pmap.h>
96 
97 #include <sun3/sun3/machdep.h>
98 
99 #include <sun3/sun3x/enable.h>
100 #include <sun3/sun3x/iommu.h>
101 
102 /*
103  * Use a resource map to manage DVMA scratch-memory pages.
104  * Note: SunOS says last three pages are reserved (PROM?)
105  * Note: need a separate map (sub-map?) for last 1MB for
106  *       use by VME slave interface.
107  */
108 
109 /* Number of slots in dvmamap. */
110 int dvma_max_segs = btoc(DVMA_MAP_SIZE);
111 struct map *dvmamap;
112 
113 void
114 dvma_init()
115 {
116 
117 	/*
118 	 * Create the resource map for DVMA pages.
119 	 */
120 	dvmamap = malloc((sizeof(struct map) * dvma_max_segs),
121 					 M_DEVBUF, M_WAITOK);
122 
123 	rminit(dvmamap, btoc(DVMA_MAP_AVAIL), btoc(DVMA_MAP_BASE),
124 		   "dvmamap", dvma_max_segs);
125 
126 	/*
127 	 * Enable DVMA in the System Enable register.
128 	 * Note:  This is only necessary for VME slave accesses.
129 	 *        On-board devices are always capable of DVMA.
130 	 */
131 	*enable_reg |= ENA_SDVMA;
132 }
133 
134 
135 /*
136  * Given a DVMA address, return the physical address that
137  * would be used by some OTHER bus-master besides the CPU.
138  * (Examples: on-board ie/le, VME xy board).
139  */
140 u_long
141 dvma_kvtopa(kva, bustype)
142 	void * kva;
143 	int bustype;
144 {
145 	u_long addr, mask;
146 
147 	addr = (u_long)kva;
148 	if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
149 		panic("dvma_kvtopa: bad dmva addr=0x%lx\n", addr);
150 
151 	switch (bustype) {
152 	case BUS_OBIO:
153 	case BUS_OBMEM:
154 		mask = DVMA_OBIO_SLAVE_MASK;
155 		break;
156 	default:	/* VME bus device. */
157 		mask = DVMA_VME_SLAVE_MASK;
158 		break;
159 	}
160 
161 	return(addr & mask);
162 }
163 
164 
165 /*
166  * Map a range [va, va+len] of wired virtual addresses in the given map
167  * to a kernel address in DVMA space.
168  */
169 void *
170 dvma_mapin(kmem_va, len, canwait)
171 	void *  kmem_va;
172 	int     len, canwait;
173 {
174 	void * dvma_addr;
175 	vaddr_t kva, tva;
176 	int npf, s;
177 	paddr_t pa;
178 	long off, pn;
179 	boolean_t rv;
180 
181 	kva = (vaddr_t)kmem_va;
182 #ifdef	DIAGNOSTIC
183 	/*
184 	 * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
185 	 * map and should not participate in DVMA.
186 	 */
187 	if (kva < VM_MIN_KERNEL_ADDRESS)
188 		panic("dvma_mapin: bad kva");
189 #endif
190 
191 	/*
192 	 * Calculate the offset of the data buffer from a page boundary.
193 	 */
194 	off = kva & PGOFSET;
195 	kva -= off;	/* Truncate starting address to nearest page. */
196 	len = round_page(len + off); /* Round the buffer length to pages. */
197 	npf = btoc(len); /* Determine the number of pages to be mapped. */
198 
199 	s = splvm();
200 	for (;;) {
201 		/*
202 		 * Try to allocate DVMA space of the appropriate size
203 		 * in which to do a transfer.
204 		 */
205 		pn = rmalloc(dvmamap, npf);
206 
207 		if (pn != 0)
208 			break;
209 		if (canwait) {
210 			(void)tsleep(dvmamap, PRIBIO+1, "physio", 0);
211 			continue;
212 		}
213 		splx(s);
214 		return NULL;
215 	}
216 	splx(s);
217 
218 
219 	/*
220 	 * Tva is the starting page to which the data buffer will be double
221 	 * mapped.  Dvma_addr is the starting address of the buffer within
222 	 * that page and is the return value of the function.
223 	 */
224 	tva = ctob(pn);
225 	dvma_addr = (void *) (tva + off);
226 
227 	for (;npf--; kva += NBPG, tva += NBPG) {
228 		/*
229 		 * Retrieve the physical address of each page in the buffer
230 		 * and enter mappings into the I/O MMU so they may be seen
231 		 * by external bus masters and into the special DVMA space
232 		 * in the MC68030 MMU so they may be seen by the CPU.
233 		 */
234 		rv = pmap_extract(pmap_kernel(), kva, &pa);
235 #ifdef	DEBUG
236 		if (rv == FALSE)
237 			panic("dvma_mapin: null page frame");
238 #endif	/* DEBUG */
239 
240 		iommu_enter((tva & IOMMU_VA_MASK), pa);
241 		pmap_kenter_pa(tva, pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE);
242 	}
243 	pmap_update(pmap_kernel());
244 
245 	return (dvma_addr);
246 }
247 
248 /*
249  * Remove double map of `va' in DVMA space at `kva'.
250  *
251  * TODO - This function might be the perfect place to handle the
252  *       synchronization between the DVMA cache and central RAM
253  *       on the 3/470.
254  */
255 void
256 dvma_mapout(dvma_addr, len)
257 	void *	dvma_addr;
258 	int		len;
259 {
260 	u_long kva;
261 	int s, off;
262 
263 	kva = (u_long)dvma_addr;
264 	off = (int)kva & PGOFSET;
265 	kva -= off;
266 	len = round_page(len + off);
267 
268 	iommu_remove((kva & IOMMU_VA_MASK), len);
269 	pmap_kremove(kva, len);
270 	pmap_update(pmap_kernel());
271 
272 	s = splvm();
273 	rmfree(dvmamap, btoc(len), btoc(kva));
274 	wakeup(dvmamap);
275 	splx(s);
276 }
277 
278 /*
279  * Allocate actual memory pages in DVMA space.
280  * (For sun3 compatibility - the ie driver.)
281  */
282 void *
283 dvma_malloc(bytes)
284 	size_t bytes;
285 {
286 	void *new_mem, *dvma_mem;
287 	vsize_t new_size;
288 
289 	if (!bytes)
290 		return NULL;
291 	new_size = m68k_round_page(bytes);
292 	new_mem = (void*)uvm_km_alloc(kernel_map, new_size);
293 	if (!new_mem)
294 		return NULL;
295 	dvma_mem = dvma_mapin(new_mem, new_size, 1);
296 	return (dvma_mem);
297 }
298 
299 /*
300  * Free pages from dvma_malloc()
301  */
302 void
303 dvma_free(addr, size)
304 	void *addr;
305 	size_t size;
306 {
307 	vsize_t sz = m68k_round_page(size);
308 
309 	dvma_mapout(addr, sz);
310 	/* XXX: need kmem address to free it...
311 	   Oh well, we never call this anyway. */
312 }
313