xref: /netbsd/sys/arch/sun3/sun3x/pmap.c (revision 6550d01e)
1 /*	$NetBSD: pmap.c,v 1.111 2010/10/15 15:55:53 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * XXX These comments aren't quite accurate.  Need to change.
34  * The sun3x uses the MC68851 Memory Management Unit, which is built
35  * into the CPU.  The 68851 maps virtual to physical addresses using
36  * a multi-level table lookup, which is stored in the very memory that
37  * it maps.  The number of levels of lookup is configurable from one
38  * to four.  In this implementation, we use three, named 'A' through 'C'.
39  *
40  * The MMU translates virtual addresses into physical addresses by
41  * traversing these tables in a process called a 'table walk'.  The most
42  * significant 7 bits of the Virtual Address ('VA') being translated are
43  * used as an index into the level A table, whose base in physical memory
44  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
45  * address found at that index in the A table is used as the base
46  * address for the next table, the B table.  The next six bits of the VA are
47  * used as an index into the B table, which in turn gives the base address
48  * of the third and final C table.
49  *
50  * The next six bits of the VA are used as an index into the C table to
51  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
52  * to which the remaining 13 bits of the VA are added, producing the
53  * mapped physical address.
54  *
55  * To map the entire memory space in this manner would require 2114296 bytes
56  * of page tables per process - quite expensive.  Instead we will
57  * allocate a fixed but considerably smaller space for the page tables at
58  * the time the VM system is initialized.  When the pmap code is asked by
59  * the kernel to map a VA to a PA, it allocates tables as needed from this
60  * pool.  When there are no more tables in the pool, tables are stolen
61  * from the oldest mapped entries in the tree.  This is only possible
62  * because all memory mappings are stored in the kernel memory map
63  * structures, independent of the pmap structures.  A VA which references
64  * one of these invalidated maps will cause a page fault.  The kernel
65  * will determine that the page fault was caused by a task using a valid
66  * VA, but for some reason (which does not concern it), that address was
67  * not mapped.  It will ask the pmap code to re-map the entry and then
68  * it will resume executing the faulting task.
69  *
70  * In this manner the most efficient use of the page table space is
71  * achieved.  Tasks which do not execute often will have their tables
72  * stolen and reused by tasks which execute more frequently.  The best
73  * size for the page table pool will probably be determined by
74  * experimentation.
75  *
76  * You read all of the comments so far.  Good for you.
77  * Now go play!
78  */
79 
80 /*** A Note About the 68851 Address Translation Cache
81  * The MC68851 has a 64 entry cache, called the Address Translation Cache
82  * or 'ATC'.  This cache stores the most recently used page descriptors
83  * accessed by the MMU when it does translations.  Using a marker called a
84  * 'task alias' the MMU can store the descriptors from 8 different table
85  * spaces concurrently.  The task alias is associated with the base
86  * address of the level A table of that address space.  When an address
87  * space is currently active (the CRP currently points to its A table)
88  * the only cached descriptors that will be obeyed are ones which have a
89  * matching task alias of the current space associated with them.
90  *
91  * Since the cache is always consulted before any table lookups are done,
92  * it is important that it accurately reflect the state of the MMU tables.
93  * Whenever a change has been made to a table that has been loaded into
94  * the MMU, the code must be sure to flush any cached entries that are
95  * affected by the change.  These instances are documented in the code at
96  * various points.
97  */
98 /*** A Note About the Note About the 68851 Address Translation Cache
99  * 4 months into this code I discovered that the sun3x does not have
100  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
101  * the 68030 CPU.
102  * All though it behaves very similarly to the 68851, it only has 1 task
103  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
104  * of the previous note does not apply to the sun3x pmap.
105  */
106 
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.111 2010/10/15 15:55:53 tsutsui Exp $");
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap_debug.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/malloc.h>
117 #include <sys/pool.h>
118 #include <sys/queue.h>
119 #include <sys/kcore.h>
120 
121 #include <uvm/uvm.h>
122 
123 #include <machine/cpu.h>
124 #include <machine/kcore.h>
125 #include <machine/mon.h>
126 #include <machine/pmap.h>
127 #include <machine/pte.h>
128 #include <machine/vmparam.h>
129 #include <m68k/cacheops.h>
130 
131 #include <sun3/sun3/cache.h>
132 #include <sun3/sun3/machdep.h>
133 
134 #include "pmap_pvt.h"
135 
136 /* XXX - What headers declare these? */
137 extern struct pcb *curpcb;
138 
139 /* Defined in locore.s */
140 extern char kernel_text[];
141 
142 /* Defined by the linker */
143 extern char etext[], edata[], end[];
144 extern char *esym;	/* DDB */
145 
146 /*************************** DEBUGGING DEFINITIONS ***********************
147  * Macros, preprocessor defines and variables used in debugging can make *
148  * code hard to read.  Anything used exclusively for debugging purposes  *
149  * is defined here to avoid having such mess scattered around the file.  *
150  *************************************************************************/
151 #ifdef	PMAP_DEBUG
152 /*
153  * To aid the debugging process, macros should be expanded into smaller steps
154  * that accomplish the same goal, yet provide convenient places for placing
155  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
156  * 'INLINE' keyword is defined to an empty string.  This way, any function
157  * defined to be a 'static INLINE' will become 'outlined' and compiled as
158  * a separate function, which is much easier to debug.
159  */
160 #define	INLINE	/* nothing */
161 
162 /*
163  * It is sometimes convenient to watch the activity of a particular table
164  * in the system.  The following variables are used for that purpose.
165  */
166 a_tmgr_t *pmap_watch_atbl = 0;
167 b_tmgr_t *pmap_watch_btbl = 0;
168 c_tmgr_t *pmap_watch_ctbl = 0;
169 
170 int pmap_debug = 0;
171 #define DPRINT(args) if (pmap_debug) printf args
172 
173 #else	/********** Stuff below is defined if NOT debugging **************/
174 
175 #define	INLINE	inline
176 #define DPRINT(args)  /* nada */
177 
178 #endif	/* PMAP_DEBUG */
179 /*********************** END OF DEBUGGING DEFINITIONS ********************/
180 
181 /*** Management Structure - Memory Layout
182  * For every MMU table in the sun3x pmap system there must be a way to
183  * manage it; we must know which process is using it, what other tables
184  * depend on it, and whether or not it contains any locked pages.  This
185  * is solved by the creation of 'table management'  or 'tmgr'
186  * structures.  One for each MMU table in the system.
187  *
188  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
189  *
190  *      towards lower memory
191  * kernAbase -> +-------------------------------------------------------+
192  *              | Kernel     MMU A level table                          |
193  * kernBbase -> +-------------------------------------------------------+
194  *              | Kernel     MMU B level tables                         |
195  * kernCbase -> +-------------------------------------------------------+
196  *              |                                                       |
197  *              | Kernel     MMU C level tables                         |
198  *              |                                                       |
199  * mmuCbase  -> +-------------------------------------------------------+
200  *              | User       MMU C level tables                         |
201  * mmuAbase  -> +-------------------------------------------------------+
202  *              |                                                       |
203  *              | User       MMU A level tables                         |
204  *              |                                                       |
205  * mmuBbase  -> +-------------------------------------------------------+
206  *              | User       MMU B level tables                         |
207  * tmgrAbase -> +-------------------------------------------------------+
208  *              |  TMGR A level table structures                        |
209  * tmgrBbase -> +-------------------------------------------------------+
210  *              |  TMGR B level table structures                        |
211  * tmgrCbase -> +-------------------------------------------------------+
212  *              |  TMGR C level table structures                        |
213  * pvbase    -> +-------------------------------------------------------+
214  *              |  Physical to Virtual mapping table (list heads)       |
215  * pvebase   -> +-------------------------------------------------------+
216  *              |  Physical to Virtual mapping table (list elements)    |
217  *              |                                                       |
218  *              +-------------------------------------------------------+
219  *      towards higher memory
220  *
221  * For every A table in the MMU A area, there will be a corresponding
222  * a_tmgr structure in the TMGR A area.  The same will be true for
223  * the B and C tables.  This arrangement will make it easy to find the
224  * controling tmgr structure for any table in the system by use of
225  * (relatively) simple macros.
226  */
227 
228 /*
229  * Global variables for storing the base addresses for the areas
230  * labeled above.
231  */
232 static vaddr_t  	kernAphys;
233 static mmu_long_dte_t	*kernAbase;
234 static mmu_short_dte_t	*kernBbase;
235 static mmu_short_pte_t	*kernCbase;
236 static mmu_short_pte_t	*mmuCbase;
237 static mmu_short_dte_t	*mmuBbase;
238 static mmu_long_dte_t	*mmuAbase;
239 static a_tmgr_t		*Atmgrbase;
240 static b_tmgr_t		*Btmgrbase;
241 static c_tmgr_t		*Ctmgrbase;
242 static pv_t 		*pvbase;
243 static pv_elem_t	*pvebase;
244 static struct pmap	kernel_pmap;
245 struct pmap		*const kernel_pmap_ptr = &kernel_pmap;
246 
247 /*
248  * This holds the CRP currently loaded into the MMU.
249  */
250 struct mmu_rootptr kernel_crp;
251 
252 /*
253  * Just all around global variables.
254  */
255 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
256 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
257 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
258 
259 
260 /*
261  * Flags used to mark the safety/availability of certain operations or
262  * resources.
263  */
264 /* Safe to use pmap_bootstrap_alloc(). */
265 static bool bootstrap_alloc_enabled = false;
266 /* Temporary virtual pages are in use */
267 int tmp_vpages_inuse;
268 
269 /*
270  * XXX:  For now, retain the traditional variables that were
271  * used in the old pmap/vm interface (without NONCONTIG).
272  */
273 /* Kernel virtual address space available: */
274 vaddr_t	virtual_avail, virtual_end;
275 /* Physical address space available: */
276 paddr_t	avail_start, avail_end;
277 
278 /* This keep track of the end of the contiguously mapped range. */
279 vaddr_t virtual_contig_end;
280 
281 /* Physical address used by pmap_next_page() */
282 paddr_t avail_next;
283 
284 /* These are used by pmap_copy_page(), etc. */
285 vaddr_t tmp_vpages[2];
286 
287 /* memory pool for pmap structures */
288 struct pool	pmap_pmap_pool;
289 
290 /*
291  * The 3/80 is the only member of the sun3x family that has non-contiguous
292  * physical memory.  Memory is divided into 4 banks which are physically
293  * locatable on the system board.  Although the size of these banks varies
294  * with the size of memory they contain, their base addresses are
295  * permenently fixed.  The following structure, which describes these
296  * banks, is initialized by pmap_bootstrap() after it reads from a similar
297  * structure provided by the ROM Monitor.
298  *
299  * For the other machines in the sun3x architecture which do have contiguous
300  * RAM, this list will have only one entry, which will describe the entire
301  * range of available memory.
302  */
303 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
304 u_int total_phys_mem;
305 
306 /*************************************************************************/
307 
308 /*
309  * XXX - Should "tune" these based on statistics.
310  *
311  * My first guess about the relative numbers of these needed is
312  * based on the fact that a "typical" process will have several
313  * pages mapped at low virtual addresses (text, data, bss), then
314  * some mapped shared libraries, and then some stack pages mapped
315  * near the high end of the VA space.  Each process can use only
316  * one A table, and most will use only two B tables (maybe three)
317  * and probably about four C tables.  Therefore, the first guess
318  * at the relative numbers of these needed is 1:2:4 -gwr
319  *
320  * The number of C tables needed is closely related to the amount
321  * of physical memory available plus a certain amount attributable
322  * to the use of double mappings.  With a few simulation statistics
323  * we can find a reasonably good estimation of this unknown value.
324  * Armed with that and the above ratios, we have a good idea of what
325  * is needed at each level. -j
326  *
327  * Note: It is not physical memory memory size, but the total mapped
328  * virtual space required by the combined working sets of all the
329  * currently _runnable_ processes.  (Sleeping ones don't count.)
330  * The amount of physical memory should be irrelevant. -gwr
331  */
332 #ifdef	FIXED_NTABLES
333 #define NUM_A_TABLES	16
334 #define NUM_B_TABLES	32
335 #define NUM_C_TABLES	64
336 #else
337 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
338 #endif	/* FIXED_NTABLES */
339 
340 /*
341  * This determines our total virtual mapping capacity.
342  * Yes, it is a FIXED value so we can pre-allocate.
343  */
344 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
345 
346 /*
347  * The size of the Kernel Virtual Address Space (KVAS)
348  * for purposes of MMU table allocation is -KERNBASE
349  * (length from KERNBASE to 0xFFFFffff)
350  */
351 #define	KVAS_SIZE		(-KERNBASE3X)
352 
353 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
354 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
355 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
356 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
357 
358 /*************************** MISCELANEOUS MACROS *************************/
359 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
360 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
361 #define pmap_add_ref(pmap) ++pmap->pm_refcount
362 #define pmap_del_ref(pmap) --pmap->pm_refcount
363 #define pmap_refcount(pmap) pmap->pm_refcount
364 
365 void *pmap_bootstrap_alloc(int);
366 
367 static INLINE void *mmu_ptov(paddr_t);
368 static INLINE paddr_t mmu_vtop(void *);
369 
370 #if	0
371 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
372 #endif /* 0 */
373 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
374 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
375 
376 static INLINE pv_t *pa2pv(paddr_t);
377 static INLINE int   pteidx(mmu_short_pte_t *);
378 static INLINE pmap_t current_pmap(void);
379 
380 /*
381  * We can always convert between virtual and physical addresses
382  * for anything in the range [KERNBASE ... avail_start] because
383  * that range is GUARANTEED to be mapped linearly.
384  * We rely heavily upon this feature!
385  */
386 static INLINE void *
387 mmu_ptov(paddr_t pa)
388 {
389 	vaddr_t va;
390 
391 	va = (pa + KERNBASE3X);
392 #ifdef	PMAP_DEBUG
393 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
394 		panic("mmu_ptov");
395 #endif
396 	return (void *)va;
397 }
398 
399 static INLINE paddr_t
400 mmu_vtop(void *vva)
401 {
402 	vaddr_t va;
403 
404 	va = (vaddr_t)vva;
405 #ifdef	PMAP_DEBUG
406 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
407 		panic("mmu_vtop");
408 #endif
409 	return va - KERNBASE3X;
410 }
411 
412 /*
413  * These macros map MMU tables to their corresponding manager structures.
414  * They are needed quite often because many of the pointers in the pmap
415  * system reference MMU tables and not the structures that control them.
416  * There needs to be a way to find one when given the other and these
417  * macros do so by taking advantage of the memory layout described above.
418  * Here's a quick step through the first macro, mmuA2tmgr():
419  *
420  * 1) find the offset of the given MMU A table from the base of its table
421  *    pool (table - mmuAbase).
422  * 2) convert this offset into a table index by dividing it by the
423  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
424  * 3) use this index to select the corresponding 'A' table manager
425  *    structure from the 'A' table manager pool (Atmgrbase[index]).
426  */
427 /*  This function is not currently used. */
428 #if	0
429 static INLINE a_tmgr_t *
430 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
431 {
432 	int idx;
433 
434 	/* Which table is this in? */
435 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
436 #ifdef	PMAP_DEBUG
437 	if ((idx < 0) || (idx >= NUM_A_TABLES))
438 		panic("mmuA2tmgr");
439 #endif
440 	return &Atmgrbase[idx];
441 }
442 #endif	/* 0 */
443 
444 static INLINE b_tmgr_t *
445 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
446 {
447 	int idx;
448 
449 	/* Which table is this in? */
450 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
451 #ifdef	PMAP_DEBUG
452 	if ((idx < 0) || (idx >= NUM_B_TABLES))
453 		panic("mmuB2tmgr");
454 #endif
455 	return &Btmgrbase[idx];
456 }
457 
458 /* mmuC2tmgr			INTERNAL
459  **
460  * Given a pte known to belong to a C table, return the address of
461  * that table's management structure.
462  */
463 static INLINE c_tmgr_t *
464 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
465 {
466 	int idx;
467 
468 	/* Which table is this in? */
469 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
470 #ifdef	PMAP_DEBUG
471 	if ((idx < 0) || (idx >= NUM_C_TABLES))
472 		panic("mmuC2tmgr");
473 #endif
474 	return &Ctmgrbase[idx];
475 }
476 
477 /* This is now a function call below.
478  * #define pa2pv(pa) \
479  *	(&pvbase[(unsigned long)\
480  *		m68k_btop(pa)\
481  *	])
482  */
483 
484 /* pa2pv			INTERNAL
485  **
486  * Return the pv_list_head element which manages the given physical
487  * address.
488  */
489 static INLINE pv_t *
490 pa2pv(paddr_t pa)
491 {
492 	struct pmap_physmem_struct *bank;
493 	int idx;
494 
495 	bank = &avail_mem[0];
496 	while (pa >= bank->pmem_end)
497 		bank = bank->pmem_next;
498 
499 	pa -= bank->pmem_start;
500 	idx = bank->pmem_pvbase + m68k_btop(pa);
501 #ifdef	PMAP_DEBUG
502 	if ((idx < 0) || (idx >= physmem))
503 		panic("pa2pv");
504 #endif
505 	return &pvbase[idx];
506 }
507 
508 /* pteidx			INTERNAL
509  **
510  * Return the index of the given PTE within the entire fixed table of
511  * PTEs.
512  */
513 static INLINE int
514 pteidx(mmu_short_pte_t *pte)
515 {
516 
517 	return pte - kernCbase;
518 }
519 
520 /*
521  * This just offers a place to put some debugging checks,
522  * and reduces the number of places "curlwp" appears...
523  */
524 static INLINE pmap_t
525 current_pmap(void)
526 {
527 	struct vmspace *vm;
528 	struct vm_map *map;
529 	pmap_t	pmap;
530 
531 	vm = curproc->p_vmspace;
532 	map = &vm->vm_map;
533 	pmap = vm_map_pmap(map);
534 
535 	return pmap;
536 }
537 
538 
539 /*************************** FUNCTION DEFINITIONS ************************
540  * These appear here merely for the compiler to enforce type checking on *
541  * all function calls.                                                   *
542  *************************************************************************/
543 
544 /*
545  * Internal functions
546  */
547 a_tmgr_t *get_a_table(void);
548 b_tmgr_t *get_b_table(void);
549 c_tmgr_t *get_c_table(void);
550 int free_a_table(a_tmgr_t *, bool);
551 int free_b_table(b_tmgr_t *, bool);
552 int free_c_table(c_tmgr_t *, bool);
553 
554 void pmap_bootstrap_aalign(int);
555 void pmap_alloc_usermmu(void);
556 void pmap_alloc_usertmgr(void);
557 void pmap_alloc_pv(void);
558 void pmap_init_a_tables(void);
559 void pmap_init_b_tables(void);
560 void pmap_init_c_tables(void);
561 void pmap_init_pv(void);
562 void pmap_clear_pv(paddr_t, int);
563 static INLINE bool is_managed(paddr_t);
564 
565 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
566 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
567 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
568 void pmap_remove_pte(mmu_short_pte_t *);
569 
570 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
571 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
572 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
573 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
574 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
575 static INLINE int pmap_dereference(pmap_t);
576 
577 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
578     mmu_short_pte_t **, int *, int *, int *);
579 void pmap_bootstrap_copyprom(void);
580 void pmap_takeover_mmu(void);
581 void pmap_bootstrap_setprom(void);
582 static void pmap_page_upload(void);
583 
584 #ifdef PMAP_DEBUG
585 /* Debugging function definitions */
586 void  pv_list(paddr_t, int);
587 #endif /* PMAP_DEBUG */
588 
589 /** Interface functions
590  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
591  **   defined.
592  **   The new UVM doesn't require them so now INTERNAL.
593  **/
594 static INLINE void pmap_pinit(pmap_t);
595 static INLINE void pmap_release(pmap_t);
596 
597 /********************************** CODE ********************************
598  * Functions that are called from other parts of the kernel are labeled *
599  * as 'INTERFACE' functions.  Functions that are only called from       *
600  * within the pmap module are labeled as 'INTERNAL' functions.          *
601  * Functions that are internal, but are not (currently) used at all are *
602  * labeled 'INTERNAL_X'.                                                *
603  ************************************************************************/
604 
605 /* pmap_bootstrap			INTERNAL
606  **
607  * Initializes the pmap system.  Called at boot time from
608  * locore2.c:_vm_init()
609  *
610  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
611  *           system implement pmap_steal_memory() is redundant.
612  *           Don't release this code without removing one or the other!
613  */
614 void
615 pmap_bootstrap(vaddr_t nextva)
616 {
617 	struct physmemory *membank;
618 	struct pmap_physmem_struct *pmap_membank;
619 	vaddr_t va, eva;
620 	paddr_t pa;
621 	int b, c, i, j;	/* running table counts */
622 	int size, resvmem;
623 
624 	/*
625 	 * This function is called by __bootstrap after it has
626 	 * determined the type of machine and made the appropriate
627 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
628 	 * by that.)  It allocates and sets up enough of the pmap system
629 	 * to manage the kernel's address space.
630 	 */
631 
632 	/*
633 	 * Determine the range of kernel virtual and physical
634 	 * space available. Note that we ABSOLUTELY DEPEND on
635 	 * the fact that the first bank of memory (4MB) is
636 	 * mapped linearly to KERNBASE (which we guaranteed in
637 	 * the first instructions of locore.s).
638 	 * That is plenty for our bootstrap work.
639 	 */
640 	virtual_avail = m68k_round_page(nextva);
641 	virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
642 	virtual_end = VM_MAX_KERNEL_ADDRESS;
643 	/* Don't need avail_start til later. */
644 
645 	/* We may now call pmap_bootstrap_alloc(). */
646 	bootstrap_alloc_enabled = true;
647 
648 	/*
649 	 * This is a somewhat unwrapped loop to deal with
650 	 * copying the PROM's 'phsymem' banks into the pmap's
651 	 * banks.  The following is always assumed:
652 	 * 1. There is always at least one bank of memory.
653 	 * 2. There is always a last bank of memory, and its
654 	 *    pmem_next member must be set to NULL.
655 	 */
656 	membank = romVectorPtr->v_physmemory;
657 	pmap_membank = avail_mem;
658 	total_phys_mem = 0;
659 
660 	for (;;) { /* break on !membank */
661 		pmap_membank->pmem_start = membank->address;
662 		pmap_membank->pmem_end = membank->address + membank->size;
663 		total_phys_mem += membank->size;
664 		membank = membank->next;
665 		if (!membank)
666 			break;
667 		/* This silly syntax arises because pmap_membank
668 		 * is really a pre-allocated array, but it is put into
669 		 * use as a linked list.
670 		 */
671 		pmap_membank->pmem_next = pmap_membank + 1;
672 		pmap_membank = pmap_membank->pmem_next;
673 	}
674 	/* This is the last element. */
675 	pmap_membank->pmem_next = NULL;
676 
677 	/*
678 	 * Note: total_phys_mem, physmem represent
679 	 * actual physical memory, including that
680 	 * reserved for the PROM monitor.
681 	 */
682 	physmem = btoc(total_phys_mem);
683 
684 	/*
685 	 * Avail_end is set to the first byte of physical memory
686 	 * after the end of the last bank.  We use this only to
687 	 * determine if a physical address is "managed" memory.
688 	 * This address range should be reduced to prevent the
689 	 * physical pages needed by the PROM monitor from being used
690 	 * in the VM system.
691 	 */
692 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
693 	resvmem = m68k_round_page(resvmem);
694 	avail_end = pmap_membank->pmem_end - resvmem;
695 
696 	/*
697 	 * First allocate enough kernel MMU tables to map all
698 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
699 	 * Note: All must be aligned on 256 byte boundaries.
700 	 * Start with the level-A table (one of those).
701 	 */
702 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
703 	kernAbase = pmap_bootstrap_alloc(size);
704 	memset(kernAbase, 0, size);
705 
706 	/* Now the level-B kernel tables... */
707 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
708 	kernBbase = pmap_bootstrap_alloc(size);
709 	memset(kernBbase, 0, size);
710 
711 	/* Now the level-C kernel tables... */
712 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
713 	kernCbase = pmap_bootstrap_alloc(size);
714 	memset(kernCbase, 0, size);
715 	/*
716 	 * Note: In order for the PV system to work correctly, the kernel
717 	 * and user-level C tables must be allocated contiguously.
718 	 * Nothing should be allocated between here and the allocation of
719 	 * mmuCbase below.  XXX: Should do this as one allocation, and
720 	 * then compute a pointer for mmuCbase instead of this...
721 	 *
722 	 * Allocate user MMU tables.
723 	 * These must be contiguous with the preceding.
724 	 */
725 
726 #ifndef	FIXED_NTABLES
727 	/*
728 	 * The number of user-level C tables that should be allocated is
729 	 * related to the size of physical memory.  In general, there should
730 	 * be enough tables to map four times the amount of available RAM.
731 	 * The extra amount is needed because some table space is wasted by
732 	 * fragmentation.
733 	 */
734 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
735 	NUM_B_TABLES = NUM_C_TABLES / 2;
736 	NUM_A_TABLES = NUM_B_TABLES / 2;
737 #endif	/* !FIXED_NTABLES */
738 
739 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
740 	mmuCbase = pmap_bootstrap_alloc(size);
741 
742 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
743 	mmuBbase = pmap_bootstrap_alloc(size);
744 
745 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
746 	mmuAbase = pmap_bootstrap_alloc(size);
747 
748 	/*
749 	 * Fill in the never-changing part of the kernel tables.
750 	 * For simplicity, the kernel's mappings will be editable as a
751 	 * flat array of page table entries at kernCbase.  The
752 	 * higher level 'A' and 'B' tables must be initialized to point
753 	 * to this lower one.
754 	 */
755 	b = c = 0;
756 
757 	/*
758 	 * Invalidate all mappings below KERNBASE in the A table.
759 	 * This area has already been zeroed out, but it is good
760 	 * practice to explicitly show that we are interpreting
761 	 * it as a list of A table descriptors.
762 	 */
763 	for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
764 		kernAbase[i].addr.raw = 0;
765 	}
766 
767 	/*
768 	 * Set up the kernel A and B tables so that they will reference the
769 	 * correct spots in the contiguous table of PTEs allocated for the
770 	 * kernel's virtual memory space.
771 	 */
772 	for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
773 		kernAbase[i].attr.raw =
774 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
775 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
776 
777 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
778 			kernBbase[b + j].attr.raw =
779 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
780 			c += MMU_C_TBL_SIZE;
781 		}
782 		b += MMU_B_TBL_SIZE;
783 	}
784 
785 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
786 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
787 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
788 
789 	/*
790 	 * We are now done with pmap_bootstrap_alloc().  Round up
791 	 * `virtual_avail' to the nearest page, and set the flag
792 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
793 	 */
794 	pmap_bootstrap_aalign(PAGE_SIZE);
795 	bootstrap_alloc_enabled = false;
796 
797 	/*
798 	 * Now that we are done with pmap_bootstrap_alloc(), we
799 	 * must save the virtual and physical addresses of the
800 	 * end of the linearly mapped range, which are stored in
801 	 * virtual_contig_end and avail_start, respectively.
802 	 * These variables will never change after this point.
803 	 */
804 	virtual_contig_end = virtual_avail;
805 	avail_start = virtual_avail - KERNBASE3X;
806 
807 	/*
808 	 * `avail_next' is a running pointer used by pmap_next_page() to
809 	 * keep track of the next available physical page to be handed
810 	 * to the VM system during its initialization, in which it
811 	 * asks for physical pages, one at a time.
812 	 */
813 	avail_next = avail_start;
814 
815 	/*
816 	 * Now allocate some virtual addresses, but not the physical pages
817 	 * behind them.  Note that virtual_avail is already page-aligned.
818 	 *
819 	 * tmp_vpages[] is an array of two virtual pages used for temporary
820 	 * kernel mappings in the pmap module to facilitate various physical
821 	 * address-oritented operations.
822 	 */
823 	tmp_vpages[0] = virtual_avail;
824 	virtual_avail += PAGE_SIZE;
825 	tmp_vpages[1] = virtual_avail;
826 	virtual_avail += PAGE_SIZE;
827 
828 	/** Initialize the PV system **/
829 	pmap_init_pv();
830 
831 	/*
832 	 * Fill in the kernel_pmap structure and kernel_crp.
833 	 */
834 	kernAphys = mmu_vtop(kernAbase);
835 	kernel_pmap.pm_a_tmgr = NULL;
836 	kernel_pmap.pm_a_phys = kernAphys;
837 	kernel_pmap.pm_refcount = 1; /* always in use */
838 	simple_lock_init(&kernel_pmap.pm_lock);
839 
840 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
841 	kernel_crp.rp_addr = kernAphys;
842 
843 	/*
844 	 * Now pmap_enter_kernel() may be used safely and will be
845 	 * the main interface used hereafter to modify the kernel's
846 	 * virtual address space.  Note that since we are still running
847 	 * under the PROM's address table, none of these table modifications
848 	 * actually take effect until pmap_takeover_mmu() is called.
849 	 *
850 	 * Note: Our tables do NOT have the PROM linear mappings!
851 	 * Only the mappings created here exist in our tables, so
852 	 * remember to map anything we expect to use.
853 	 */
854 	va = (vaddr_t)KERNBASE3X;
855 	pa = 0;
856 
857 	/*
858 	 * The first page of the kernel virtual address space is the msgbuf
859 	 * page.  The page attributes (data, non-cached) are set here, while
860 	 * the address is assigned to this global pointer in cpu_startup().
861 	 * It is non-cached, mostly due to paranoia.
862 	 */
863 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
864 	va += PAGE_SIZE;
865 	pa += PAGE_SIZE;
866 
867 	/* Next page is used as the temporary stack. */
868 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
869 	va += PAGE_SIZE;
870 	pa += PAGE_SIZE;
871 
872 	/*
873 	 * Map all of the kernel's text segment as read-only and cacheable.
874 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
875 	 * of kernel text and the first bytes of kernel data will often be
876 	 * sharing the same page.  Therefore, the last page of kernel text
877 	 * has to be mapped as read/write, to accommodate the data.
878 	 */
879 	eva = m68k_trunc_page((vaddr_t)etext);
880 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
881 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
882 
883 	/*
884 	 * Map all of the kernel's data as read/write and cacheable.
885 	 * This includes: data, BSS, symbols, and everything in the
886 	 * contiguous memory used by pmap_bootstrap_alloc()
887 	 */
888 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
889 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
890 
891 	/*
892 	 * At this point we are almost ready to take over the MMU.  But first
893 	 * we must save the PROM's address space in our map, as we call its
894 	 * routines and make references to its data later in the kernel.
895 	 */
896 	pmap_bootstrap_copyprom();
897 	pmap_takeover_mmu();
898 	pmap_bootstrap_setprom();
899 
900 	/* Notify the VM system of our page size. */
901 	uvmexp.pagesize = PAGE_SIZE;
902 	uvm_setpagesize();
903 
904 	pmap_page_upload();
905 }
906 
907 
908 /* pmap_alloc_usermmu			INTERNAL
909  **
910  * Called from pmap_bootstrap() to allocate MMU tables that will
911  * eventually be used for user mappings.
912  */
913 void
914 pmap_alloc_usermmu(void)
915 {
916 
917 	/* XXX: Moved into caller. */
918 }
919 
920 /* pmap_alloc_pv			INTERNAL
921  **
922  * Called from pmap_bootstrap() to allocate the physical
923  * to virtual mapping list.  Each physical page of memory
924  * in the system has a corresponding element in this list.
925  */
926 void
927 pmap_alloc_pv(void)
928 {
929 	int	i;
930 	unsigned int	total_mem;
931 
932 	/*
933 	 * Allocate a pv_head structure for every page of physical
934 	 * memory that will be managed by the system.  Since memory on
935 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
936 	 * count by subtraction of the lowest available address from the
937 	 * highest, but rather we have to step through each memory
938 	 * bank and add the number of pages in each to the total.
939 	 *
940 	 * At this time we also initialize the offset of each bank's
941 	 * starting pv_head within the pv_head list so that the physical
942 	 * memory state routines (pmap_is_referenced(),
943 	 * pmap_is_modified(), et al.) can quickly find coresponding
944 	 * pv_heads in spite of the non-contiguity.
945 	 */
946 	total_mem = 0;
947 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
948 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
949 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
950 		if (avail_mem[i].pmem_next == NULL)
951 			break;
952 	}
953 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
954 	    m68k_btop(total_phys_mem));
955 }
956 
957 /* pmap_alloc_usertmgr			INTERNAL
958  **
959  * Called from pmap_bootstrap() to allocate the structures which
960  * facilitate management of user MMU tables.  Each user MMU table
961  * in the system has one such structure associated with it.
962  */
963 void
964 pmap_alloc_usertmgr(void)
965 {
966 	/* Allocate user MMU table managers */
967 	/* It would be a lot simpler to just make these BSS, but */
968 	/* we may want to change their size at boot time... -j */
969 	Atmgrbase =
970 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
971 	Btmgrbase =
972 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
973 	Ctmgrbase =
974 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
975 
976 	/*
977 	 * Allocate PV list elements for the physical to virtual
978 	 * mapping system.
979 	 */
980 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
981 	    (NUM_USER_PTES + NUM_KERN_PTES));
982 }
983 
984 /* pmap_bootstrap_copyprom()			INTERNAL
985  **
986  * Copy the PROM mappings into our own tables.  Note, we
987  * can use physical addresses until __bootstrap returns.
988  */
989 void
990 pmap_bootstrap_copyprom(void)
991 {
992 	struct sunromvec *romp;
993 	int *mon_ctbl;
994 	mmu_short_pte_t *kpte;
995 	int i, len;
996 
997 	romp = romVectorPtr;
998 
999 	/*
1000 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1001 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1002 	 */
1003 	mon_ctbl = *romp->monptaddr;
1004 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
1005 	kpte = &kernCbase[i];
1006 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1007 
1008 	for (i = 0; i < len; i++) {
1009 		kpte[i].attr.raw = mon_ctbl[i];
1010 	}
1011 
1012 	/*
1013 	 * Copy the mappings at MON_DVMA_BASE (to the end).
1014 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1015 	 * Actually, we only want the last page, which the
1016 	 * PROM has set up for use by the "ie" driver.
1017 	 * (The i82686 needs its SCP there.)
1018 	 * If we copy all the mappings, pmap_enter_kernel
1019 	 * may complain about finding valid PTEs that are
1020 	 * not recorded in our PV lists...
1021 	 */
1022 	mon_ctbl = *romp->shadowpteaddr;
1023 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
1024 	kpte = &kernCbase[i];
1025 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1026 	for (i = (len - 1); i < len; i++) {
1027 		kpte[i].attr.raw = mon_ctbl[i];
1028 	}
1029 }
1030 
1031 /* pmap_takeover_mmu			INTERNAL
1032  **
1033  * Called from pmap_bootstrap() after it has copied enough of the
1034  * PROM mappings into the kernel map so that we can use our own
1035  * MMU table.
1036  */
1037 void
1038 pmap_takeover_mmu(void)
1039 {
1040 
1041 	loadcrp(&kernel_crp);
1042 }
1043 
1044 /* pmap_bootstrap_setprom()			INTERNAL
1045  **
1046  * Set the PROM mappings so it can see kernel space.
1047  * Note that physical addresses are used here, which
1048  * we can get away with because this runs with the
1049  * low 1GB set for transparent translation.
1050  */
1051 void
1052 pmap_bootstrap_setprom(void)
1053 {
1054 	mmu_long_dte_t *mon_dte;
1055 	extern struct mmu_rootptr mon_crp;
1056 	int i;
1057 
1058 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1059 	for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
1060 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1061 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1062 	}
1063 }
1064 
1065 
1066 /* pmap_init			INTERFACE
1067  **
1068  * Called at the end of vm_init() to set up the pmap system to go
1069  * into full time operation.  All initialization of kernel_pmap
1070  * should be already done by now, so this should just do things
1071  * needed for user-level pmaps to work.
1072  */
1073 void
1074 pmap_init(void)
1075 {
1076 
1077 	/** Initialize the manager pools **/
1078 	TAILQ_INIT(&a_pool);
1079 	TAILQ_INIT(&b_pool);
1080 	TAILQ_INIT(&c_pool);
1081 
1082 	/**************************************************************
1083 	 * Initialize all tmgr structures and MMU tables they manage. *
1084 	 **************************************************************/
1085 	/** Initialize A tables **/
1086 	pmap_init_a_tables();
1087 	/** Initialize B tables **/
1088 	pmap_init_b_tables();
1089 	/** Initialize C tables **/
1090 	pmap_init_c_tables();
1091 
1092 	/** Initialize the pmap pools **/
1093 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1094 	    &pool_allocator_nointr, IPL_NONE);
1095 }
1096 
1097 /* pmap_init_a_tables()			INTERNAL
1098  **
1099  * Initializes all A managers, their MMU A tables, and inserts
1100  * them into the A manager pool for use by the system.
1101  */
1102 void
1103 pmap_init_a_tables(void)
1104 {
1105 	int i;
1106 	a_tmgr_t *a_tbl;
1107 
1108 	for (i = 0; i < NUM_A_TABLES; i++) {
1109 		/* Select the next available A manager from the pool */
1110 		a_tbl = &Atmgrbase[i];
1111 
1112 		/*
1113 		 * Clear its parent entry.  Set its wired and valid
1114 		 * entry count to zero.
1115 		 */
1116 		a_tbl->at_parent = NULL;
1117 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1118 
1119 		/* Assign it the next available MMU A table from the pool */
1120 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1121 
1122 		/*
1123 		 * Initialize the MMU A table with the table in the `lwp0',
1124 		 * or kernel, mapping.  This ensures that every process has
1125 		 * the kernel mapped in the top part of its address space.
1126 		 */
1127 		memcpy(a_tbl->at_dtbl, kernAbase,
1128 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1129 
1130 		/*
1131 		 * Finally, insert the manager into the A pool,
1132 		 * making it ready to be used by the system.
1133 		 */
1134 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1135     }
1136 }
1137 
1138 /* pmap_init_b_tables()			INTERNAL
1139  **
1140  * Initializes all B table managers, their MMU B tables, and
1141  * inserts them into the B manager pool for use by the system.
1142  */
1143 void
1144 pmap_init_b_tables(void)
1145 {
1146 	int i, j;
1147 	b_tmgr_t *b_tbl;
1148 
1149 	for (i = 0; i < NUM_B_TABLES; i++) {
1150 		/* Select the next available B manager from the pool */
1151 		b_tbl = &Btmgrbase[i];
1152 
1153 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1154 		b_tbl->bt_pidx = 0;		/* parent index,      */
1155 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1156 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1157 
1158 		/* Assign it the next available MMU B table from the pool */
1159 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1160 
1161 		/* Invalidate every descriptor in the table */
1162 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
1163 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1164 
1165 		/* Insert the manager into the B pool */
1166 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1167 	}
1168 }
1169 
1170 /* pmap_init_c_tables()			INTERNAL
1171  **
1172  * Initializes all C table managers, their MMU C tables, and
1173  * inserts them into the C manager pool for use by the system.
1174  */
1175 void
1176 pmap_init_c_tables(void)
1177 {
1178 	int i, j;
1179 	c_tmgr_t *c_tbl;
1180 
1181 	for (i = 0; i < NUM_C_TABLES; i++) {
1182 		/* Select the next available C manager from the pool */
1183 		c_tbl = &Ctmgrbase[i];
1184 
1185 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1186 		c_tbl->ct_pidx = 0;		/* parent index,      */
1187 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1188 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1189 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1190 		c_tbl->ct_va = 0;		/* base of managed range */
1191 
1192 		/* Assign it the next available MMU C table from the pool */
1193 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1194 
1195 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
1196 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1197 
1198 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1199 	}
1200 }
1201 
1202 /* pmap_init_pv()			INTERNAL
1203  **
1204  * Initializes the Physical to Virtual mapping system.
1205  */
1206 void
1207 pmap_init_pv(void)
1208 {
1209 	int i;
1210 
1211 	/* Initialize every PV head. */
1212 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1213 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1214 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1215 	}
1216 }
1217 
1218 /* is_managed				INTERNAL
1219  **
1220  * Determine if the given physical address is managed by the PV system.
1221  * Note that this logic assumes that no one will ask for the status of
1222  * addresses which lie in-between the memory banks on the 3/80.  If they
1223  * do so, it will falsely report that it is managed.
1224  *
1225  * Note: A "managed" address is one that was reported to the VM system as
1226  * a "usable page" during system startup.  As such, the VM system expects the
1227  * pmap module to keep an accurate track of the useage of those pages.
1228  * Any page not given to the VM system at startup does not exist (as far as
1229  * the VM system is concerned) and is therefore "unmanaged."  Examples are
1230  * those pages which belong to the ROM monitor and the memory allocated before
1231  * the VM system was started.
1232  */
1233 static INLINE bool
1234 is_managed(paddr_t pa)
1235 {
1236 	if (pa >= avail_start && pa < avail_end)
1237 		return true;
1238 	else
1239 		return false;
1240 }
1241 
1242 /* get_a_table			INTERNAL
1243  **
1244  * Retrieve and return a level A table for use in a user map.
1245  */
1246 a_tmgr_t *
1247 get_a_table(void)
1248 {
1249 	a_tmgr_t *tbl;
1250 	pmap_t pmap;
1251 
1252 	/* Get the top A table in the pool */
1253 	tbl = TAILQ_FIRST(&a_pool);
1254 	if (tbl == NULL) {
1255 		/*
1256 		 * XXX - Instead of panicking here and in other get_x_table
1257 		 * functions, we do have the option of sleeping on the head of
1258 		 * the table pool.  Any function which updates the table pool
1259 		 * would then issue a wakeup() on the head, thus waking up any
1260 		 * processes waiting for a table.
1261 		 *
1262 		 * Actually, the place to sleep would be when some process
1263 		 * asks for a "wired" mapping that would run us short of
1264 		 * mapping resources.  This design DEPENDS on always having
1265 		 * some mapping resources in the pool for stealing, so we
1266 		 * must make sure we NEVER let the pool become empty. -gwr
1267 		 */
1268 		panic("get_a_table: out of A tables.");
1269 	}
1270 
1271 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1272 	/*
1273 	 * If the table has a non-null parent pointer then it is in use.
1274 	 * Forcibly abduct it from its parent and clear its entries.
1275 	 * No re-entrancy worries here.  This table would not be in the
1276 	 * table pool unless it was available for use.
1277 	 *
1278 	 * Note that the second argument to free_a_table() is false.  This
1279 	 * indicates that the table should not be relinked into the A table
1280 	 * pool.  That is a job for the function that called us.
1281 	 */
1282 	if (tbl->at_parent) {
1283 		KASSERT(tbl->at_wcnt == 0);
1284 		pmap = tbl->at_parent;
1285 		free_a_table(tbl, false);
1286 		pmap->pm_a_tmgr = NULL;
1287 		pmap->pm_a_phys = kernAphys;
1288 	}
1289 	return tbl;
1290 }
1291 
1292 /* get_b_table			INTERNAL
1293  **
1294  * Return a level B table for use.
1295  */
1296 b_tmgr_t *
1297 get_b_table(void)
1298 {
1299 	b_tmgr_t *tbl;
1300 
1301 	/* See 'get_a_table' for comments. */
1302 	tbl = TAILQ_FIRST(&b_pool);
1303 	if (tbl == NULL)
1304 		panic("get_b_table: out of B tables.");
1305 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1306 	if (tbl->bt_parent) {
1307 		KASSERT(tbl->bt_wcnt == 0);
1308 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1309 		tbl->bt_parent->at_ecnt--;
1310 		free_b_table(tbl, false);
1311 	}
1312 	return tbl;
1313 }
1314 
1315 /* get_c_table			INTERNAL
1316  **
1317  * Return a level C table for use.
1318  */
1319 c_tmgr_t *
1320 get_c_table(void)
1321 {
1322 	c_tmgr_t *tbl;
1323 
1324 	/* See 'get_a_table' for comments */
1325 	tbl = TAILQ_FIRST(&c_pool);
1326 	if (tbl == NULL)
1327 		panic("get_c_table: out of C tables.");
1328 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1329 	if (tbl->ct_parent) {
1330 		KASSERT(tbl->ct_wcnt == 0);
1331 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1332 		tbl->ct_parent->bt_ecnt--;
1333 		free_c_table(tbl, false);
1334 	}
1335 	return tbl;
1336 }
1337 
1338 /*
1339  * The following 'free_table' and 'steal_table' functions are called to
1340  * detach tables from their current obligations (parents and children) and
1341  * prepare them for reuse in another mapping.
1342  *
1343  * Free_table is used when the calling function will handle the fate
1344  * of the parent table, such as returning it to the free pool when it has
1345  * no valid entries.  Functions that do not want to handle this should
1346  * call steal_table, in which the parent table's descriptors and entry
1347  * count are automatically modified when this table is removed.
1348  */
1349 
1350 /* free_a_table			INTERNAL
1351  **
1352  * Unmaps the given A table and all child tables from their current
1353  * mappings.  Returns the number of pages that were invalidated.
1354  * If 'relink' is true, the function will return the table to the head
1355  * of the available table pool.
1356  *
1357  * Cache note: The MC68851 will automatically flush all
1358  * descriptors derived from a given A table from its
1359  * Automatic Translation Cache (ATC) if we issue a
1360  * 'PFLUSHR' instruction with the base address of the
1361  * table.  This function should do, and does so.
1362  * Note note: We are using an MC68030 - there is no
1363  * PFLUSHR.
1364  */
1365 int
1366 free_a_table(a_tmgr_t *a_tbl, bool relink)
1367 {
1368 	int i, removed_cnt;
1369 	mmu_long_dte_t	*dte;
1370 	mmu_short_dte_t *dtbl;
1371 	b_tmgr_t	*b_tbl;
1372 	uint8_t at_wired, bt_wired;
1373 
1374 	/*
1375 	 * Flush the ATC cache of all cached descriptors derived
1376 	 * from this table.
1377 	 * Sun3x does not use 68851's cached table feature
1378 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1379 	 */
1380 
1381 	/*
1382 	 * Remove any pending cache flushes that were designated
1383 	 * for the pmap this A table belongs to.
1384 	 * a_tbl->parent->atc_flushq[0] = 0;
1385 	 * Not implemented in sun3x.
1386 	 */
1387 
1388 	/*
1389 	 * All A tables in the system should retain a map for the
1390 	 * kernel. If the table contains any valid descriptors
1391 	 * (other than those for the kernel area), invalidate them all,
1392 	 * stopping short of the kernel's entries.
1393 	 */
1394 	removed_cnt = 0;
1395 	at_wired = a_tbl->at_wcnt;
1396 	if (a_tbl->at_ecnt) {
1397 		dte = a_tbl->at_dtbl;
1398 		for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
1399 			/*
1400 			 * If a table entry points to a valid B table, free
1401 			 * it and its children.
1402 			 */
1403 			if (MMU_VALID_DT(dte[i])) {
1404 				/*
1405 				 * The following block does several things,
1406 				 * from innermost expression to the
1407 				 * outermost:
1408 				 * 1) It extracts the base (cc 1996)
1409 				 *    address of the B table pointed
1410 				 *    to in the A table entry dte[i].
1411 				 * 2) It converts this base address into
1412 				 *    the virtual address it can be
1413 				 *    accessed with. (all MMU tables point
1414 				 *    to physical addresses.)
1415 				 * 3) It finds the corresponding manager
1416 				 *    structure which manages this MMU table.
1417 				 * 4) It frees the manager structure.
1418 				 *    (This frees the MMU table and all
1419 				 *    child tables. See 'free_b_table' for
1420 				 *    details.)
1421 				 */
1422 				dtbl = mmu_ptov(dte[i].addr.raw);
1423 				b_tbl = mmuB2tmgr(dtbl);
1424 				bt_wired = b_tbl->bt_wcnt;
1425 				removed_cnt += free_b_table(b_tbl, true);
1426 				if (bt_wired)
1427 					a_tbl->at_wcnt--;
1428 				dte[i].attr.raw = MMU_DT_INVALID;
1429 			}
1430 		}
1431 		a_tbl->at_ecnt = 0;
1432 	}
1433 	KASSERT(a_tbl->at_wcnt == 0);
1434 
1435 	if (relink) {
1436 		a_tbl->at_parent = NULL;
1437 		if (!at_wired)
1438 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1439 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1440 	}
1441 	return removed_cnt;
1442 }
1443 
1444 /* free_b_table			INTERNAL
1445  **
1446  * Unmaps the given B table and all its children from their current
1447  * mappings.  Returns the number of pages that were invalidated.
1448  * (For comments, see 'free_a_table()').
1449  */
1450 int
1451 free_b_table(b_tmgr_t *b_tbl, bool relink)
1452 {
1453 	int i, removed_cnt;
1454 	mmu_short_dte_t *dte;
1455 	mmu_short_pte_t	*dtbl;
1456 	c_tmgr_t	*c_tbl;
1457 	uint8_t bt_wired, ct_wired;
1458 
1459 	removed_cnt = 0;
1460 	bt_wired = b_tbl->bt_wcnt;
1461 	if (b_tbl->bt_ecnt) {
1462 		dte = b_tbl->bt_dtbl;
1463 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1464 			if (MMU_VALID_DT(dte[i])) {
1465 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1466 				c_tbl = mmuC2tmgr(dtbl);
1467 				ct_wired = c_tbl->ct_wcnt;
1468 				removed_cnt += free_c_table(c_tbl, true);
1469 				if (ct_wired)
1470 					b_tbl->bt_wcnt--;
1471 				dte[i].attr.raw = MMU_DT_INVALID;
1472 			}
1473 		}
1474 		b_tbl->bt_ecnt = 0;
1475 	}
1476 	KASSERT(b_tbl->bt_wcnt == 0);
1477 
1478 	if (relink) {
1479 		b_tbl->bt_parent = NULL;
1480 		if (!bt_wired)
1481 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1482 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1483 	}
1484 	return removed_cnt;
1485 }
1486 
1487 /* free_c_table			INTERNAL
1488  **
1489  * Unmaps the given C table from use and returns it to the pool for
1490  * re-use.  Returns the number of pages that were invalidated.
1491  *
1492  * This function preserves any physical page modification information
1493  * contained in the page descriptors within the C table by calling
1494  * 'pmap_remove_pte().'
1495  */
1496 int
1497 free_c_table(c_tmgr_t *c_tbl, bool relink)
1498 {
1499 	mmu_short_pte_t *c_pte;
1500 	int i, removed_cnt;
1501 	uint8_t ct_wired;
1502 
1503 	removed_cnt = 0;
1504 	ct_wired = c_tbl->ct_wcnt;
1505 	if (c_tbl->ct_ecnt) {
1506 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1507 			c_pte = &c_tbl->ct_dtbl[i];
1508 			if (MMU_VALID_DT(*c_pte)) {
1509 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1510 					c_tbl->ct_wcnt--;
1511 				pmap_remove_pte(c_pte);
1512 				removed_cnt++;
1513 			}
1514 		}
1515 		c_tbl->ct_ecnt = 0;
1516 	}
1517 	KASSERT(c_tbl->ct_wcnt == 0);
1518 
1519 	if (relink) {
1520 		c_tbl->ct_parent = NULL;
1521 		if (!ct_wired)
1522 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1523 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1524 	}
1525 	return removed_cnt;
1526 }
1527 
1528 
1529 /* pmap_remove_pte			INTERNAL
1530  **
1531  * Unmap the given pte and preserve any page modification
1532  * information by transfering it to the pv head of the
1533  * physical page it maps to.  This function does not update
1534  * any reference counts because it is assumed that the calling
1535  * function will do so.
1536  */
1537 void
1538 pmap_remove_pte(mmu_short_pte_t *pte)
1539 {
1540 	u_short     pv_idx, targ_idx;
1541 	paddr_t     pa;
1542 	pv_t       *pv;
1543 
1544 	pa = MMU_PTE_PA(*pte);
1545 	if (is_managed(pa)) {
1546 		pv = pa2pv(pa);
1547 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1548 
1549 		/*
1550 		 * If the PTE being removed is the first (or only) PTE in
1551 		 * the list of PTEs currently mapped to this page, remove the
1552 		 * PTE by changing the index found on the PV head.  Otherwise
1553 		 * a linear search through the list will have to be executed
1554 		 * in order to find the PVE which points to the PTE being
1555 		 * removed, so that it may be modified to point to its new
1556 		 * neighbor.
1557 		 */
1558 
1559 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1560 		if (pv_idx == targ_idx) {
1561 			pv->pv_idx = pvebase[targ_idx].pve_next;
1562 		} else {
1563 
1564 			/*
1565 			 * Find the PV element pointing to the target
1566 			 * element.  Note: may have pv_idx==PVE_EOL
1567 			 */
1568 
1569 			for (;;) {
1570 				if (pv_idx == PVE_EOL) {
1571 					goto pv_not_found;
1572 				}
1573 				if (pvebase[pv_idx].pve_next == targ_idx)
1574 					break;
1575 				pv_idx = pvebase[pv_idx].pve_next;
1576 			}
1577 
1578 			/*
1579 			 * At this point, pv_idx is the index of the PV
1580 			 * element just before the target element in the list.
1581 			 * Unlink the target.
1582 			 */
1583 
1584 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1585 		}
1586 
1587 		/*
1588 		 * Save the mod/ref bits of the pte by simply
1589 		 * ORing the entire pte onto the pv_flags member
1590 		 * of the pv structure.
1591 		 * There is no need to use a separate bit pattern
1592 		 * for usage information on the pv head than that
1593 		 * which is used on the MMU ptes.
1594 		 */
1595 
1596  pv_not_found:
1597 		pv->pv_flags |= (u_short) pte->attr.raw;
1598 	}
1599 	pte->attr.raw = MMU_DT_INVALID;
1600 }
1601 
1602 /* pmap_stroll			INTERNAL
1603  **
1604  * Retrieve the addresses of all table managers involved in the mapping of
1605  * the given virtual address.  If the table walk completed successfully,
1606  * return true.  If it was only partially successful, return false.
1607  * The table walk performed by this function is important to many other
1608  * functions in this module.
1609  *
1610  * Note: This function ought to be easier to read.
1611  */
1612 bool
1613 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1614     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1615     int *pte_idx)
1616 {
1617 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1618 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1619 
1620 	if (pmap == pmap_kernel())
1621 		return false;
1622 
1623 	/* Does the given pmap have its own A table? */
1624 	*a_tbl = pmap->pm_a_tmgr;
1625 	if (*a_tbl == NULL)
1626 		return false; /* No.  Return unknown. */
1627 	/* Does the A table have a valid B table
1628 	 * under the corresponding table entry?
1629 	 */
1630 	*a_idx = MMU_TIA(va);
1631 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1632 	if (!MMU_VALID_DT(*a_dte))
1633 		return false; /* No. Return unknown. */
1634 	/* Yes. Extract B table from the A table. */
1635 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1636 	/*
1637 	 * Does the B table have a valid C table
1638 	 * under the corresponding table entry?
1639 	 */
1640 	*b_idx = MMU_TIB(va);
1641 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1642 	if (!MMU_VALID_DT(*b_dte))
1643 		return false; /* No. Return unknown. */
1644 	/* Yes. Extract C table from the B table. */
1645 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1646 	*pte_idx = MMU_TIC(va);
1647 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1648 
1649 	return true;
1650 }
1651 
1652 /* pmap_enter			INTERFACE
1653  **
1654  * Called by the kernel to map a virtual address
1655  * to a physical address in the given process map.
1656  *
1657  * Note: this function should apply an exclusive lock
1658  * on the pmap system for its duration.  (it certainly
1659  * would save my hair!!)
1660  * This function ought to be easier to read.
1661  */
1662 int
1663 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1664 {
1665 	bool insert, managed; /* Marks the need for PV insertion.*/
1666 	u_short nidx;            /* PV list index                     */
1667 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1668 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1669 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1670 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1671 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1672 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1673 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1674 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1675 	pv_t      *pv;           /* pv list head                      */
1676 	bool wired;         /* is the mapping to be wired?       */
1677 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1678 
1679 	if (pmap == pmap_kernel()) {
1680 		pmap_enter_kernel(va, pa, prot);
1681 		return 0;
1682 	}
1683 
1684 	/*
1685 	 * Determine if the mapping should be wired.
1686 	 */
1687 	wired = ((flags & PMAP_WIRED) != 0);
1688 
1689 	/*
1690 	 * NOTE1:
1691 	 *
1692 	 * On November 13, 1999, someone changed the pmap_enter() API such
1693 	 * that it now accepts a 'flags' argument.  This new argument
1694 	 * contains bit-flags for the architecture-independent (UVM) system to
1695 	 * use in signalling certain mapping requirements to the architecture-
1696 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1697 	 * one of the flags within it.
1698 	 *
1699 	 * In addition to flags signaled by the architecture-independent
1700 	 * system, parts of the architecture-dependent section of the sun3x
1701 	 * kernel pass their own flags in the lower, unused bits of the
1702 	 * physical address supplied to this function.  These flags are
1703 	 * extracted and stored in the temporary variable 'mapflags'.
1704 	 *
1705 	 * Extract sun3x specific flags from the physical address.
1706 	 */
1707 	mapflags = (pa & ~MMU_PAGE_MASK);
1708 	pa &= MMU_PAGE_MASK;
1709 
1710 	/*
1711 	 * Determine if the physical address being mapped is on-board RAM.
1712 	 * Any other area of the address space is likely to belong to a
1713 	 * device and hence it would be disasterous to cache its contents.
1714 	 */
1715 	if ((managed = is_managed(pa)) == false)
1716 		mapflags |= PMAP_NC;
1717 
1718 	/*
1719 	 * For user mappings we walk along the MMU tables of the given
1720 	 * pmap, reaching a PTE which describes the virtual page being
1721 	 * mapped or changed.  If any level of the walk ends in an invalid
1722 	 * entry, a table must be allocated and the entry must be updated
1723 	 * to point to it.
1724 	 * There is a bit of confusion as to whether this code must be
1725 	 * re-entrant.  For now we will assume it is.  To support
1726 	 * re-entrancy we must unlink tables from the table pool before
1727 	 * we assume we may use them.  Tables are re-linked into the pool
1728 	 * when we are finished with them at the end of the function.
1729 	 * But I don't feel like doing that until we have proof that this
1730 	 * needs to be re-entrant.
1731 	 * 'llevel' records which tables need to be relinked.
1732 	 */
1733 	llevel = NONE;
1734 
1735 	/*
1736 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1737 	 * A table, allocate a new one from the available pool.
1738 	 */
1739 
1740 	a_tbl = pmap->pm_a_tmgr;
1741 	if (a_tbl == NULL) {
1742 		/*
1743 		 * This pmap does not currently have an A table.  Allocate
1744 		 * a new one.
1745 		 */
1746 		a_tbl = get_a_table();
1747 		a_tbl->at_parent = pmap;
1748 
1749 		/*
1750 		 * Assign this new A table to the pmap, and calculate its
1751 		 * physical address so that loadcrp() can be used to make
1752 		 * the table active.
1753 		 */
1754 		pmap->pm_a_tmgr = a_tbl;
1755 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1756 
1757 		/*
1758 		 * If the process receiving a new A table is the current
1759 		 * process, we are responsible for setting the MMU so that
1760 		 * it becomes the current address space.  This only adds
1761 		 * new mappings, so no need to flush anything.
1762 		 */
1763 		if (pmap == current_pmap()) {
1764 			kernel_crp.rp_addr = pmap->pm_a_phys;
1765 			loadcrp(&kernel_crp);
1766 		}
1767 
1768 		if (!wired)
1769 			llevel = NEWA;
1770 	} else {
1771 		/*
1772 		 * Use the A table already allocated for this pmap.
1773 		 * Unlink it from the A table pool if necessary.
1774 		 */
1775 		if (wired && !a_tbl->at_wcnt)
1776 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1777 	}
1778 
1779 	/*
1780 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1781 	 * allocate one.
1782 	 */
1783 
1784 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1785 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1786 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1787 		/* The descriptor is valid.  Use the B table it points to. */
1788 		/*************************************
1789 		 *               a_idx               *
1790 		 *                 v                 *
1791 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1792 		 *          | | | | | | | | | | | |  *
1793 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1794 		 *                 |                 *
1795 		 *                 \- b_tbl -> +-+-  *
1796 		 *                             | |   *
1797 		 *                             +-+-  *
1798 		 *************************************/
1799 		b_dte = mmu_ptov(a_dte->addr.raw);
1800 		b_tbl = mmuB2tmgr(b_dte);
1801 
1802 		/*
1803 		 * If the requested mapping must be wired, but this table
1804 		 * being used to map it is not, the table must be removed
1805 		 * from the available pool and its wired entry count
1806 		 * incremented.
1807 		 */
1808 		if (wired && !b_tbl->bt_wcnt) {
1809 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1810 			a_tbl->at_wcnt++;
1811 		}
1812 	} else {
1813 		/* The descriptor is invalid.  Allocate a new B table. */
1814 		b_tbl = get_b_table();
1815 
1816 		/* Point the parent A table descriptor to this new B table. */
1817 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1818 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1819 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1820 
1821 		/* Create the necessary back references to the parent table */
1822 		b_tbl->bt_parent = a_tbl;
1823 		b_tbl->bt_pidx = a_idx;
1824 
1825 		/*
1826 		 * If this table is to be wired, make sure the parent A table
1827 		 * wired count is updated to reflect that it has another wired
1828 		 * entry.
1829 		 */
1830 		if (wired)
1831 			a_tbl->at_wcnt++;
1832 		else if (llevel == NONE)
1833 			llevel = NEWB;
1834 	}
1835 
1836 	/*
1837 	 * Step 3 - Walk into the C table, if there is no valid C table,
1838 	 * allocate one.
1839 	 */
1840 
1841 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1842 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1843 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1844 		/* The descriptor is valid.  Use the C table it points to. */
1845 		/**************************************
1846 		 *               c_idx                *
1847 		 * |                v                 *
1848 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1849 		 *             | | | | | | | | | | |  *
1850 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1851 		 *                  |                 *
1852 		 *                  \- c_tbl -> +-+-- *
1853 		 *                              | | | *
1854 		 *                              +-+-- *
1855 		 **************************************/
1856 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1857 		c_tbl = mmuC2tmgr(c_pte);
1858 
1859 		/* If mapping is wired and table is not */
1860 		if (wired && !c_tbl->ct_wcnt) {
1861 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1862 			b_tbl->bt_wcnt++;
1863 		}
1864 	} else {
1865 		/* The descriptor is invalid.  Allocate a new C table. */
1866 		c_tbl = get_c_table();
1867 
1868 		/* Point the parent B table descriptor to this new C table. */
1869 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1870 		b_dte->attr.raw |= MMU_DT_SHORT;
1871 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1872 
1873 		/* Create the necessary back references to the parent table */
1874 		c_tbl->ct_parent = b_tbl;
1875 		c_tbl->ct_pidx = b_idx;
1876 		/*
1877 		 * Store the pmap and base virtual managed address for faster
1878 		 * retrieval in the PV functions.
1879 		 */
1880 		c_tbl->ct_pmap = pmap;
1881 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1882 
1883 		/*
1884 		 * If this table is to be wired, make sure the parent B table
1885 		 * wired count is updated to reflect that it has another wired
1886 		 * entry.
1887 		 */
1888 		if (wired)
1889 			b_tbl->bt_wcnt++;
1890 		else if (llevel == NONE)
1891 			llevel = NEWC;
1892 	}
1893 
1894 	/*
1895 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1896 	 * slot of the C table, describing the PA to which the VA is mapped.
1897 	 */
1898 
1899 	pte_idx = MMU_TIC(va);
1900 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1901 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1902 		/*
1903 		 * The PTE is currently valid.  This particular call
1904 		 * is just a synonym for one (or more) of the following
1905 		 * operations:
1906 		 *     change protection of a page
1907 		 *     change wiring status of a page
1908 		 *     remove the mapping of a page
1909 		 */
1910 
1911 		/* First check if this is a wiring operation. */
1912 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1913 			/*
1914 			 * The existing mapping is wired, so adjust wired
1915 			 * entry count here. If new mapping is still wired,
1916 			 * wired entry count will be incremented again later.
1917 			 */
1918 			c_tbl->ct_wcnt--;
1919 			if (!wired) {
1920 				/*
1921 				 * The mapping of this PTE is being changed
1922 				 * from wired to unwired.
1923 				 * Adjust wired entry counts in each table and
1924 				 * set llevel flag to put unwired tables back
1925 				 * into the active pool.
1926 				 */
1927 				if (c_tbl->ct_wcnt == 0) {
1928 					llevel = NEWC;
1929 					if (--b_tbl->bt_wcnt == 0) {
1930 						llevel = NEWB;
1931 						if (--a_tbl->at_wcnt == 0) {
1932 							llevel = NEWA;
1933 						}
1934 					}
1935 				}
1936 			}
1937 		}
1938 
1939 		/* Is the new address the same as the old? */
1940 		if (MMU_PTE_PA(*c_pte) == pa) {
1941 			/*
1942 			 * Yes, mark that it does not need to be reinserted
1943 			 * into the PV list.
1944 			 */
1945 			insert = false;
1946 
1947 			/*
1948 			 * Clear all but the modified, referenced and wired
1949 			 * bits on the PTE.
1950 			 */
1951 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1952 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1953 		} else {
1954 			/* No, remove the old entry */
1955 			pmap_remove_pte(c_pte);
1956 			insert = true;
1957 		}
1958 
1959 		/*
1960 		 * TLB flush is only necessary if modifying current map.
1961 		 * However, in pmap_enter(), the pmap almost always IS
1962 		 * the current pmap, so don't even bother to check.
1963 		 */
1964 		TBIS(va);
1965 	} else {
1966 		/*
1967 		 * The PTE is invalid.  Increment the valid entry count in
1968 		 * the C table manager to reflect the addition of a new entry.
1969 		 */
1970 		c_tbl->ct_ecnt++;
1971 
1972 		/* XXX - temporarily make sure the PTE is cleared. */
1973 		c_pte->attr.raw = 0;
1974 
1975 		/* It will also need to be inserted into the PV list. */
1976 		insert = true;
1977 	}
1978 
1979 	/*
1980 	 * If page is changing from unwired to wired status, set an unused bit
1981 	 * within the PTE to indicate that it is wired.  Also increment the
1982 	 * wired entry count in the C table manager.
1983 	 */
1984 	if (wired) {
1985 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1986 		c_tbl->ct_wcnt++;
1987 	}
1988 
1989 	/*
1990 	 * Map the page, being careful to preserve modify/reference/wired
1991 	 * bits.  At this point it is assumed that the PTE either has no bits
1992 	 * set, or if there are set bits, they are only modified, reference or
1993 	 * wired bits.  If not, the following statement will cause erratic
1994 	 * behavior.
1995 	 */
1996 #ifdef	PMAP_DEBUG
1997 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1998 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1999 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2000 		Debugger();
2001 	}
2002 #endif
2003 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2004 
2005 	/*
2006 	 * If the mapping should be read-only, set the write protect
2007 	 * bit in the PTE.
2008 	 */
2009 	if (!(prot & VM_PROT_WRITE))
2010 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2011 
2012 	/*
2013 	 * Mark the PTE as used and/or modified as specified by the flags arg.
2014 	 */
2015 	if (flags & VM_PROT_ALL) {
2016 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2017 		if (flags & VM_PROT_WRITE) {
2018 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
2019 		}
2020 	}
2021 
2022 	/*
2023 	 * If the mapping should be cache inhibited (indicated by the flag
2024 	 * bits found on the lower order of the physical address.)
2025 	 * mark the PTE as a cache inhibited page.
2026 	 */
2027 	if (mapflags & PMAP_NC)
2028 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2029 
2030 	/*
2031 	 * If the physical address being mapped is managed by the PV
2032 	 * system then link the pte into the list of pages mapped to that
2033 	 * address.
2034 	 */
2035 	if (insert && managed) {
2036 		pv = pa2pv(pa);
2037 		nidx = pteidx(c_pte);
2038 
2039 		pvebase[nidx].pve_next = pv->pv_idx;
2040 		pv->pv_idx = nidx;
2041 	}
2042 
2043 	/* Move any allocated or unwired tables back into the active pool. */
2044 
2045 	switch (llevel) {
2046 		case NEWA:
2047 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2048 			/* FALLTHROUGH */
2049 		case NEWB:
2050 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2051 			/* FALLTHROUGH */
2052 		case NEWC:
2053 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2054 			/* FALLTHROUGH */
2055 		default:
2056 			break;
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 /* pmap_enter_kernel			INTERNAL
2063  **
2064  * Map the given virtual address to the given physical address within the
2065  * kernel address space.  This function exists because the kernel map does
2066  * not do dynamic table allocation.  It consists of a contiguous array of ptes
2067  * and can be edited directly without the need to walk through any tables.
2068  *
2069  * XXX: "Danger, Will Robinson!"
2070  * Note that the kernel should never take a fault on any page
2071  * between [ KERNBASE .. virtual_avail ] and this is checked in
2072  * trap.c for kernel-mode MMU faults.  This means that mappings
2073  * created in that range must be implicily wired. -gwr
2074  */
2075 void
2076 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2077 {
2078 	bool       was_valid, insert;
2079 	u_short         pte_idx;
2080 	int             flags;
2081 	mmu_short_pte_t *pte;
2082 	pv_t            *pv;
2083 	paddr_t     old_pa;
2084 
2085 	flags = (pa & ~MMU_PAGE_MASK);
2086 	pa &= MMU_PAGE_MASK;
2087 
2088 	if (is_managed(pa))
2089 		insert = true;
2090 	else
2091 		insert = false;
2092 
2093 	/*
2094 	 * Calculate the index of the PTE being modified.
2095 	 */
2096 	pte_idx = (u_long)m68k_btop(va - KERNBASE3X);
2097 
2098 	/* This array is traditionally named "Sysmap" */
2099 	pte = &kernCbase[pte_idx];
2100 
2101 	if (MMU_VALID_DT(*pte)) {
2102 		was_valid = true;
2103 		/*
2104 		 * If the PTE already maps a different
2105 		 * physical address, umap and pv_unlink.
2106 		 */
2107 		old_pa = MMU_PTE_PA(*pte);
2108 		if (pa != old_pa)
2109 			pmap_remove_pte(pte);
2110 		else {
2111 		    /*
2112 		     * Old PA and new PA are the same.  No need to
2113 		     * relink the mapping within the PV list.
2114 		     */
2115 		     insert = false;
2116 
2117 		    /*
2118 		     * Save any mod/ref bits on the PTE.
2119 		     */
2120 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2121 		}
2122 	} else {
2123 		pte->attr.raw = MMU_DT_INVALID;
2124 		was_valid = false;
2125 	}
2126 
2127 	/*
2128 	 * Map the page.  Being careful to preserve modified/referenced bits
2129 	 * on the PTE.
2130 	 */
2131 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2132 
2133 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2134 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2135 	if (flags & PMAP_NC)
2136 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2137 	if (was_valid)
2138 		TBIS(va);
2139 
2140 	/*
2141 	 * Insert the PTE into the PV system, if need be.
2142 	 */
2143 	if (insert) {
2144 		pv = pa2pv(pa);
2145 		pvebase[pte_idx].pve_next = pv->pv_idx;
2146 		pv->pv_idx = pte_idx;
2147 	}
2148 }
2149 
2150 void
2151 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2152 {
2153 	mmu_short_pte_t	*pte;
2154 
2155 	/* This array is traditionally named "Sysmap" */
2156 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];
2157 
2158 	KASSERT(!MMU_VALID_DT(*pte));
2159 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2160 	if (!(prot & VM_PROT_WRITE))
2161 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2162 }
2163 
2164 void
2165 pmap_kremove(vaddr_t va, vsize_t len)
2166 {
2167 	int idx, eidx;
2168 
2169 #ifdef	PMAP_DEBUG
2170 	if ((va & PGOFSET) || (len & PGOFSET))
2171 		panic("pmap_kremove: alignment");
2172 #endif
2173 
2174 	idx  = m68k_btop(va - KERNBASE3X);
2175 	eidx = m68k_btop(va + len - KERNBASE3X);
2176 
2177 	while (idx < eidx) {
2178 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2179 		TBIS(va);
2180 		va += PAGE_SIZE;
2181 	}
2182 }
2183 
2184 /* pmap_map			INTERNAL
2185  **
2186  * Map a contiguous range of physical memory into a contiguous range of
2187  * the kernel virtual address space.
2188  *
2189  * Used for device mappings and early mapping of the kernel text/data/bss.
2190  * Returns the first virtual address beyond the end of the range.
2191  */
2192 vaddr_t
2193 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2194 {
2195 	int sz;
2196 
2197 	sz = endpa - pa;
2198 	do {
2199 		pmap_enter_kernel(va, pa, prot);
2200 		va += PAGE_SIZE;
2201 		pa += PAGE_SIZE;
2202 		sz -= PAGE_SIZE;
2203 	} while (sz > 0);
2204 	pmap_update(pmap_kernel());
2205 	return va;
2206 }
2207 
2208 /* pmap_protect_kernel			INTERNAL
2209  **
2210  * Apply the given protection code to a kernel address range.
2211  */
2212 static INLINE void
2213 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2214 {
2215 	vaddr_t va;
2216 	mmu_short_pte_t *pte;
2217 
2218 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
2219 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2220 		if (MMU_VALID_DT(*pte)) {
2221 		    switch (prot) {
2222 		        case VM_PROT_ALL:
2223 		            break;
2224 		        case VM_PROT_EXECUTE:
2225 		        case VM_PROT_READ:
2226 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2227 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2228 		            break;
2229 		        case VM_PROT_NONE:
2230 		            /* this is an alias for 'pmap_remove_kernel' */
2231 		            pmap_remove_pte(pte);
2232 		            break;
2233 		        default:
2234 		            break;
2235 		    }
2236 		    /*
2237 		     * since this is the kernel, immediately flush any cached
2238 		     * descriptors for this address.
2239 		     */
2240 		    TBIS(va);
2241 		}
2242 	}
2243 }
2244 
2245 /* pmap_protect			INTERFACE
2246  **
2247  * Apply the given protection to the given virtual address range within
2248  * the given map.
2249  *
2250  * It is ok for the protection applied to be stronger than what is
2251  * specified.  We use this to our advantage when the given map has no
2252  * mapping for the virtual address.  By skipping a page when this
2253  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2254  * and therefore do not need to map the page just to apply a protection
2255  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2256  *
2257  * XXX - This function could be speeded up by using pmap_stroll() for inital
2258  *       setup, and then manual scrolling in the for() loop.
2259  */
2260 void
2261 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2262 {
2263 	bool iscurpmap;
2264 	int a_idx, b_idx, c_idx;
2265 	a_tmgr_t *a_tbl;
2266 	b_tmgr_t *b_tbl;
2267 	c_tmgr_t *c_tbl;
2268 	mmu_short_pte_t *pte;
2269 
2270 	if (pmap == pmap_kernel()) {
2271 		pmap_protect_kernel(startva, endva, prot);
2272 		return;
2273 	}
2274 
2275 	/*
2276 	 * In this particular pmap implementation, there are only three
2277 	 * types of memory protection: 'all' (read/write/execute),
2278 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2279 	 * It is not possible for us to treat 'executable' as a separate
2280 	 * protection type.  Therefore, protection requests that seek to
2281 	 * remove execute permission while retaining read or write, and those
2282 	 * that make little sense (write-only for example) are ignored.
2283 	 */
2284 	switch (prot) {
2285 		case VM_PROT_NONE:
2286 			/*
2287 			 * A request to apply the protection code of
2288 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2289 			 */
2290 			pmap_remove(pmap, startva, endva);
2291 			return;
2292 		case	VM_PROT_EXECUTE:
2293 		case	VM_PROT_READ:
2294 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2295 			/* continue */
2296 			break;
2297 		case	VM_PROT_WRITE:
2298 		case	VM_PROT_WRITE|VM_PROT_READ:
2299 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2300 		case	VM_PROT_ALL:
2301 			/* None of these should happen in a sane system. */
2302 			return;
2303 	}
2304 
2305 	/*
2306 	 * If the pmap has no A table, it has no mappings and therefore
2307 	 * there is nothing to protect.
2308 	 */
2309 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2310 		return;
2311 
2312 	a_idx = MMU_TIA(startva);
2313 	b_idx = MMU_TIB(startva);
2314 	c_idx = MMU_TIC(startva);
2315 	b_tbl = NULL;
2316 	c_tbl = NULL;
2317 
2318 	iscurpmap = (pmap == current_pmap());
2319 	while (startva < endva) {
2320 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2321 		  if (b_tbl == NULL) {
2322 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2323 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2324 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2325 		  }
2326 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2327 		    if (c_tbl == NULL) {
2328 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2329 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2330 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2331 		    }
2332 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2333 		      pte = &c_tbl->ct_dtbl[c_idx];
2334 		      /* make the mapping read-only */
2335 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2336 		      /*
2337 		       * If we just modified the current address space,
2338 		       * flush any translations for the modified page from
2339 		       * the translation cache and any data from it in the
2340 		       * data cache.
2341 		       */
2342 		      if (iscurpmap)
2343 		          TBIS(startva);
2344 		    }
2345 		    startva += PAGE_SIZE;
2346 
2347 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2348 		      c_tbl = NULL;
2349 		      c_idx = 0;
2350 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2351 		        b_tbl = NULL;
2352 		        b_idx = 0;
2353 		      }
2354 		    }
2355 		  } else { /* C table wasn't valid */
2356 		    c_tbl = NULL;
2357 		    c_idx = 0;
2358 		    startva += MMU_TIB_RANGE;
2359 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2360 		      b_tbl = NULL;
2361 		      b_idx = 0;
2362 		    }
2363 		  } /* C table */
2364 		} else { /* B table wasn't valid */
2365 		  b_tbl = NULL;
2366 		  b_idx = 0;
2367 		  startva += MMU_TIA_RANGE;
2368 		  a_idx++;
2369 		} /* B table */
2370 	}
2371 }
2372 
2373 /* pmap_unwire				INTERFACE
2374  **
2375  * Clear the wired attribute of the specified page.
2376  *
2377  * This function is called from vm_fault.c to unwire
2378  * a mapping.
2379  */
2380 void
2381 pmap_unwire(pmap_t pmap, vaddr_t va)
2382 {
2383 	int a_idx, b_idx, c_idx;
2384 	a_tmgr_t *a_tbl;
2385 	b_tmgr_t *b_tbl;
2386 	c_tmgr_t *c_tbl;
2387 	mmu_short_pte_t *pte;
2388 
2389 	/* Kernel mappings always remain wired. */
2390 	if (pmap == pmap_kernel())
2391 		return;
2392 
2393 	/*
2394 	 * Walk through the tables.  If the walk terminates without
2395 	 * a valid PTE then the address wasn't wired in the first place.
2396 	 * Return immediately.
2397 	 */
2398 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2399 		&b_idx, &c_idx) == false)
2400 		return;
2401 
2402 
2403 	/* Is the PTE wired?  If not, return. */
2404 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2405 		return;
2406 
2407 	/* Remove the wiring bit. */
2408 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2409 
2410 	/*
2411 	 * Decrement the wired entry count in the C table.
2412 	 * If it reaches zero the following things happen:
2413 	 * 1. The table no longer has any wired entries and is considered
2414 	 *    unwired.
2415 	 * 2. It is placed on the available queue.
2416 	 * 3. The parent table's wired entry count is decremented.
2417 	 * 4. If it reaches zero, this process repeats at step 1 and
2418 	 *    stops at after reaching the A table.
2419 	 */
2420 	if (--c_tbl->ct_wcnt == 0) {
2421 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2422 		if (--b_tbl->bt_wcnt == 0) {
2423 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2424 			if (--a_tbl->at_wcnt == 0) {
2425 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2426 			}
2427 		}
2428 	}
2429 }
2430 
2431 /* pmap_copy				INTERFACE
2432  **
2433  * Copy the mappings of a range of addresses in one pmap, into
2434  * the destination address of another.
2435  *
2436  * This routine is advisory.  Should we one day decide that MMU tables
2437  * may be shared by more than one pmap, this function should be used to
2438  * link them together.  Until that day however, we do nothing.
2439  */
2440 void
2441 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2442 {
2443 
2444 	/* not implemented. */
2445 }
2446 
2447 /* pmap_copy_page			INTERFACE
2448  **
2449  * Copy the contents of one physical page into another.
2450  *
2451  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2452  * to map the two specified physical pages into the kernel address space.
2453  *
2454  * Note: We could use the transparent translation registers to make the
2455  * mappings.  If we do so, be sure to disable interrupts before using them.
2456  */
2457 void
2458 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2459 {
2460 	vaddr_t srcva, dstva;
2461 	int s;
2462 
2463 	srcva = tmp_vpages[0];
2464 	dstva = tmp_vpages[1];
2465 
2466 	s = splvm();
2467 #ifdef DIAGNOSTIC
2468 	if (tmp_vpages_inuse++)
2469 		panic("pmap_copy_page: temporary vpages are in use.");
2470 #endif
2471 
2472 	/* Map pages as non-cacheable to avoid cache polution? */
2473 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
2474 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
2475 
2476 	/* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
2477 	copypage((char *)srcva, (char *)dstva);
2478 
2479 	pmap_kremove(srcva, PAGE_SIZE);
2480 	pmap_kremove(dstva, PAGE_SIZE);
2481 
2482 #ifdef DIAGNOSTIC
2483 	--tmp_vpages_inuse;
2484 #endif
2485 	splx(s);
2486 }
2487 
2488 /* pmap_zero_page			INTERFACE
2489  **
2490  * Zero the contents of the specified physical page.
2491  *
2492  * Uses one of the virtual pages allocated in pmap_boostrap()
2493  * to map the specified page into the kernel address space.
2494  */
2495 void
2496 pmap_zero_page(paddr_t dstpa)
2497 {
2498 	vaddr_t dstva;
2499 	int s;
2500 
2501 	dstva = tmp_vpages[1];
2502 	s = splvm();
2503 #ifdef DIAGNOSTIC
2504 	if (tmp_vpages_inuse++)
2505 		panic("pmap_zero_page: temporary vpages are in use.");
2506 #endif
2507 
2508 	/* The comments in pmap_copy_page() above apply here also. */
2509 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
2510 
2511 	/* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
2512 	zeropage((char *)dstva);
2513 
2514 	pmap_kremove(dstva, PAGE_SIZE);
2515 #ifdef DIAGNOSTIC
2516 	--tmp_vpages_inuse;
2517 #endif
2518 	splx(s);
2519 }
2520 
2521 /* pmap_pinit			INTERNAL
2522  **
2523  * Initialize a pmap structure.
2524  */
2525 static INLINE void
2526 pmap_pinit(pmap_t pmap)
2527 {
2528 
2529 	memset(pmap, 0, sizeof(struct pmap));
2530 	pmap->pm_a_tmgr = NULL;
2531 	pmap->pm_a_phys = kernAphys;
2532 	pmap->pm_refcount = 1;
2533 	simple_lock_init(&pmap->pm_lock);
2534 }
2535 
2536 /* pmap_create			INTERFACE
2537  **
2538  * Create and return a pmap structure.
2539  */
2540 pmap_t
2541 pmap_create(void)
2542 {
2543 	pmap_t	pmap;
2544 
2545 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2546 	pmap_pinit(pmap);
2547 	return pmap;
2548 }
2549 
2550 /* pmap_release				INTERNAL
2551  **
2552  * Release any resources held by the given pmap.
2553  *
2554  * This is the reverse analog to pmap_pinit.  It does not
2555  * necessarily mean for the pmap structure to be deallocated,
2556  * as in pmap_destroy.
2557  */
2558 static INLINE void
2559 pmap_release(pmap_t pmap)
2560 {
2561 
2562 	/*
2563 	 * As long as the pmap contains no mappings,
2564 	 * which always should be the case whenever
2565 	 * this function is called, there really should
2566 	 * be nothing to do.
2567 	 */
2568 #ifdef	PMAP_DEBUG
2569 	if (pmap == pmap_kernel())
2570 		panic("pmap_release: kernel pmap");
2571 #endif
2572 	/*
2573 	 * XXX - If this pmap has an A table, give it back.
2574 	 * The pmap SHOULD be empty by now, and pmap_remove
2575 	 * should have already given back the A table...
2576 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2577 	 * at this point, which means some mapping was not
2578 	 * removed when it should have been. -gwr
2579 	 */
2580 	if (pmap->pm_a_tmgr != NULL) {
2581 		/* First make sure we are not using it! */
2582 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2583 			kernel_crp.rp_addr = kernAphys;
2584 			loadcrp(&kernel_crp);
2585 		}
2586 #ifdef	PMAP_DEBUG /* XXX - todo! */
2587 		/* XXX - Now complain... */
2588 		printf("pmap_release: still have table\n");
2589 		Debugger();
2590 #endif
2591 		free_a_table(pmap->pm_a_tmgr, true);
2592 		pmap->pm_a_tmgr = NULL;
2593 		pmap->pm_a_phys = kernAphys;
2594 	}
2595 }
2596 
2597 /* pmap_reference			INTERFACE
2598  **
2599  * Increment the reference count of a pmap.
2600  */
2601 void
2602 pmap_reference(pmap_t pmap)
2603 {
2604 	pmap_lock(pmap);
2605 	pmap_add_ref(pmap);
2606 	pmap_unlock(pmap);
2607 }
2608 
2609 /* pmap_dereference			INTERNAL
2610  **
2611  * Decrease the reference count on the given pmap
2612  * by one and return the current count.
2613  */
2614 static INLINE int
2615 pmap_dereference(pmap_t pmap)
2616 {
2617 	int rtn;
2618 
2619 	pmap_lock(pmap);
2620 	rtn = pmap_del_ref(pmap);
2621 	pmap_unlock(pmap);
2622 
2623 	return rtn;
2624 }
2625 
2626 /* pmap_destroy			INTERFACE
2627  **
2628  * Decrement a pmap's reference count and delete
2629  * the pmap if it becomes zero.  Will be called
2630  * only after all mappings have been removed.
2631  */
2632 void
2633 pmap_destroy(pmap_t pmap)
2634 {
2635 
2636 	if (pmap_dereference(pmap) == 0) {
2637 		pmap_release(pmap);
2638 		pool_put(&pmap_pmap_pool, pmap);
2639 	}
2640 }
2641 
2642 /* pmap_is_referenced			INTERFACE
2643  **
2644  * Determine if the given physical page has been
2645  * referenced (read from [or written to.])
2646  */
2647 bool
2648 pmap_is_referenced(struct vm_page *pg)
2649 {
2650 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2651 	pv_t      *pv;
2652 	int       idx;
2653 
2654 	/*
2655 	 * Check the flags on the pv head.  If they are set,
2656 	 * return immediately.  Otherwise a search must be done.
2657 	 */
2658 
2659 	pv = pa2pv(pa);
2660 	if (pv->pv_flags & PV_FLAGS_USED)
2661 		return true;
2662 
2663 	/*
2664 	 * Search through all pv elements pointing
2665 	 * to this page and query their reference bits
2666 	 */
2667 
2668 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2669 		if (MMU_PTE_USED(kernCbase[idx])) {
2670 			return true;
2671 		}
2672 	}
2673 	return false;
2674 }
2675 
2676 /* pmap_is_modified			INTERFACE
2677  **
2678  * Determine if the given physical page has been
2679  * modified (written to.)
2680  */
2681 bool
2682 pmap_is_modified(struct vm_page *pg)
2683 {
2684 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2685 	pv_t      *pv;
2686 	int       idx;
2687 
2688 	/* see comments in pmap_is_referenced() */
2689 	pv = pa2pv(pa);
2690 	if (pv->pv_flags & PV_FLAGS_MDFY)
2691 		return true;
2692 
2693 	for (idx = pv->pv_idx;
2694 		 idx != PVE_EOL;
2695 		 idx = pvebase[idx].pve_next) {
2696 
2697 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2698 			return true;
2699 		}
2700 	}
2701 
2702 	return false;
2703 }
2704 
2705 /* pmap_page_protect			INTERFACE
2706  **
2707  * Applies the given protection to all mappings to the given
2708  * physical page.
2709  */
2710 void
2711 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2712 {
2713 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2714 	pv_t      *pv;
2715 	int       idx;
2716 	vaddr_t va;
2717 	struct mmu_short_pte_struct *pte;
2718 	c_tmgr_t  *c_tbl;
2719 	pmap_t    pmap, curpmap;
2720 
2721 	curpmap = current_pmap();
2722 	pv = pa2pv(pa);
2723 
2724 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2725 		pte = &kernCbase[idx];
2726 		switch (prot) {
2727 			case VM_PROT_ALL:
2728 				/* do nothing */
2729 				break;
2730 			case VM_PROT_EXECUTE:
2731 			case VM_PROT_READ:
2732 			case VM_PROT_READ|VM_PROT_EXECUTE:
2733 				/*
2734 				 * Determine the virtual address mapped by
2735 				 * the PTE and flush ATC entries if necessary.
2736 				 */
2737 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2738 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2739 				if (pmap == curpmap || pmap == pmap_kernel())
2740 					TBIS(va);
2741 				break;
2742 			case VM_PROT_NONE:
2743 				/* Save the mod/ref bits. */
2744 				pv->pv_flags |= pte->attr.raw;
2745 				/* Invalidate the PTE. */
2746 				pte->attr.raw = MMU_DT_INVALID;
2747 
2748 				/*
2749 				 * Update table counts.  And flush ATC entries
2750 				 * if necessary.
2751 				 */
2752 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2753 
2754 				/*
2755 				 * If the PTE belongs to the kernel map,
2756 				 * be sure to flush the page it maps.
2757 				 */
2758 				if (pmap == pmap_kernel()) {
2759 					TBIS(va);
2760 				} else {
2761 					/*
2762 					 * The PTE belongs to a user map.
2763 					 * update the entry count in the C
2764 					 * table to which it belongs and flush
2765 					 * the ATC if the mapping belongs to
2766 					 * the current pmap.
2767 					 */
2768 					c_tbl->ct_ecnt--;
2769 					if (pmap == curpmap)
2770 						TBIS(va);
2771 				}
2772 				break;
2773 			default:
2774 				break;
2775 		}
2776 	}
2777 
2778 	/*
2779 	 * If the protection code indicates that all mappings to the page
2780 	 * be removed, truncate the PV list to zero entries.
2781 	 */
2782 	if (prot == VM_PROT_NONE)
2783 		pv->pv_idx = PVE_EOL;
2784 }
2785 
2786 /* pmap_get_pteinfo		INTERNAL
2787  **
2788  * Called internally to find the pmap and virtual address within that
2789  * map to which the pte at the given index maps.  Also includes the PTE's C
2790  * table manager.
2791  *
2792  * Returns the pmap in the argument provided, and the virtual address
2793  * by return value.
2794  */
2795 vaddr_t
2796 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2797 {
2798 	vaddr_t     va = 0;
2799 
2800 	/*
2801 	 * Determine if the PTE is a kernel PTE or a user PTE.
2802 	 */
2803 	if (idx >= NUM_KERN_PTES) {
2804 		/*
2805 		 * The PTE belongs to a user mapping.
2806 		 */
2807 		/* XXX: Would like an inline for this to validate idx... */
2808 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2809 
2810 		*pmap = (*tbl)->ct_pmap;
2811 		/*
2812 		 * To find the va to which the PTE maps, we first take
2813 		 * the table's base virtual address mapping which is stored
2814 		 * in ct_va.  We then increment this address by a page for
2815 		 * every slot skipped until we reach the PTE.
2816 		 */
2817 		va = (*tbl)->ct_va;
2818 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2819 	} else {
2820 		/*
2821 		 * The PTE belongs to the kernel map.
2822 		 */
2823 		*pmap = pmap_kernel();
2824 
2825 		va = m68k_ptob(idx);
2826 		va += KERNBASE3X;
2827 	}
2828 
2829 	return va;
2830 }
2831 
2832 /* pmap_clear_modify			INTERFACE
2833  **
2834  * Clear the modification bit on the page at the specified
2835  * physical address.
2836  *
2837  */
2838 bool
2839 pmap_clear_modify(struct vm_page *pg)
2840 {
2841 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2842 	bool rv;
2843 
2844 	rv = pmap_is_modified(pg);
2845 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2846 	return rv;
2847 }
2848 
2849 /* pmap_clear_reference			INTERFACE
2850  **
2851  * Clear the referenced bit on the page at the specified
2852  * physical address.
2853  */
2854 bool
2855 pmap_clear_reference(struct vm_page *pg)
2856 {
2857 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2858 	bool rv;
2859 
2860 	rv = pmap_is_referenced(pg);
2861 	pmap_clear_pv(pa, PV_FLAGS_USED);
2862 	return rv;
2863 }
2864 
2865 /* pmap_clear_pv			INTERNAL
2866  **
2867  * Clears the specified flag from the specified physical address.
2868  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2869  *
2870  * Flag is one of:
2871  *   PV_FLAGS_MDFY - Page modified bit.
2872  *   PV_FLAGS_USED - Page used (referenced) bit.
2873  *
2874  * This routine must not only clear the flag on the pv list
2875  * head.  It must also clear the bit on every pte in the pv
2876  * list associated with the address.
2877  */
2878 void
2879 pmap_clear_pv(paddr_t pa, int flag)
2880 {
2881 	pv_t      *pv;
2882 	int       idx;
2883 	vaddr_t   va;
2884 	pmap_t          pmap;
2885 	mmu_short_pte_t *pte;
2886 	c_tmgr_t        *c_tbl;
2887 
2888 	pv = pa2pv(pa);
2889 	pv->pv_flags &= ~(flag);
2890 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2891 		pte = &kernCbase[idx];
2892 		pte->attr.raw &= ~(flag);
2893 
2894 		/*
2895 		 * The MC68030 MMU will not set the modified or
2896 		 * referenced bits on any MMU tables for which it has
2897 		 * a cached descriptor with its modify bit set.  To insure
2898 		 * that it will modify these bits on the PTE during the next
2899 		 * time it is written to or read from, we must flush it from
2900 		 * the ATC.
2901 		 *
2902 		 * Ordinarily it is only necessary to flush the descriptor
2903 		 * if it is used in the current address space.  But since I
2904 		 * am not sure that there will always be a notion of
2905 		 * 'the current address space' when this function is called,
2906 		 * I will skip the test and always flush the address.  It
2907 		 * does no harm.
2908 		 */
2909 
2910 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2911 		TBIS(va);
2912 	}
2913 }
2914 
2915 /* pmap_extract_kernel		INTERNAL
2916  **
2917  * Extract a translation from the kernel address space.
2918  */
2919 static INLINE bool
2920 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2921 {
2922 	mmu_short_pte_t *pte;
2923 
2924 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
2925 	if (!MMU_VALID_DT(*pte))
2926 		return false;
2927 	if (pap != NULL)
2928 		*pap = MMU_PTE_PA(*pte);
2929 	return true;
2930 }
2931 
2932 /* pmap_extract			INTERFACE
2933  **
2934  * Return the physical address mapped by the virtual address
2935  * in the specified pmap.
2936  *
2937  * Note: this function should also apply an exclusive lock
2938  * on the pmap system during its duration.
2939  */
2940 bool
2941 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2942 {
2943 	int a_idx, b_idx, pte_idx;
2944 	a_tmgr_t	*a_tbl;
2945 	b_tmgr_t	*b_tbl;
2946 	c_tmgr_t	*c_tbl;
2947 	mmu_short_pte_t	*c_pte;
2948 
2949 	if (pmap == pmap_kernel())
2950 		return pmap_extract_kernel(va, pap);
2951 
2952 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2953 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
2954 		return false;
2955 
2956 	if (!MMU_VALID_DT(*c_pte))
2957 		return false;
2958 
2959 	if (pap != NULL)
2960 		*pap = MMU_PTE_PA(*c_pte);
2961 	return true;
2962 }
2963 
2964 /* pmap_remove_kernel		INTERNAL
2965  **
2966  * Remove the mapping of a range of virtual addresses from the kernel map.
2967  * The arguments are already page-aligned.
2968  */
2969 static INLINE void
2970 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2971 {
2972 	int idx, eidx;
2973 
2974 #ifdef	PMAP_DEBUG
2975 	if ((sva & PGOFSET) || (eva & PGOFSET))
2976 		panic("pmap_remove_kernel: alignment");
2977 #endif
2978 
2979 	idx  = m68k_btop(sva - KERNBASE3X);
2980 	eidx = m68k_btop(eva - KERNBASE3X);
2981 
2982 	while (idx < eidx) {
2983 		pmap_remove_pte(&kernCbase[idx++]);
2984 		TBIS(sva);
2985 		sva += PAGE_SIZE;
2986 	}
2987 }
2988 
2989 /* pmap_remove			INTERFACE
2990  **
2991  * Remove the mapping of a range of virtual addresses from the given pmap.
2992  *
2993  */
2994 void
2995 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
2996 {
2997 
2998 	if (pmap == pmap_kernel()) {
2999 		pmap_remove_kernel(sva, eva);
3000 		return;
3001 	}
3002 
3003 	/*
3004 	 * If the pmap doesn't have an A table of its own, it has no mappings
3005 	 * that can be removed.
3006 	 */
3007 	if (pmap->pm_a_tmgr == NULL)
3008 		return;
3009 
3010 	/*
3011 	 * Remove the specified range from the pmap.  If the function
3012 	 * returns true, the operation removed all the valid mappings
3013 	 * in the pmap and freed its A table.  If this happened to the
3014 	 * currently loaded pmap, the MMU root pointer must be reloaded
3015 	 * with the default 'kernel' map.
3016 	 */
3017 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3018 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3019 			kernel_crp.rp_addr = kernAphys;
3020 			loadcrp(&kernel_crp);
3021 			/* will do TLB flush below */
3022 		}
3023 		pmap->pm_a_tmgr = NULL;
3024 		pmap->pm_a_phys = kernAphys;
3025 	}
3026 
3027 	/*
3028 	 * If we just modified the current address space,
3029 	 * make sure to flush the MMU cache.
3030 	 *
3031 	 * XXX - this could be an unecessarily large flush.
3032 	 * XXX - Could decide, based on the size of the VA range
3033 	 * to be removed, whether to flush "by pages" or "all".
3034 	 */
3035 	if (pmap == current_pmap())
3036 		TBIAU();
3037 }
3038 
3039 /* pmap_remove_a			INTERNAL
3040  **
3041  * This is function number one in a set of three that removes a range
3042  * of memory in the most efficient manner by removing the highest possible
3043  * tables from the memory space.  This particular function attempts to remove
3044  * as many B tables as it can, delegating the remaining fragmented ranges to
3045  * pmap_remove_b().
3046  *
3047  * If the removal operation results in an empty A table, the function returns
3048  * true.
3049  *
3050  * It's ugly but will do for now.
3051  */
3052 bool
3053 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3054 {
3055 	bool empty;
3056 	int idx;
3057 	vaddr_t nstart, nend;
3058 	b_tmgr_t *b_tbl;
3059 	mmu_long_dte_t  *a_dte;
3060 	mmu_short_dte_t *b_dte;
3061 	uint8_t at_wired, bt_wired;
3062 
3063 	/*
3064 	 * The following code works with what I call a 'granularity
3065 	 * reduction algorithim'.  A range of addresses will always have
3066 	 * the following properties, which are classified according to
3067 	 * how the range relates to the size of the current granularity
3068 	 * - an A table entry:
3069 	 *
3070 	 *            1 2       3 4
3071 	 * -+---+---+---+---+---+---+---+-
3072 	 * -+---+---+---+---+---+---+---+-
3073 	 *
3074 	 * A range will always start on a granularity boundary, illustrated
3075 	 * by '+' signs in the table above, or it will start at some point
3076 	 * inbetween a granularity boundary, as illustrated by point 1.
3077 	 * The first step in removing a range of addresses is to remove the
3078 	 * range between 1 and 2, the nearest granularity boundary.  This
3079 	 * job is handled by the section of code governed by the
3080 	 * 'if (start < nstart)' statement.
3081 	 *
3082 	 * A range will always encompass zero or more intergral granules,
3083 	 * illustrated by points 2 and 3.  Integral granules are easy to
3084 	 * remove.  The removal of these granules is the second step, and
3085 	 * is handled by the code block 'if (nstart < nend)'.
3086 	 *
3087 	 * Lastly, a range will always end on a granularity boundary,
3088 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3089 	 * 4.  The last step involves removing this range and is handled by
3090 	 * the code block 'if (nend < end)'.
3091 	 */
3092 	nstart = MMU_ROUND_UP_A(sva);
3093 	nend = MMU_ROUND_A(eva);
3094 
3095 	at_wired = a_tbl->at_wcnt;
3096 
3097 	if (sva < nstart) {
3098 		/*
3099 		 * This block is executed if the range starts between
3100 		 * a granularity boundary.
3101 		 *
3102 		 * First find the DTE which is responsible for mapping
3103 		 * the start of the range.
3104 		 */
3105 		idx = MMU_TIA(sva);
3106 		a_dte = &a_tbl->at_dtbl[idx];
3107 
3108 		/*
3109 		 * If the DTE is valid then delegate the removal of the sub
3110 		 * range to pmap_remove_b(), which can remove addresses at
3111 		 * a finer granularity.
3112 		 */
3113 		if (MMU_VALID_DT(*a_dte)) {
3114 			b_dte = mmu_ptov(a_dte->addr.raw);
3115 			b_tbl = mmuB2tmgr(b_dte);
3116 			bt_wired = b_tbl->bt_wcnt;
3117 
3118 			/*
3119 			 * The sub range to be removed starts at the start
3120 			 * of the full range we were asked to remove, and ends
3121 			 * at the greater of:
3122 			 * 1. The end of the full range, -or-
3123 			 * 2. The end of the full range, rounded down to the
3124 			 *    nearest granularity boundary.
3125 			 */
3126 			if (eva < nstart)
3127 				empty = pmap_remove_b(b_tbl, sva, eva);
3128 			else
3129 				empty = pmap_remove_b(b_tbl, sva, nstart);
3130 
3131 			/*
3132 			 * If the child table no longer has wired entries,
3133 			 * decrement wired entry count.
3134 			 */
3135 			if (bt_wired && b_tbl->bt_wcnt == 0)
3136 				a_tbl->at_wcnt--;
3137 
3138 			/*
3139 			 * If the removal resulted in an empty B table,
3140 			 * invalidate the DTE that points to it and decrement
3141 			 * the valid entry count of the A table.
3142 			 */
3143 			if (empty) {
3144 				a_dte->attr.raw = MMU_DT_INVALID;
3145 				a_tbl->at_ecnt--;
3146 			}
3147 		}
3148 		/*
3149 		 * If the DTE is invalid, the address range is already non-
3150 		 * existent and can simply be skipped.
3151 		 */
3152 	}
3153 	if (nstart < nend) {
3154 		/*
3155 		 * This block is executed if the range spans a whole number
3156 		 * multiple of granules (A table entries.)
3157 		 *
3158 		 * First find the DTE which is responsible for mapping
3159 		 * the start of the first granule involved.
3160 		 */
3161 		idx = MMU_TIA(nstart);
3162 		a_dte = &a_tbl->at_dtbl[idx];
3163 
3164 		/*
3165 		 * Remove entire sub-granules (B tables) one at a time,
3166 		 * until reaching the end of the range.
3167 		 */
3168 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3169 			if (MMU_VALID_DT(*a_dte)) {
3170 				/*
3171 				 * Find the B table manager for the
3172 				 * entry and free it.
3173 				 */
3174 				b_dte = mmu_ptov(a_dte->addr.raw);
3175 				b_tbl = mmuB2tmgr(b_dte);
3176 				bt_wired = b_tbl->bt_wcnt;
3177 
3178 				free_b_table(b_tbl, true);
3179 
3180 				/*
3181 				 * All child entries has been removed.
3182 				 * If there were any wired entries in it,
3183 				 * decrement wired entry count.
3184 				 */
3185 				if (bt_wired)
3186 					a_tbl->at_wcnt--;
3187 
3188 				/*
3189 				 * Invalidate the DTE that points to the
3190 				 * B table and decrement the valid entry
3191 				 * count of the A table.
3192 				 */
3193 				a_dte->attr.raw = MMU_DT_INVALID;
3194 				a_tbl->at_ecnt--;
3195 			}
3196 	}
3197 	if (nend < eva) {
3198 		/*
3199 		 * This block is executed if the range ends beyond a
3200 		 * granularity boundary.
3201 		 *
3202 		 * First find the DTE which is responsible for mapping
3203 		 * the start of the nearest (rounded down) granularity
3204 		 * boundary.
3205 		 */
3206 		idx = MMU_TIA(nend);
3207 		a_dte = &a_tbl->at_dtbl[idx];
3208 
3209 		/*
3210 		 * If the DTE is valid then delegate the removal of the sub
3211 		 * range to pmap_remove_b(), which can remove addresses at
3212 		 * a finer granularity.
3213 		 */
3214 		if (MMU_VALID_DT(*a_dte)) {
3215 			/*
3216 			 * Find the B table manager for the entry
3217 			 * and hand it to pmap_remove_b() along with
3218 			 * the sub range.
3219 			 */
3220 			b_dte = mmu_ptov(a_dte->addr.raw);
3221 			b_tbl = mmuB2tmgr(b_dte);
3222 			bt_wired = b_tbl->bt_wcnt;
3223 
3224 			empty = pmap_remove_b(b_tbl, nend, eva);
3225 
3226 			/*
3227 			 * If the child table no longer has wired entries,
3228 			 * decrement wired entry count.
3229 			 */
3230 			if (bt_wired && b_tbl->bt_wcnt == 0)
3231 				a_tbl->at_wcnt--;
3232 			/*
3233 			 * If the removal resulted in an empty B table,
3234 			 * invalidate the DTE that points to it and decrement
3235 			 * the valid entry count of the A table.
3236 			 */
3237 			if (empty) {
3238 				a_dte->attr.raw = MMU_DT_INVALID;
3239 				a_tbl->at_ecnt--;
3240 			}
3241 		}
3242 	}
3243 
3244 	/*
3245 	 * If there are no more entries in the A table, release it
3246 	 * back to the available pool and return true.
3247 	 */
3248 	if (a_tbl->at_ecnt == 0) {
3249 		KASSERT(a_tbl->at_wcnt == 0);
3250 		a_tbl->at_parent = NULL;
3251 		if (!at_wired)
3252 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3253 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3254 		empty = true;
3255 	} else {
3256 		/*
3257 		 * If the table doesn't have wired entries any longer
3258 		 * but still has unwired entries, put it back into
3259 		 * the available queue.
3260 		 */
3261 		if (at_wired && a_tbl->at_wcnt == 0)
3262 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3263 		empty = false;
3264 	}
3265 
3266 	return empty;
3267 }
3268 
3269 /* pmap_remove_b			INTERNAL
3270  **
3271  * Remove a range of addresses from an address space, trying to remove entire
3272  * C tables if possible.
3273  *
3274  * If the operation results in an empty B table, the function returns true.
3275  */
3276 bool
3277 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3278 {
3279 	bool empty;
3280 	int idx;
3281 	vaddr_t nstart, nend, rstart;
3282 	c_tmgr_t *c_tbl;
3283 	mmu_short_dte_t  *b_dte;
3284 	mmu_short_pte_t  *c_dte;
3285 	uint8_t bt_wired, ct_wired;
3286 
3287 	nstart = MMU_ROUND_UP_B(sva);
3288 	nend = MMU_ROUND_B(eva);
3289 
3290 	bt_wired = b_tbl->bt_wcnt;
3291 
3292 	if (sva < nstart) {
3293 		idx = MMU_TIB(sva);
3294 		b_dte = &b_tbl->bt_dtbl[idx];
3295 		if (MMU_VALID_DT(*b_dte)) {
3296 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3297 			c_tbl = mmuC2tmgr(c_dte);
3298 			ct_wired = c_tbl->ct_wcnt;
3299 
3300 			if (eva < nstart)
3301 				empty = pmap_remove_c(c_tbl, sva, eva);
3302 			else
3303 				empty = pmap_remove_c(c_tbl, sva, nstart);
3304 
3305 			/*
3306 			 * If the child table no longer has wired entries,
3307 			 * decrement wired entry count.
3308 			 */
3309 			if (ct_wired && c_tbl->ct_wcnt == 0)
3310 				b_tbl->bt_wcnt--;
3311 
3312 			if (empty) {
3313 				b_dte->attr.raw = MMU_DT_INVALID;
3314 				b_tbl->bt_ecnt--;
3315 			}
3316 		}
3317 	}
3318 	if (nstart < nend) {
3319 		idx = MMU_TIB(nstart);
3320 		b_dte = &b_tbl->bt_dtbl[idx];
3321 		rstart = nstart;
3322 		while (rstart < nend) {
3323 			if (MMU_VALID_DT(*b_dte)) {
3324 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3325 				c_tbl = mmuC2tmgr(c_dte);
3326 				ct_wired = c_tbl->ct_wcnt;
3327 
3328 				free_c_table(c_tbl, true);
3329 
3330 				/*
3331 				 * All child entries has been removed.
3332 				 * If there were any wired entries in it,
3333 				 * decrement wired entry count.
3334 				 */
3335 				if (ct_wired)
3336 					b_tbl->bt_wcnt--;
3337 
3338 				b_dte->attr.raw = MMU_DT_INVALID;
3339 				b_tbl->bt_ecnt--;
3340 			}
3341 			b_dte++;
3342 			rstart += MMU_TIB_RANGE;
3343 		}
3344 	}
3345 	if (nend < eva) {
3346 		idx = MMU_TIB(nend);
3347 		b_dte = &b_tbl->bt_dtbl[idx];
3348 		if (MMU_VALID_DT(*b_dte)) {
3349 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3350 			c_tbl = mmuC2tmgr(c_dte);
3351 			ct_wired = c_tbl->ct_wcnt;
3352 			empty = pmap_remove_c(c_tbl, nend, eva);
3353 
3354 			/*
3355 			 * If the child table no longer has wired entries,
3356 			 * decrement wired entry count.
3357 			 */
3358 			if (ct_wired && c_tbl->ct_wcnt == 0)
3359 				b_tbl->bt_wcnt--;
3360 
3361 			if (empty) {
3362 				b_dte->attr.raw = MMU_DT_INVALID;
3363 				b_tbl->bt_ecnt--;
3364 			}
3365 		}
3366 	}
3367 
3368 	if (b_tbl->bt_ecnt == 0) {
3369 		KASSERT(b_tbl->bt_wcnt == 0);
3370 		b_tbl->bt_parent = NULL;
3371 		if (!bt_wired)
3372 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3373 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3374 		empty = true;
3375 	} else {
3376 		/*
3377 		 * If the table doesn't have wired entries any longer
3378 		 * but still has unwired entries, put it back into
3379 		 * the available queue.
3380 		 */
3381 		if (bt_wired && b_tbl->bt_wcnt == 0)
3382 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3383 
3384 		empty = false;
3385 	}
3386 
3387 	return empty;
3388 }
3389 
3390 /* pmap_remove_c			INTERNAL
3391  **
3392  * Remove a range of addresses from the given C table.
3393  */
3394 bool
3395 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3396 {
3397 	bool empty;
3398 	int idx;
3399 	mmu_short_pte_t *c_pte;
3400 	uint8_t ct_wired;
3401 
3402 	ct_wired = c_tbl->ct_wcnt;
3403 
3404 	idx = MMU_TIC(sva);
3405 	c_pte = &c_tbl->ct_dtbl[idx];
3406 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3407 		if (MMU_VALID_DT(*c_pte)) {
3408 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3409 				c_tbl->ct_wcnt--;
3410 			pmap_remove_pte(c_pte);
3411 			c_tbl->ct_ecnt--;
3412 		}
3413 	}
3414 
3415 	if (c_tbl->ct_ecnt == 0) {
3416 		KASSERT(c_tbl->ct_wcnt == 0);
3417 		c_tbl->ct_parent = NULL;
3418 		if (!ct_wired)
3419 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3420 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3421 		empty = true;
3422 	} else {
3423 		/*
3424 		 * If the table doesn't have wired entries any longer
3425 		 * but still has unwired entries, put it back into
3426 		 * the available queue.
3427 		 */
3428 		if (ct_wired && c_tbl->ct_wcnt == 0)
3429 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3430 		empty = false;
3431 	}
3432 
3433 	return empty;
3434 }
3435 
3436 /* pmap_bootstrap_alloc			INTERNAL
3437  **
3438  * Used internally for memory allocation at startup when malloc is not
3439  * available.  This code will fail once it crosses the first memory
3440  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3441  * will be in charge of allocation.
3442  */
3443 void *
3444 pmap_bootstrap_alloc(int size)
3445 {
3446 	void *rtn;
3447 
3448 #ifdef	PMAP_DEBUG
3449 	if (bootstrap_alloc_enabled == false) {
3450 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3451 		sunmon_abort();
3452 	}
3453 #endif
3454 
3455 	rtn = (void *) virtual_avail;
3456 	virtual_avail += size;
3457 
3458 #ifdef	PMAP_DEBUG
3459 	if (virtual_avail > virtual_contig_end) {
3460 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3461 		sunmon_abort();
3462 	}
3463 #endif
3464 
3465 	return rtn;
3466 }
3467 
3468 /* pmap_bootstap_aalign			INTERNAL
3469  **
3470  * Used to insure that the next call to pmap_bootstrap_alloc() will
3471  * return a chunk of memory aligned to the specified size.
3472  *
3473  * Note: This function will only support alignment sizes that are powers
3474  * of two.
3475  */
3476 void
3477 pmap_bootstrap_aalign(int size)
3478 {
3479 	int off;
3480 
3481 	off = virtual_avail & (size - 1);
3482 	if (off) {
3483 		(void)pmap_bootstrap_alloc(size - off);
3484 	}
3485 }
3486 
3487 /* pmap_pa_exists
3488  **
3489  * Used by the /dev/mem driver to see if a given PA is memory
3490  * that can be mapped.  (The PA is not in a hole.)
3491  */
3492 int
3493 pmap_pa_exists(paddr_t pa)
3494 {
3495 	int i;
3496 
3497 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3498 		if ((pa >= avail_mem[i].pmem_start) &&
3499 			(pa <  avail_mem[i].pmem_end))
3500 			return 1;
3501 		if (avail_mem[i].pmem_next == NULL)
3502 			break;
3503 	}
3504 	return 0;
3505 }
3506 
3507 /* Called only from locore.s and pmap.c */
3508 void	_pmap_switch(pmap_t pmap);
3509 
3510 /*
3511  * _pmap_switch			INTERNAL
3512  *
3513  * This is called by locore.s:cpu_switch() when it is
3514  * switching to a new process.  Load new translations.
3515  * Note: done in-line by locore.s unless PMAP_DEBUG
3516  *
3517  * Note that we do NOT allocate a context here, but
3518  * share the "kernel only" context until we really
3519  * need our own context for user-space mappings in
3520  * pmap_enter_user().  [ s/context/mmu A table/ ]
3521  */
3522 void
3523 _pmap_switch(pmap_t pmap)
3524 {
3525 	u_long rootpa;
3526 
3527 	/*
3528 	 * Only do reload/flush if we have to.
3529 	 * Note that if the old and new process
3530 	 * were BOTH using the "null" context,
3531 	 * then this will NOT flush the TLB.
3532 	 */
3533 	rootpa = pmap->pm_a_phys;
3534 	if (kernel_crp.rp_addr != rootpa) {
3535 		DPRINT(("pmap_activate(%p)\n", pmap));
3536 		kernel_crp.rp_addr = rootpa;
3537 		loadcrp(&kernel_crp);
3538 		TBIAU();
3539 	}
3540 }
3541 
3542 /*
3543  * Exported version of pmap_activate().  This is called from the
3544  * machine-independent VM code when a process is given a new pmap.
3545  * If (p == curlwp) do like cpu_switch would do; otherwise just
3546  * take this as notification that the process has a new pmap.
3547  */
3548 void
3549 pmap_activate(struct lwp *l)
3550 {
3551 
3552 	if (l->l_proc == curproc) {
3553 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3554 	}
3555 }
3556 
3557 /*
3558  * pmap_deactivate			INTERFACE
3559  **
3560  * This is called to deactivate the specified process's address space.
3561  */
3562 void
3563 pmap_deactivate(struct lwp *l)
3564 {
3565 
3566 	/* Nothing to do. */
3567 }
3568 
3569 /*
3570  * Fill in the sun3x-specific part of the kernel core header
3571  * for dumpsys().  (See machdep.c for the rest.)
3572  */
3573 void
3574 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3575 {
3576 	u_long spa, len;
3577 	int i;
3578 
3579 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3580 	sh->pg_valid = MMU_DT_PAGE;
3581 	sh->contig_end = virtual_contig_end;
3582 	sh->kernCbase = (u_long)kernCbase;
3583 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3584 		spa = avail_mem[i].pmem_start;
3585 		spa = m68k_trunc_page(spa);
3586 		len = avail_mem[i].pmem_end - spa;
3587 		len = m68k_round_page(len);
3588 		sh->ram_segs[i].start = spa;
3589 		sh->ram_segs[i].size  = len;
3590 	}
3591 }
3592 
3593 
3594 /* pmap_virtual_space			INTERFACE
3595  **
3596  * Return the current available range of virtual addresses in the
3597  * arguuments provided.  Only really called once.
3598  */
3599 void
3600 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3601 {
3602 
3603 	*vstart = virtual_avail;
3604 	*vend = virtual_end;
3605 }
3606 
3607 /*
3608  * Provide memory to the VM system.
3609  *
3610  * Assume avail_start is always in the
3611  * first segment as pmap_bootstrap does.
3612  */
3613 static void
3614 pmap_page_upload(void)
3615 {
3616 	paddr_t	a, b;	/* memory range */
3617 	int i;
3618 
3619 	/* Supply the memory in segments. */
3620 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3621 		a = atop(avail_mem[i].pmem_start);
3622 		b = atop(avail_mem[i].pmem_end);
3623 		if (i == 0)
3624 			a = atop(avail_start);
3625 		if (avail_mem[i].pmem_end > avail_end)
3626 			b = atop(avail_end);
3627 
3628 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3629 
3630 		if (avail_mem[i].pmem_next == NULL)
3631 			break;
3632 	}
3633 }
3634 
3635 /* pmap_count			INTERFACE
3636  **
3637  * Return the number of resident (valid) pages in the given pmap.
3638  *
3639  * Note:  If this function is handed the kernel map, it will report
3640  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3641  * map statistics.
3642  */
3643 segsz_t
3644 pmap_count(pmap_t pmap, int type)
3645 {
3646 	u_int     count;
3647 	int       a_idx, b_idx;
3648 	a_tmgr_t *a_tbl;
3649 	b_tmgr_t *b_tbl;
3650 	c_tmgr_t *c_tbl;
3651 
3652 	/*
3653 	 * If the pmap does not have its own A table manager, it has no
3654 	 * valid entires.
3655 	 */
3656 	if (pmap->pm_a_tmgr == NULL)
3657 		return 0;
3658 
3659 	a_tbl = pmap->pm_a_tmgr;
3660 
3661 	count = 0;
3662 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
3663 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3664 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3665 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3666 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3667 	                c_tbl = mmuC2tmgr(
3668 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3669 	                if (type == 0)
3670 	                    /*
3671 	                     * A resident entry count has been requested.
3672 	                     */
3673 	                    count += c_tbl->ct_ecnt;
3674 	                else
3675 	                    /*
3676 	                     * A wired entry count has been requested.
3677 	                     */
3678 	                    count += c_tbl->ct_wcnt;
3679 	            }
3680 	        }
3681 	    }
3682 	}
3683 
3684 	return count;
3685 }
3686 
3687 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3688  * The following routines are only used by DDB for tricky kernel text    *
3689  * text operations in db_memrw.c.  They are provided for sun3            *
3690  * compatibility.                                                        *
3691  *************************************************************************/
3692 /* get_pte			INTERNAL
3693  **
3694  * Return the page descriptor the describes the kernel mapping
3695  * of the given virtual address.
3696  */
3697 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
3698 u_int
3699 get_pte(vaddr_t va)
3700 {
3701 	u_long pte_pa;
3702 	mmu_short_pte_t *pte;
3703 
3704 	/* Get the physical address of the PTE */
3705 	pte_pa = ptest_addr(va & ~PGOFSET);
3706 
3707 	/* Convert to a virtual address... */
3708 	pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);
3709 
3710 	/* Make sure it is in our level-C tables... */
3711 	if ((pte < kernCbase) ||
3712 		(pte >= &mmuCbase[NUM_USER_PTES]))
3713 		return 0;
3714 
3715 	/* ... and just return its contents. */
3716 	return (pte->attr.raw);
3717 }
3718 
3719 
3720 /* set_pte			INTERNAL
3721  **
3722  * Set the page descriptor that describes the kernel mapping
3723  * of the given virtual address.
3724  */
3725 void
3726 set_pte(vaddr_t va, u_int pte)
3727 {
3728 	u_long idx;
3729 
3730 	if (va < KERNBASE3X)
3731 		return;
3732 
3733 	idx = (unsigned long) m68k_btop(va - KERNBASE3X);
3734 	kernCbase[idx].attr.raw = pte;
3735 	TBIS(va);
3736 }
3737 
3738 /*
3739  *	Routine:        pmap_procwr
3740  *
3741  *	Function:
3742  *		Synchronize caches corresponding to [addr, addr+len) in p.
3743  */
3744 void
3745 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3746 {
3747 
3748 	(void)cachectl1(0x80000004, va, len, p);
3749 }
3750 
3751 
3752 #ifdef	PMAP_DEBUG
3753 /************************** DEBUGGING ROUTINES **************************
3754  * The following routines are meant to be an aid to debugging the pmap  *
3755  * system.  They are callable from the DDB command line and should be   *
3756  * prepared to be handed unstable or incomplete states of the system.   *
3757  ************************************************************************/
3758 
3759 /* pv_list
3760  **
3761  * List all pages found on the pv list for the given physical page.
3762  * To avoid endless loops, the listing will stop at the end of the list
3763  * or after 'n' entries - whichever comes first.
3764  */
3765 void
3766 pv_list(paddr_t pa, int n)
3767 {
3768 	int  idx;
3769 	vaddr_t va;
3770 	pv_t *pv;
3771 	c_tmgr_t *c_tbl;
3772 	pmap_t pmap;
3773 
3774 	pv = pa2pv(pa);
3775 	idx = pv->pv_idx;
3776 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3777 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3778 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3779 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3780 	}
3781 }
3782 #endif	/* PMAP_DEBUG */
3783 
3784 #ifdef NOT_YET
3785 /* and maybe not ever */
3786 /************************** LOW-LEVEL ROUTINES **************************
3787  * These routines will eventually be re-written into assembly and placed*
3788  * in locore.s.  They are here now as stubs so that the pmap module can *
3789  * be linked as a standalone user program for testing.                  *
3790  ************************************************************************/
3791 /* flush_atc_crp			INTERNAL
3792  **
3793  * Flush all page descriptors derived from the given CPU Root Pointer
3794  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3795  * cache.
3796  */
3797 void
3798 flush_atc_crp(int a_tbl)
3799 {
3800 	mmu_long_rp_t rp;
3801 
3802 	/* Create a temporary root table pointer that points to the
3803 	 * given A table.
3804 	 */
3805 	rp.attr.raw = ~MMU_LONG_RP_LU;
3806 	rp.addr.raw = (unsigned int) a_tbl;
3807 
3808 	mmu_pflushr(&rp);
3809 	/* mmu_pflushr:
3810 	 * 	movel   sp(4)@,a0
3811 	 * 	pflushr a0@
3812 	 *	rts
3813 	 */
3814 }
3815 #endif /* NOT_YET */
3816