xref: /netbsd/sys/arch/sun3/sun3x/pmap.c (revision bf9ec67e)
1 /*	$NetBSD: pmap.c,v 1.74 2002/03/08 20:48:36 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * XXX These comments aren't quite accurate.  Need to change.
41  * The sun3x uses the MC68851 Memory Management Unit, which is built
42  * into the CPU.  The 68851 maps virtual to physical addresses using
43  * a multi-level table lookup, which is stored in the very memory that
44  * it maps.  The number of levels of lookup is configurable from one
45  * to four.  In this implementation, we use three, named 'A' through 'C'.
46  *
47  * The MMU translates virtual addresses into physical addresses by
48  * traversing these tables in a proccess called a 'table walk'.  The most
49  * significant 7 bits of the Virtual Address ('VA') being translated are
50  * used as an index into the level A table, whose base in physical memory
51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
52  * address found at that index in the A table is used as the base
53  * address for the next table, the B table.  The next six bits of the VA are
54  * used as an index into the B table, which in turn gives the base address
55  * of the third and final C table.
56  *
57  * The next six bits of the VA are used as an index into the C table to
58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
59  * to which the remaining 13 bits of the VA are added, producing the
60  * mapped physical address.
61  *
62  * To map the entire memory space in this manner would require 2114296 bytes
63  * of page tables per process - quite expensive.  Instead we will
64  * allocate a fixed but considerably smaller space for the page tables at
65  * the time the VM system is initialized.  When the pmap code is asked by
66  * the kernel to map a VA to a PA, it allocates tables as needed from this
67  * pool.  When there are no more tables in the pool, tables are stolen
68  * from the oldest mapped entries in the tree.  This is only possible
69  * because all memory mappings are stored in the kernel memory map
70  * structures, independent of the pmap structures.  A VA which references
71  * one of these invalidated maps will cause a page fault.  The kernel
72  * will determine that the page fault was caused by a task using a valid
73  * VA, but for some reason (which does not concern it), that address was
74  * not mapped.  It will ask the pmap code to re-map the entry and then
75  * it will resume executing the faulting task.
76  *
77  * In this manner the most efficient use of the page table space is
78  * achieved.  Tasks which do not execute often will have their tables
79  * stolen and reused by tasks which execute more frequently.  The best
80  * size for the page table pool will probably be determined by
81  * experimentation.
82  *
83  * You read all of the comments so far.  Good for you.
84  * Now go play!
85  */
86 
87 /*** A Note About the 68851 Address Translation Cache
88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
89  * or 'ATC'.  This cache stores the most recently used page descriptors
90  * accessed by the MMU when it does translations.  Using a marker called a
91  * 'task alias' the MMU can store the descriptors from 8 different table
92  * spaces concurrently.  The task alias is associated with the base
93  * address of the level A table of that address space.  When an address
94  * space is currently active (the CRP currently points to its A table)
95  * the only cached descriptors that will be obeyed are ones which have a
96  * matching task alias of the current space associated with them.
97  *
98  * Since the cache is always consulted before any table lookups are done,
99  * it is important that it accurately reflect the state of the MMU tables.
100  * Whenever a change has been made to a table that has been loaded into
101  * the MMU, the code must be sure to flush any cached entries that are
102  * affected by the change.  These instances are documented in the code at
103  * various points.
104  */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106  * 4 months into this code I discovered that the sun3x does not have
107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108  * the 68030 CPU.
109  * All though it behaves very similarly to the 68851, it only has 1 task
110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
111  * of the previous note does not apply to the sun3x pmap.
112  */
113 
114 #include "opt_ddb.h"
115 
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124 
125 #include <uvm/uvm.h>
126 
127 #include <machine/cpu.h>
128 #include <machine/kcore.h>
129 #include <machine/mon.h>
130 #include <machine/pmap.h>
131 #include <machine/pte.h>
132 #include <machine/vmparam.h>
133 
134 #include <sun3/sun3/cache.h>
135 #include <sun3/sun3/machdep.h>
136 
137 #include "pmap_pvt.h"
138 
139 /* XXX - What headers declare these? */
140 extern struct pcb *curpcb;
141 extern int physmem;
142 
143 /* Defined in locore.s */
144 extern char kernel_text[];
145 
146 /* Defined by the linker */
147 extern char etext[], edata[], end[];
148 extern char *esym;	/* DDB */
149 
150 /*************************** DEBUGGING DEFINITIONS ***********************
151  * Macros, preprocessor defines and variables used in debugging can make *
152  * code hard to read.  Anything used exclusively for debugging purposes  *
153  * is defined here to avoid having such mess scattered around the file.  *
154  *************************************************************************/
155 #ifdef	PMAP_DEBUG
156 /*
157  * To aid the debugging process, macros should be expanded into smaller steps
158  * that accomplish the same goal, yet provide convenient places for placing
159  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
160  * 'INLINE' keyword is defined to an empty string.  This way, any function
161  * defined to be a 'static INLINE' will become 'outlined' and compiled as
162  * a separate function, which is much easier to debug.
163  */
164 #define	INLINE	/* nothing */
165 
166 /*
167  * It is sometimes convenient to watch the activity of a particular table
168  * in the system.  The following variables are used for that purpose.
169  */
170 a_tmgr_t *pmap_watch_atbl = 0;
171 b_tmgr_t *pmap_watch_btbl = 0;
172 c_tmgr_t *pmap_watch_ctbl = 0;
173 
174 int pmap_debug = 0;
175 #define DPRINT(args) if (pmap_debug) printf args
176 
177 #else	/********** Stuff below is defined if NOT debugging **************/
178 
179 #define	INLINE	inline
180 #define DPRINT(args)  /* nada */
181 
182 #endif	/* PMAP_DEBUG */
183 /*********************** END OF DEBUGGING DEFINITIONS ********************/
184 
185 /*** Management Structure - Memory Layout
186  * For every MMU table in the sun3x pmap system there must be a way to
187  * manage it; we must know which process is using it, what other tables
188  * depend on it, and whether or not it contains any locked pages.  This
189  * is solved by the creation of 'table management'  or 'tmgr'
190  * structures.  One for each MMU table in the system.
191  *
192  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
193  *
194  *      towards lower memory
195  * kernAbase -> +-------------------------------------------------------+
196  *              | Kernel     MMU A level table                          |
197  * kernBbase -> +-------------------------------------------------------+
198  *              | Kernel     MMU B level tables                         |
199  * kernCbase -> +-------------------------------------------------------+
200  *              |                                                       |
201  *              | Kernel     MMU C level tables                         |
202  *              |                                                       |
203  * mmuCbase  -> +-------------------------------------------------------+
204  *              | User       MMU C level tables                         |
205  * mmuAbase  -> +-------------------------------------------------------+
206  *              |                                                       |
207  *              | User       MMU A level tables                         |
208  *              |                                                       |
209  * mmuBbase  -> +-------------------------------------------------------+
210  *              | User       MMU B level tables                         |
211  * tmgrAbase -> +-------------------------------------------------------+
212  *              |  TMGR A level table structures                        |
213  * tmgrBbase -> +-------------------------------------------------------+
214  *              |  TMGR B level table structures                        |
215  * tmgrCbase -> +-------------------------------------------------------+
216  *              |  TMGR C level table structures                        |
217  * pvbase    -> +-------------------------------------------------------+
218  *              |  Physical to Virtual mapping table (list heads)       |
219  * pvebase   -> +-------------------------------------------------------+
220  *              |  Physical to Virtual mapping table (list elements)    |
221  *              |                                                       |
222  *              +-------------------------------------------------------+
223  *      towards higher memory
224  *
225  * For every A table in the MMU A area, there will be a corresponding
226  * a_tmgr structure in the TMGR A area.  The same will be true for
227  * the B and C tables.  This arrangement will make it easy to find the
228  * controling tmgr structure for any table in the system by use of
229  * (relatively) simple macros.
230  */
231 
232 /*
233  * Global variables for storing the base addresses for the areas
234  * labeled above.
235  */
236 static vaddr_t  	kernAphys;
237 static mmu_long_dte_t	*kernAbase;
238 static mmu_short_dte_t	*kernBbase;
239 static mmu_short_pte_t	*kernCbase;
240 static mmu_short_pte_t	*mmuCbase;
241 static mmu_short_dte_t	*mmuBbase;
242 static mmu_long_dte_t	*mmuAbase;
243 static a_tmgr_t		*Atmgrbase;
244 static b_tmgr_t		*Btmgrbase;
245 static c_tmgr_t		*Ctmgrbase;
246 static pv_t 		*pvbase;
247 static pv_elem_t	*pvebase;
248 struct pmap 		kernel_pmap;
249 
250 /*
251  * This holds the CRP currently loaded into the MMU.
252  */
253 struct mmu_rootptr kernel_crp;
254 
255 /*
256  * Just all around global variables.
257  */
258 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
259 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
260 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
261 
262 
263 /*
264  * Flags used to mark the safety/availability of certain operations or
265  * resources.
266  */
267 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
268 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
269 
270 /*
271  * XXX:  For now, retain the traditional variables that were
272  * used in the old pmap/vm interface (without NONCONTIG).
273  */
274 /* Kernel virtual address space available: */
275 vaddr_t	virtual_avail, virtual_end;
276 /* Physical address space available: */
277 paddr_t	avail_start, avail_end;
278 
279 /* This keep track of the end of the contiguously mapped range. */
280 vaddr_t virtual_contig_end;
281 
282 /* Physical address used by pmap_next_page() */
283 paddr_t avail_next;
284 
285 /* These are used by pmap_copy_page(), etc. */
286 vaddr_t tmp_vpages[2];
287 
288 /* memory pool for pmap structures */
289 struct pool	pmap_pmap_pool;
290 
291 /*
292  * The 3/80 is the only member of the sun3x family that has non-contiguous
293  * physical memory.  Memory is divided into 4 banks which are physically
294  * locatable on the system board.  Although the size of these banks varies
295  * with the size of memory they contain, their base addresses are
296  * permenently fixed.  The following structure, which describes these
297  * banks, is initialized by pmap_bootstrap() after it reads from a similar
298  * structure provided by the ROM Monitor.
299  *
300  * For the other machines in the sun3x architecture which do have contiguous
301  * RAM, this list will have only one entry, which will describe the entire
302  * range of available memory.
303  */
304 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
305 u_int total_phys_mem;
306 
307 /*************************************************************************/
308 
309 /*
310  * XXX - Should "tune" these based on statistics.
311  *
312  * My first guess about the relative numbers of these needed is
313  * based on the fact that a "typical" process will have several
314  * pages mapped at low virtual addresses (text, data, bss), then
315  * some mapped shared libraries, and then some stack pages mapped
316  * near the high end of the VA space.  Each process can use only
317  * one A table, and most will use only two B tables (maybe three)
318  * and probably about four C tables.  Therefore, the first guess
319  * at the relative numbers of these needed is 1:2:4 -gwr
320  *
321  * The number of C tables needed is closely related to the amount
322  * of physical memory available plus a certain amount attributable
323  * to the use of double mappings.  With a few simulation statistics
324  * we can find a reasonably good estimation of this unknown value.
325  * Armed with that and the above ratios, we have a good idea of what
326  * is needed at each level. -j
327  *
328  * Note: It is not physical memory memory size, but the total mapped
329  * virtual space required by the combined working sets of all the
330  * currently _runnable_ processes.  (Sleeping ones don't count.)
331  * The amount of physical memory should be irrelevant. -gwr
332  */
333 #ifdef	FIXED_NTABLES
334 #define NUM_A_TABLES	16
335 #define NUM_B_TABLES	32
336 #define NUM_C_TABLES	64
337 #else
338 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
339 #endif	/* FIXED_NTABLES */
340 
341 /*
342  * This determines our total virtual mapping capacity.
343  * Yes, it is a FIXED value so we can pre-allocate.
344  */
345 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
346 
347 /*
348  * The size of the Kernel Virtual Address Space (KVAS)
349  * for purposes of MMU table allocation is -KERNBASE
350  * (length from KERNBASE to 0xFFFFffff)
351  */
352 #define	KVAS_SIZE		(-KERNBASE)
353 
354 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
355 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
356 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
357 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
358 
359 /*************************** MISCELANEOUS MACROS *************************/
360 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
361 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
362 #define pmap_add_ref(pmap) ++pmap->pm_refcount
363 #define pmap_del_ref(pmap) --pmap->pm_refcount
364 #define pmap_refcount(pmap) pmap->pm_refcount
365 
366 void *pmap_bootstrap_alloc(int);
367 
368 static INLINE void *mmu_ptov __P((paddr_t));
369 static INLINE paddr_t mmu_vtop __P((void *));
370 
371 #if	0
372 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
373 #endif /* 0 */
374 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
375 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
376 
377 static INLINE pv_t *pa2pv __P((paddr_t));
378 static INLINE int   pteidx __P((mmu_short_pte_t *));
379 static INLINE pmap_t current_pmap __P((void));
380 
381 /*
382  * We can always convert between virtual and physical addresses
383  * for anything in the range [KERNBASE ... avail_start] because
384  * that range is GUARANTEED to be mapped linearly.
385  * We rely heavily upon this feature!
386  */
387 static INLINE void *
388 mmu_ptov(pa)
389 	paddr_t pa;
390 {
391 	vaddr_t va;
392 
393 	va = (pa + KERNBASE);
394 #ifdef	PMAP_DEBUG
395 	if ((va < KERNBASE) || (va >= virtual_contig_end))
396 		panic("mmu_ptov");
397 #endif
398 	return ((void*)va);
399 }
400 
401 static INLINE paddr_t
402 mmu_vtop(vva)
403 	void *vva;
404 {
405 	vaddr_t va;
406 
407 	va = (vaddr_t)vva;
408 #ifdef	PMAP_DEBUG
409 	if ((va < KERNBASE) || (va >= virtual_contig_end))
410 		panic("mmu_vtop");
411 #endif
412 	return (va - KERNBASE);
413 }
414 
415 /*
416  * These macros map MMU tables to their corresponding manager structures.
417  * They are needed quite often because many of the pointers in the pmap
418  * system reference MMU tables and not the structures that control them.
419  * There needs to be a way to find one when given the other and these
420  * macros do so by taking advantage of the memory layout described above.
421  * Here's a quick step through the first macro, mmuA2tmgr():
422  *
423  * 1) find the offset of the given MMU A table from the base of its table
424  *    pool (table - mmuAbase).
425  * 2) convert this offset into a table index by dividing it by the
426  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
427  * 3) use this index to select the corresponding 'A' table manager
428  *    structure from the 'A' table manager pool (Atmgrbase[index]).
429  */
430 /*  This function is not currently used. */
431 #if	0
432 static INLINE a_tmgr_t *
433 mmuA2tmgr(mmuAtbl)
434 	mmu_long_dte_t *mmuAtbl;
435 {
436 	int idx;
437 
438 	/* Which table is this in? */
439 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
440 #ifdef	PMAP_DEBUG
441 	if ((idx < 0) || (idx >= NUM_A_TABLES))
442 		panic("mmuA2tmgr");
443 #endif
444 	return (&Atmgrbase[idx]);
445 }
446 #endif	/* 0 */
447 
448 static INLINE b_tmgr_t *
449 mmuB2tmgr(mmuBtbl)
450 	mmu_short_dte_t *mmuBtbl;
451 {
452 	int idx;
453 
454 	/* Which table is this in? */
455 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
456 #ifdef	PMAP_DEBUG
457 	if ((idx < 0) || (idx >= NUM_B_TABLES))
458 		panic("mmuB2tmgr");
459 #endif
460 	return (&Btmgrbase[idx]);
461 }
462 
463 /* mmuC2tmgr			INTERNAL
464  **
465  * Given a pte known to belong to a C table, return the address of
466  * that table's management structure.
467  */
468 static INLINE c_tmgr_t *
469 mmuC2tmgr(mmuCtbl)
470 	mmu_short_pte_t *mmuCtbl;
471 {
472 	int idx;
473 
474 	/* Which table is this in? */
475 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
476 #ifdef	PMAP_DEBUG
477 	if ((idx < 0) || (idx >= NUM_C_TABLES))
478 		panic("mmuC2tmgr");
479 #endif
480 	return (&Ctmgrbase[idx]);
481 }
482 
483 /* This is now a function call below.
484  * #define pa2pv(pa) \
485  *	(&pvbase[(unsigned long)\
486  *		m68k_btop(pa)\
487  *	])
488  */
489 
490 /* pa2pv			INTERNAL
491  **
492  * Return the pv_list_head element which manages the given physical
493  * address.
494  */
495 static INLINE pv_t *
496 pa2pv(pa)
497 	paddr_t pa;
498 {
499 	struct pmap_physmem_struct *bank;
500 	int idx;
501 
502 	bank = &avail_mem[0];
503 	while (pa >= bank->pmem_end)
504 		bank = bank->pmem_next;
505 
506 	pa -= bank->pmem_start;
507 	idx = bank->pmem_pvbase + m68k_btop(pa);
508 #ifdef	PMAP_DEBUG
509 	if ((idx < 0) || (idx >= physmem))
510 		panic("pa2pv");
511 #endif
512 	return &pvbase[idx];
513 }
514 
515 /* pteidx			INTERNAL
516  **
517  * Return the index of the given PTE within the entire fixed table of
518  * PTEs.
519  */
520 static INLINE int
521 pteidx(pte)
522 	mmu_short_pte_t *pte;
523 {
524 	return (pte - kernCbase);
525 }
526 
527 /*
528  * This just offers a place to put some debugging checks,
529  * and reduces the number of places "curproc" appears...
530  */
531 static INLINE pmap_t
532 current_pmap()
533 {
534 	struct proc *p;
535 	struct vmspace *vm;
536 	struct vm_map *map;
537 	pmap_t	pmap;
538 
539 	p = curproc;	/* XXX */
540 	if (p == NULL)
541 		pmap = &kernel_pmap;
542 	else {
543 		vm = p->p_vmspace;
544 		map = &vm->vm_map;
545 		pmap = vm_map_pmap(map);
546 	}
547 
548 	return (pmap);
549 }
550 
551 
552 /*************************** FUNCTION DEFINITIONS ************************
553  * These appear here merely for the compiler to enforce type checking on *
554  * all function calls.                                                   *
555  *************************************************************************/
556 
557 /** Internal functions
558  ** Most functions used only within this module are defined in
559  **   pmap_pvt.h (why not here if used only here?)
560  **/
561 static void pmap_page_upload __P((void));
562 
563 /** Interface functions
564  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
565  **   defined.
566  **/
567 void pmap_pinit __P((pmap_t));
568 void pmap_release __P((pmap_t));
569 
570 /********************************** CODE ********************************
571  * Functions that are called from other parts of the kernel are labeled *
572  * as 'INTERFACE' functions.  Functions that are only called from       *
573  * within the pmap module are labeled as 'INTERNAL' functions.          *
574  * Functions that are internal, but are not (currently) used at all are *
575  * labeled 'INTERNAL_X'.                                                *
576  ************************************************************************/
577 
578 /* pmap_bootstrap			INTERNAL
579  **
580  * Initializes the pmap system.  Called at boot time from
581  * locore2.c:_vm_init()
582  *
583  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
584  *           system implement pmap_steal_memory() is redundant.
585  *           Don't release this code without removing one or the other!
586  */
587 void
588 pmap_bootstrap(nextva)
589 	vaddr_t nextva;
590 {
591 	struct physmemory *membank;
592 	struct pmap_physmem_struct *pmap_membank;
593 	vaddr_t va, eva;
594 	paddr_t pa;
595 	int b, c, i, j;	/* running table counts */
596 	int size, resvmem;
597 
598 	/*
599 	 * This function is called by __bootstrap after it has
600 	 * determined the type of machine and made the appropriate
601 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
602 	 * by that.)  It allocates and sets up enough of the pmap system
603 	 * to manage the kernel's address space.
604 	 */
605 
606 	/*
607 	 * Determine the range of kernel virtual and physical
608 	 * space available. Note that we ABSOLUTELY DEPEND on
609 	 * the fact that the first bank of memory (4MB) is
610 	 * mapped linearly to KERNBASE (which we guaranteed in
611 	 * the first instructions of locore.s).
612 	 * That is plenty for our bootstrap work.
613 	 */
614 	virtual_avail = m68k_round_page(nextva);
615 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
616 	virtual_end = VM_MAX_KERNEL_ADDRESS;
617 	/* Don't need avail_start til later. */
618 
619 	/* We may now call pmap_bootstrap_alloc(). */
620 	bootstrap_alloc_enabled = TRUE;
621 
622 	/*
623 	 * This is a somewhat unwrapped loop to deal with
624 	 * copying the PROM's 'phsymem' banks into the pmap's
625 	 * banks.  The following is always assumed:
626 	 * 1. There is always at least one bank of memory.
627 	 * 2. There is always a last bank of memory, and its
628 	 *    pmem_next member must be set to NULL.
629 	 */
630 	membank = romVectorPtr->v_physmemory;
631 	pmap_membank = avail_mem;
632 	total_phys_mem = 0;
633 
634 	for (;;) { /* break on !membank */
635 		pmap_membank->pmem_start = membank->address;
636 		pmap_membank->pmem_end = membank->address + membank->size;
637 		total_phys_mem += membank->size;
638 		membank = membank->next;
639 		if (!membank)
640 			break;
641 		/* This silly syntax arises because pmap_membank
642 		 * is really a pre-allocated array, but it is put into
643 		 * use as a linked list.
644 		 */
645 		pmap_membank->pmem_next = pmap_membank + 1;
646 		pmap_membank = pmap_membank->pmem_next;
647 	}
648 	/* This is the last element. */
649 	pmap_membank->pmem_next = NULL;
650 
651 	/*
652 	 * Note: total_phys_mem, physmem represent
653 	 * actual physical memory, including that
654 	 * reserved for the PROM monitor.
655 	 */
656 	physmem = btoc(total_phys_mem);
657 
658 	/*
659 	 * Avail_end is set to the first byte of physical memory
660 	 * after the end of the last bank.  We use this only to
661 	 * determine if a physical address is "managed" memory.
662 	 * This address range should be reduced to prevent the
663 	 * physical pages needed by the PROM monitor from being used
664 	 * in the VM system.
665 	 */
666 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
667 	resvmem = m68k_round_page(resvmem);
668 	avail_end = pmap_membank->pmem_end - resvmem;
669 
670 	/*
671 	 * First allocate enough kernel MMU tables to map all
672 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
673 	 * Note: All must be aligned on 256 byte boundaries.
674 	 * Start with the level-A table (one of those).
675 	 */
676 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
677 	kernAbase = pmap_bootstrap_alloc(size);
678 	memset(kernAbase, 0, size);
679 
680 	/* Now the level-B kernel tables... */
681 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
682 	kernBbase = pmap_bootstrap_alloc(size);
683 	memset(kernBbase, 0, size);
684 
685 	/* Now the level-C kernel tables... */
686 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
687 	kernCbase = pmap_bootstrap_alloc(size);
688 	memset(kernCbase, 0, size);
689 	/*
690 	 * Note: In order for the PV system to work correctly, the kernel
691 	 * and user-level C tables must be allocated contiguously.
692 	 * Nothing should be allocated between here and the allocation of
693 	 * mmuCbase below.  XXX: Should do this as one allocation, and
694 	 * then compute a pointer for mmuCbase instead of this...
695 	 *
696 	 * Allocate user MMU tables.
697 	 * These must be contiguous with the preceding.
698 	 */
699 
700 #ifndef	FIXED_NTABLES
701 	/*
702 	 * The number of user-level C tables that should be allocated is
703 	 * related to the size of physical memory.  In general, there should
704 	 * be enough tables to map four times the amount of available RAM.
705 	 * The extra amount is needed because some table space is wasted by
706 	 * fragmentation.
707 	 */
708 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
709 	NUM_B_TABLES = NUM_C_TABLES / 2;
710 	NUM_A_TABLES = NUM_B_TABLES / 2;
711 #endif	/* !FIXED_NTABLES */
712 
713 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
714 	mmuCbase = pmap_bootstrap_alloc(size);
715 
716 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
717 	mmuBbase = pmap_bootstrap_alloc(size);
718 
719 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
720 	mmuAbase = pmap_bootstrap_alloc(size);
721 
722 	/*
723 	 * Fill in the never-changing part of the kernel tables.
724 	 * For simplicity, the kernel's mappings will be editable as a
725 	 * flat array of page table entries at kernCbase.  The
726 	 * higher level 'A' and 'B' tables must be initialized to point
727 	 * to this lower one.
728 	 */
729 	b = c = 0;
730 
731 	/*
732 	 * Invalidate all mappings below KERNBASE in the A table.
733 	 * This area has already been zeroed out, but it is good
734 	 * practice to explicitly show that we are interpreting
735 	 * it as a list of A table descriptors.
736 	 */
737 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
738 		kernAbase[i].addr.raw = 0;
739 	}
740 
741 	/*
742 	 * Set up the kernel A and B tables so that they will reference the
743 	 * correct spots in the contiguous table of PTEs allocated for the
744 	 * kernel's virtual memory space.
745 	 */
746 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
747 		kernAbase[i].attr.raw =
748 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
749 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
750 
751 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
752 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
753 				| MMU_DT_SHORT;
754 			c += MMU_C_TBL_SIZE;
755 		}
756 		b += MMU_B_TBL_SIZE;
757 	}
758 
759 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
760 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
761 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
762 
763 	/*
764 	 * We are now done with pmap_bootstrap_alloc().  Round up
765 	 * `virtual_avail' to the nearest page, and set the flag
766 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
767 	 */
768 	pmap_bootstrap_aalign(NBPG);
769 	bootstrap_alloc_enabled = FALSE;
770 
771 	/*
772 	 * Now that we are done with pmap_bootstrap_alloc(), we
773 	 * must save the virtual and physical addresses of the
774 	 * end of the linearly mapped range, which are stored in
775 	 * virtual_contig_end and avail_start, respectively.
776 	 * These variables will never change after this point.
777 	 */
778 	virtual_contig_end = virtual_avail;
779 	avail_start = virtual_avail - KERNBASE;
780 
781 	/*
782 	 * `avail_next' is a running pointer used by pmap_next_page() to
783 	 * keep track of the next available physical page to be handed
784 	 * to the VM system during its initialization, in which it
785 	 * asks for physical pages, one at a time.
786 	 */
787 	avail_next = avail_start;
788 
789 	/*
790 	 * Now allocate some virtual addresses, but not the physical pages
791 	 * behind them.  Note that virtual_avail is already page-aligned.
792 	 *
793 	 * tmp_vpages[] is an array of two virtual pages used for temporary
794 	 * kernel mappings in the pmap module to facilitate various physical
795 	 * address-oritented operations.
796 	 */
797 	tmp_vpages[0] = virtual_avail;
798 	virtual_avail += NBPG;
799 	tmp_vpages[1] = virtual_avail;
800 	virtual_avail += NBPG;
801 
802 	/** Initialize the PV system **/
803 	pmap_init_pv();
804 
805 	/*
806 	 * Fill in the kernel_pmap structure and kernel_crp.
807 	 */
808 	kernAphys = mmu_vtop(kernAbase);
809 	kernel_pmap.pm_a_tmgr = NULL;
810 	kernel_pmap.pm_a_phys = kernAphys;
811 	kernel_pmap.pm_refcount = 1; /* always in use */
812 	simple_lock_init(&kernel_pmap.pm_lock);
813 
814 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
815 	kernel_crp.rp_addr = kernAphys;
816 
817 	/*
818 	 * Now pmap_enter_kernel() may be used safely and will be
819 	 * the main interface used hereafter to modify the kernel's
820 	 * virtual address space.  Note that since we are still running
821 	 * under the PROM's address table, none of these table modifications
822 	 * actually take effect until pmap_takeover_mmu() is called.
823 	 *
824 	 * Note: Our tables do NOT have the PROM linear mappings!
825 	 * Only the mappings created here exist in our tables, so
826 	 * remember to map anything we expect to use.
827 	 */
828 	va = (vaddr_t)KERNBASE;
829 	pa = 0;
830 
831 	/*
832 	 * The first page of the kernel virtual address space is the msgbuf
833 	 * page.  The page attributes (data, non-cached) are set here, while
834 	 * the address is assigned to this global pointer in cpu_startup().
835 	 * It is non-cached, mostly due to paranoia.
836 	 */
837 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
838 	va += NBPG; pa += NBPG;
839 
840 	/* Next page is used as the temporary stack. */
841 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
842 	va += NBPG; pa += NBPG;
843 
844 	/*
845 	 * Map all of the kernel's text segment as read-only and cacheable.
846 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
847 	 * of kernel text and the first bytes of kernel data will often be
848 	 * sharing the same page.  Therefore, the last page of kernel text
849 	 * has to be mapped as read/write, to accomodate the data.
850 	 */
851 	eva = m68k_trunc_page((vaddr_t)etext);
852 	for (; va < eva; va += NBPG, pa += NBPG)
853 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
854 
855 	/*
856 	 * Map all of the kernel's data as read/write and cacheable.
857 	 * This includes: data, BSS, symbols, and everything in the
858 	 * contiguous memory used by pmap_bootstrap_alloc()
859 	 */
860 	for (; pa < avail_start; va += NBPG, pa += NBPG)
861 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
862 
863 	/*
864 	 * At this point we are almost ready to take over the MMU.  But first
865 	 * we must save the PROM's address space in our map, as we call its
866 	 * routines and make references to its data later in the kernel.
867 	 */
868 	pmap_bootstrap_copyprom();
869 	pmap_takeover_mmu();
870 	pmap_bootstrap_setprom();
871 
872 	/* Notify the VM system of our page size. */
873 	uvmexp.pagesize = NBPG;
874 	uvm_setpagesize();
875 
876 	pmap_page_upload();
877 }
878 
879 
880 /* pmap_alloc_usermmu			INTERNAL
881  **
882  * Called from pmap_bootstrap() to allocate MMU tables that will
883  * eventually be used for user mappings.
884  */
885 void
886 pmap_alloc_usermmu()
887 {
888 	/* XXX: Moved into caller. */
889 }
890 
891 /* pmap_alloc_pv			INTERNAL
892  **
893  * Called from pmap_bootstrap() to allocate the physical
894  * to virtual mapping list.  Each physical page of memory
895  * in the system has a corresponding element in this list.
896  */
897 void
898 pmap_alloc_pv()
899 {
900 	int	i;
901 	unsigned int	total_mem;
902 
903 	/*
904 	 * Allocate a pv_head structure for every page of physical
905 	 * memory that will be managed by the system.  Since memory on
906 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
907 	 * count by subtraction of the lowest available address from the
908 	 * highest, but rather we have to step through each memory
909 	 * bank and add the number of pages in each to the total.
910 	 *
911 	 * At this time we also initialize the offset of each bank's
912 	 * starting pv_head within the pv_head list so that the physical
913 	 * memory state routines (pmap_is_referenced(),
914 	 * pmap_is_modified(), et al.) can quickly find coresponding
915 	 * pv_heads in spite of the non-contiguity.
916 	 */
917 	total_mem = 0;
918 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
919 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
920 		total_mem += avail_mem[i].pmem_end -
921 			avail_mem[i].pmem_start;
922 		if (avail_mem[i].pmem_next == NULL)
923 			break;
924 	}
925 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
926 		m68k_btop(total_phys_mem));
927 }
928 
929 /* pmap_alloc_usertmgr			INTERNAL
930  **
931  * Called from pmap_bootstrap() to allocate the structures which
932  * facilitate management of user MMU tables.  Each user MMU table
933  * in the system has one such structure associated with it.
934  */
935 void
936 pmap_alloc_usertmgr()
937 {
938 	/* Allocate user MMU table managers */
939 	/* It would be a lot simpler to just make these BSS, but */
940 	/* we may want to change their size at boot time... -j */
941 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
942 		* NUM_A_TABLES);
943 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
944 		* NUM_B_TABLES);
945 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
946 		* NUM_C_TABLES);
947 
948 	/*
949 	 * Allocate PV list elements for the physical to virtual
950 	 * mapping system.
951 	 */
952 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
953 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
954 }
955 
956 /* pmap_bootstrap_copyprom()			INTERNAL
957  **
958  * Copy the PROM mappings into our own tables.  Note, we
959  * can use physical addresses until __bootstrap returns.
960  */
961 void
962 pmap_bootstrap_copyprom()
963 {
964 	struct sunromvec *romp;
965 	int *mon_ctbl;
966 	mmu_short_pte_t *kpte;
967 	int i, len;
968 
969 	romp = romVectorPtr;
970 
971 	/*
972 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
973 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
974 	 */
975 	mon_ctbl = *romp->monptaddr;
976 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
977 	kpte = &kernCbase[i];
978 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
979 
980 	for (i = 0; i < len; i++) {
981 		kpte[i].attr.raw = mon_ctbl[i];
982 	}
983 
984 	/*
985 	 * Copy the mappings at MON_DVMA_BASE (to the end).
986 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
987 	 * Actually, we only want the last page, which the
988 	 * PROM has set up for use by the "ie" driver.
989 	 * (The i82686 needs its SCP there.)
990 	 * If we copy all the mappings, pmap_enter_kernel
991 	 * may complain about finding valid PTEs that are
992 	 * not recorded in our PV lists...
993 	 */
994 	mon_ctbl = *romp->shadowpteaddr;
995 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
996 	kpte = &kernCbase[i];
997 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
998 	for (i = (len-1); i < len; i++) {
999 		kpte[i].attr.raw = mon_ctbl[i];
1000 	}
1001 }
1002 
1003 /* pmap_takeover_mmu			INTERNAL
1004  **
1005  * Called from pmap_bootstrap() after it has copied enough of the
1006  * PROM mappings into the kernel map so that we can use our own
1007  * MMU table.
1008  */
1009 void
1010 pmap_takeover_mmu()
1011 {
1012 
1013 	loadcrp(&kernel_crp);
1014 }
1015 
1016 /* pmap_bootstrap_setprom()			INTERNAL
1017  **
1018  * Set the PROM mappings so it can see kernel space.
1019  * Note that physical addresses are used here, which
1020  * we can get away with because this runs with the
1021  * low 1GB set for transparent translation.
1022  */
1023 void
1024 pmap_bootstrap_setprom()
1025 {
1026 	mmu_long_dte_t *mon_dte;
1027 	extern struct mmu_rootptr mon_crp;
1028 	int i;
1029 
1030 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1031 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1032 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1033 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1034 	}
1035 }
1036 
1037 
1038 /* pmap_init			INTERFACE
1039  **
1040  * Called at the end of vm_init() to set up the pmap system to go
1041  * into full time operation.  All initialization of kernel_pmap
1042  * should be already done by now, so this should just do things
1043  * needed for user-level pmaps to work.
1044  */
1045 void
1046 pmap_init()
1047 {
1048 	/** Initialize the manager pools **/
1049 	TAILQ_INIT(&a_pool);
1050 	TAILQ_INIT(&b_pool);
1051 	TAILQ_INIT(&c_pool);
1052 
1053 	/**************************************************************
1054 	 * Initialize all tmgr structures and MMU tables they manage. *
1055 	 **************************************************************/
1056 	/** Initialize A tables **/
1057 	pmap_init_a_tables();
1058 	/** Initialize B tables **/
1059 	pmap_init_b_tables();
1060 	/** Initialize C tables **/
1061 	pmap_init_c_tables();
1062 
1063 	/** Initialize the pmap pools **/
1064 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1065 	    &pool_allocator_nointr);
1066 }
1067 
1068 /* pmap_init_a_tables()			INTERNAL
1069  **
1070  * Initializes all A managers, their MMU A tables, and inserts
1071  * them into the A manager pool for use by the system.
1072  */
1073 void
1074 pmap_init_a_tables()
1075 {
1076 	int i;
1077 	a_tmgr_t *a_tbl;
1078 
1079 	for (i=0; i < NUM_A_TABLES; i++) {
1080 		/* Select the next available A manager from the pool */
1081 		a_tbl = &Atmgrbase[i];
1082 
1083 		/*
1084 		 * Clear its parent entry.  Set its wired and valid
1085 		 * entry count to zero.
1086 		 */
1087 		a_tbl->at_parent = NULL;
1088 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1089 
1090 		/* Assign it the next available MMU A table from the pool */
1091 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1092 
1093 		/*
1094 		 * Initialize the MMU A table with the table in the `proc0',
1095 		 * or kernel, mapping.  This ensures that every process has
1096 		 * the kernel mapped in the top part of its address space.
1097 		 */
1098 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1099 			sizeof(mmu_long_dte_t));
1100 
1101 		/*
1102 		 * Finally, insert the manager into the A pool,
1103 		 * making it ready to be used by the system.
1104 		 */
1105 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1106     }
1107 }
1108 
1109 /* pmap_init_b_tables()			INTERNAL
1110  **
1111  * Initializes all B table managers, their MMU B tables, and
1112  * inserts them into the B manager pool for use by the system.
1113  */
1114 void
1115 pmap_init_b_tables()
1116 {
1117 	int i,j;
1118 	b_tmgr_t *b_tbl;
1119 
1120 	for (i=0; i < NUM_B_TABLES; i++) {
1121 		/* Select the next available B manager from the pool */
1122 		b_tbl = &Btmgrbase[i];
1123 
1124 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1125 		b_tbl->bt_pidx = 0;		/* parent index,      */
1126 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1127 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1128 
1129 		/* Assign it the next available MMU B table from the pool */
1130 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1131 
1132 		/* Invalidate every descriptor in the table */
1133 		for (j=0; j < MMU_B_TBL_SIZE; j++)
1134 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1135 
1136 		/* Insert the manager into the B pool */
1137 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1138 	}
1139 }
1140 
1141 /* pmap_init_c_tables()			INTERNAL
1142  **
1143  * Initializes all C table managers, their MMU C tables, and
1144  * inserts them into the C manager pool for use by the system.
1145  */
1146 void
1147 pmap_init_c_tables()
1148 {
1149 	int i,j;
1150 	c_tmgr_t *c_tbl;
1151 
1152 	for (i=0; i < NUM_C_TABLES; i++) {
1153 		/* Select the next available C manager from the pool */
1154 		c_tbl = &Ctmgrbase[i];
1155 
1156 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1157 		c_tbl->ct_pidx = 0;		/* parent index,      */
1158 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1159 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1160 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1161 		c_tbl->ct_va = 0;		/* base of managed range */
1162 
1163 		/* Assign it the next available MMU C table from the pool */
1164 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1165 
1166 		for (j=0; j < MMU_C_TBL_SIZE; j++)
1167 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1168 
1169 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1170 	}
1171 }
1172 
1173 /* pmap_init_pv()			INTERNAL
1174  **
1175  * Initializes the Physical to Virtual mapping system.
1176  */
1177 void
1178 pmap_init_pv()
1179 {
1180 	int	i;
1181 
1182 	/* Initialize every PV head. */
1183 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1184 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1185 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1186 	}
1187 }
1188 
1189 /* get_a_table			INTERNAL
1190  **
1191  * Retrieve and return a level A table for use in a user map.
1192  */
1193 a_tmgr_t *
1194 get_a_table()
1195 {
1196 	a_tmgr_t *tbl;
1197 	pmap_t pmap;
1198 
1199 	/* Get the top A table in the pool */
1200 	tbl = a_pool.tqh_first;
1201 	if (tbl == NULL) {
1202 		/*
1203 		 * XXX - Instead of panicing here and in other get_x_table
1204 		 * functions, we do have the option of sleeping on the head of
1205 		 * the table pool.  Any function which updates the table pool
1206 		 * would then issue a wakeup() on the head, thus waking up any
1207 		 * processes waiting for a table.
1208 		 *
1209 		 * Actually, the place to sleep would be when some process
1210 		 * asks for a "wired" mapping that would run us short of
1211 		 * mapping resources.  This design DEPENDS on always having
1212 		 * some mapping resources in the pool for stealing, so we
1213 		 * must make sure we NEVER let the pool become empty. -gwr
1214 		 */
1215 		panic("get_a_table: out of A tables.");
1216 	}
1217 
1218 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1219 	/*
1220 	 * If the table has a non-null parent pointer then it is in use.
1221 	 * Forcibly abduct it from its parent and clear its entries.
1222 	 * No re-entrancy worries here.  This table would not be in the
1223 	 * table pool unless it was available for use.
1224 	 *
1225 	 * Note that the second argument to free_a_table() is FALSE.  This
1226 	 * indicates that the table should not be relinked into the A table
1227 	 * pool.  That is a job for the function that called us.
1228 	 */
1229 	if (tbl->at_parent) {
1230 		pmap = tbl->at_parent;
1231 		free_a_table(tbl, FALSE);
1232 		pmap->pm_a_tmgr = NULL;
1233 		pmap->pm_a_phys = kernAphys;
1234 	}
1235 	return tbl;
1236 }
1237 
1238 /* get_b_table			INTERNAL
1239  **
1240  * Return a level B table for use.
1241  */
1242 b_tmgr_t *
1243 get_b_table()
1244 {
1245 	b_tmgr_t *tbl;
1246 
1247 	/* See 'get_a_table' for comments. */
1248 	tbl = b_pool.tqh_first;
1249 	if (tbl == NULL)
1250 		panic("get_b_table: out of B tables.");
1251 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1252 	if (tbl->bt_parent) {
1253 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1254 		tbl->bt_parent->at_ecnt--;
1255 		free_b_table(tbl, FALSE);
1256 	}
1257 	return tbl;
1258 }
1259 
1260 /* get_c_table			INTERNAL
1261  **
1262  * Return a level C table for use.
1263  */
1264 c_tmgr_t *
1265 get_c_table()
1266 {
1267 	c_tmgr_t *tbl;
1268 
1269 	/* See 'get_a_table' for comments */
1270 	tbl = c_pool.tqh_first;
1271 	if (tbl == NULL)
1272 		panic("get_c_table: out of C tables.");
1273 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1274 	if (tbl->ct_parent) {
1275 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1276 		tbl->ct_parent->bt_ecnt--;
1277 		free_c_table(tbl, FALSE);
1278 	}
1279 	return tbl;
1280 }
1281 
1282 /*
1283  * The following 'free_table' and 'steal_table' functions are called to
1284  * detach tables from their current obligations (parents and children) and
1285  * prepare them for reuse in another mapping.
1286  *
1287  * Free_table is used when the calling function will handle the fate
1288  * of the parent table, such as returning it to the free pool when it has
1289  * no valid entries.  Functions that do not want to handle this should
1290  * call steal_table, in which the parent table's descriptors and entry
1291  * count are automatically modified when this table is removed.
1292  */
1293 
1294 /* free_a_table			INTERNAL
1295  **
1296  * Unmaps the given A table and all child tables from their current
1297  * mappings.  Returns the number of pages that were invalidated.
1298  * If 'relink' is true, the function will return the table to the head
1299  * of the available table pool.
1300  *
1301  * Cache note: The MC68851 will automatically flush all
1302  * descriptors derived from a given A table from its
1303  * Automatic Translation Cache (ATC) if we issue a
1304  * 'PFLUSHR' instruction with the base address of the
1305  * table.  This function should do, and does so.
1306  * Note note: We are using an MC68030 - there is no
1307  * PFLUSHR.
1308  */
1309 int
1310 free_a_table(a_tbl, relink)
1311 	a_tmgr_t *a_tbl;
1312 	boolean_t relink;
1313 {
1314 	int i, removed_cnt;
1315 	mmu_long_dte_t	*dte;
1316 	mmu_short_dte_t *dtbl;
1317 	b_tmgr_t	*tmgr;
1318 
1319 	/*
1320 	 * Flush the ATC cache of all cached descriptors derived
1321 	 * from this table.
1322 	 * Sun3x does not use 68851's cached table feature
1323 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1324 	 */
1325 
1326 	/*
1327 	 * Remove any pending cache flushes that were designated
1328 	 * for the pmap this A table belongs to.
1329 	 * a_tbl->parent->atc_flushq[0] = 0;
1330 	 * Not implemented in sun3x.
1331 	 */
1332 
1333 	/*
1334 	 * All A tables in the system should retain a map for the
1335 	 * kernel. If the table contains any valid descriptors
1336 	 * (other than those for the kernel area), invalidate them all,
1337 	 * stopping short of the kernel's entries.
1338 	 */
1339 	removed_cnt = 0;
1340 	if (a_tbl->at_ecnt) {
1341 		dte = a_tbl->at_dtbl;
1342 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
1343 			/*
1344 			 * If a table entry points to a valid B table, free
1345 			 * it and its children.
1346 			 */
1347 			if (MMU_VALID_DT(dte[i])) {
1348 				/*
1349 				 * The following block does several things,
1350 				 * from innermost expression to the
1351 				 * outermost:
1352 				 * 1) It extracts the base (cc 1996)
1353 				 *    address of the B table pointed
1354 				 *    to in the A table entry dte[i].
1355 				 * 2) It converts this base address into
1356 				 *    the virtual address it can be
1357 				 *    accessed with. (all MMU tables point
1358 				 *    to physical addresses.)
1359 				 * 3) It finds the corresponding manager
1360 				 *    structure which manages this MMU table.
1361 				 * 4) It frees the manager structure.
1362 				 *    (This frees the MMU table and all
1363 				 *    child tables. See 'free_b_table' for
1364 				 *    details.)
1365 				 */
1366 				dtbl = mmu_ptov(dte[i].addr.raw);
1367 				tmgr = mmuB2tmgr(dtbl);
1368 				removed_cnt += free_b_table(tmgr, TRUE);
1369 				dte[i].attr.raw = MMU_DT_INVALID;
1370 			}
1371 		}
1372 		a_tbl->at_ecnt = 0;
1373 	}
1374 	if (relink) {
1375 		a_tbl->at_parent = NULL;
1376 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1377 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1378 	}
1379 	return removed_cnt;
1380 }
1381 
1382 /* free_b_table			INTERNAL
1383  **
1384  * Unmaps the given B table and all its children from their current
1385  * mappings.  Returns the number of pages that were invalidated.
1386  * (For comments, see 'free_a_table()').
1387  */
1388 int
1389 free_b_table(b_tbl, relink)
1390 	b_tmgr_t *b_tbl;
1391 	boolean_t relink;
1392 {
1393 	int i, removed_cnt;
1394 	mmu_short_dte_t *dte;
1395 	mmu_short_pte_t	*dtbl;
1396 	c_tmgr_t	*tmgr;
1397 
1398 	removed_cnt = 0;
1399 	if (b_tbl->bt_ecnt) {
1400 		dte = b_tbl->bt_dtbl;
1401 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
1402 			if (MMU_VALID_DT(dte[i])) {
1403 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1404 				tmgr = mmuC2tmgr(dtbl);
1405 				removed_cnt += free_c_table(tmgr, TRUE);
1406 				dte[i].attr.raw = MMU_DT_INVALID;
1407 			}
1408 		}
1409 		b_tbl->bt_ecnt = 0;
1410 	}
1411 
1412 	if (relink) {
1413 		b_tbl->bt_parent = NULL;
1414 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1415 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1416 	}
1417 	return removed_cnt;
1418 }
1419 
1420 /* free_c_table			INTERNAL
1421  **
1422  * Unmaps the given C table from use and returns it to the pool for
1423  * re-use.  Returns the number of pages that were invalidated.
1424  *
1425  * This function preserves any physical page modification information
1426  * contained in the page descriptors within the C table by calling
1427  * 'pmap_remove_pte().'
1428  */
1429 int
1430 free_c_table(c_tbl, relink)
1431 	c_tmgr_t *c_tbl;
1432 	boolean_t relink;
1433 {
1434 	int i, removed_cnt;
1435 
1436 	removed_cnt = 0;
1437 	if (c_tbl->ct_ecnt) {
1438 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
1439 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1440 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1441 				removed_cnt++;
1442 			}
1443 		}
1444 		c_tbl->ct_ecnt = 0;
1445 	}
1446 
1447 	if (relink) {
1448 		c_tbl->ct_parent = NULL;
1449 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1450 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1451 	}
1452 	return removed_cnt;
1453 }
1454 
1455 
1456 /* pmap_remove_pte			INTERNAL
1457  **
1458  * Unmap the given pte and preserve any page modification
1459  * information by transfering it to the pv head of the
1460  * physical page it maps to.  This function does not update
1461  * any reference counts because it is assumed that the calling
1462  * function will do so.
1463  */
1464 void
1465 pmap_remove_pte(pte)
1466 	mmu_short_pte_t *pte;
1467 {
1468 	u_short     pv_idx, targ_idx;
1469 	paddr_t     pa;
1470 	pv_t       *pv;
1471 
1472 	pa = MMU_PTE_PA(*pte);
1473 	if (is_managed(pa)) {
1474 		pv = pa2pv(pa);
1475 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1476 
1477 		/*
1478 		 * If the PTE being removed is the first (or only) PTE in
1479 		 * the list of PTEs currently mapped to this page, remove the
1480 		 * PTE by changing the index found on the PV head.  Otherwise
1481 		 * a linear search through the list will have to be executed
1482 		 * in order to find the PVE which points to the PTE being
1483 		 * removed, so that it may be modified to point to its new
1484 		 * neighbor.
1485 		 */
1486 
1487 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1488 		if (pv_idx == targ_idx) {
1489 			pv->pv_idx = pvebase[targ_idx].pve_next;
1490 		} else {
1491 
1492 			/*
1493 			 * Find the PV element pointing to the target
1494 			 * element.  Note: may have pv_idx==PVE_EOL
1495 			 */
1496 
1497 			for (;;) {
1498 				if (pv_idx == PVE_EOL) {
1499 					goto pv_not_found;
1500 				}
1501 				if (pvebase[pv_idx].pve_next == targ_idx)
1502 					break;
1503 				pv_idx = pvebase[pv_idx].pve_next;
1504 			}
1505 
1506 			/*
1507 			 * At this point, pv_idx is the index of the PV
1508 			 * element just before the target element in the list.
1509 			 * Unlink the target.
1510 			 */
1511 
1512 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1513 		}
1514 
1515 		/*
1516 		 * Save the mod/ref bits of the pte by simply
1517 		 * ORing the entire pte onto the pv_flags member
1518 		 * of the pv structure.
1519 		 * There is no need to use a separate bit pattern
1520 		 * for usage information on the pv head than that
1521 		 * which is used on the MMU ptes.
1522 		 */
1523 
1524 pv_not_found:
1525 		pv->pv_flags |= (u_short) pte->attr.raw;
1526 	}
1527 	pte->attr.raw = MMU_DT_INVALID;
1528 }
1529 
1530 /* pmap_stroll			INTERNAL
1531  **
1532  * Retrieve the addresses of all table managers involved in the mapping of
1533  * the given virtual address.  If the table walk completed sucessfully,
1534  * return TRUE.  If it was only partially sucessful, return FALSE.
1535  * The table walk performed by this function is important to many other
1536  * functions in this module.
1537  *
1538  * Note: This function ought to be easier to read.
1539  */
1540 boolean_t
1541 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1542 	pmap_t pmap;
1543 	vaddr_t va;
1544 	a_tmgr_t **a_tbl;
1545 	b_tmgr_t **b_tbl;
1546 	c_tmgr_t **c_tbl;
1547 	mmu_short_pte_t **pte;
1548 	int *a_idx, *b_idx, *pte_idx;
1549 {
1550 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1551 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1552 
1553 	if (pmap == pmap_kernel())
1554 		return FALSE;
1555 
1556 	/* Does the given pmap have its own A table? */
1557 	*a_tbl = pmap->pm_a_tmgr;
1558 	if (*a_tbl == NULL)
1559 		return FALSE; /* No.  Return unknown. */
1560 	/* Does the A table have a valid B table
1561 	 * under the corresponding table entry?
1562 	 */
1563 	*a_idx = MMU_TIA(va);
1564 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1565 	if (!MMU_VALID_DT(*a_dte))
1566 		return FALSE; /* No. Return unknown. */
1567 	/* Yes. Extract B table from the A table. */
1568 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1569 	/* Does the B table have a valid C table
1570 	 * under the corresponding table entry?
1571 	 */
1572 	*b_idx = MMU_TIB(va);
1573 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1574 	if (!MMU_VALID_DT(*b_dte))
1575 		return FALSE; /* No. Return unknown. */
1576 	/* Yes. Extract C table from the B table. */
1577 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1578 	*pte_idx = MMU_TIC(va);
1579 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1580 
1581 	return	TRUE;
1582 }
1583 
1584 /* pmap_enter			INTERFACE
1585  **
1586  * Called by the kernel to map a virtual address
1587  * to a physical address in the given process map.
1588  *
1589  * Note: this function should apply an exclusive lock
1590  * on the pmap system for its duration.  (it certainly
1591  * would save my hair!!)
1592  * This function ought to be easier to read.
1593  */
1594 int
1595 pmap_enter(pmap, va, pa, prot, flags)
1596 	pmap_t	pmap;
1597 	vaddr_t va;
1598 	paddr_t pa;
1599 	vm_prot_t prot;
1600 	int flags;
1601 {
1602 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
1603 	u_short nidx;            /* PV list index                     */
1604 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1605 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1606 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1607 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1608 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1609 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1610 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1611 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1612 	pv_t      *pv;           /* pv list head                      */
1613 	boolean_t wired;         /* is the mapping to be wired?       */
1614 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1615 
1616 	if (pmap == pmap_kernel()) {
1617 		pmap_enter_kernel(va, pa, prot);
1618 		return 0;
1619 	}
1620 
1621 	/*
1622 	 * Determine if the mapping should be wired.
1623 	 */
1624 	wired = ((flags & PMAP_WIRED) != 0);
1625 
1626 	/*
1627 	 * NOTE1:
1628 	 *
1629 	 * On November 13, 1999, someone changed the pmap_enter() API such
1630 	 * that it now accepts a 'flags' argument.  This new argument
1631 	 * contains bit-flags for the architecture-independent (UVM) system to
1632 	 * use in signalling certain mapping requirements to the architecture-
1633 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1634 	 * one of the flags within it.
1635 	 *
1636 	 * In addition to flags signaled by the architecture-independent
1637 	 * system, parts of the architecture-dependent section of the sun3x
1638 	 * kernel pass their own flags in the lower, unused bits of the
1639 	 * physical address supplied to this function.  These flags are
1640 	 * extracted and stored in the temporary variable 'mapflags'.
1641 	 *
1642 	 * Extract sun3x specific flags from the physical address.
1643 	 */
1644 	mapflags  = (pa & ~MMU_PAGE_MASK);
1645 	pa       &= MMU_PAGE_MASK;
1646 
1647 	/*
1648 	 * Determine if the physical address being mapped is on-board RAM.
1649 	 * Any other area of the address space is likely to belong to a
1650 	 * device and hence it would be disasterous to cache its contents.
1651 	 */
1652 	if ((managed = is_managed(pa)) == FALSE)
1653 		mapflags |= PMAP_NC;
1654 
1655 	/*
1656 	 * For user mappings we walk along the MMU tables of the given
1657 	 * pmap, reaching a PTE which describes the virtual page being
1658 	 * mapped or changed.  If any level of the walk ends in an invalid
1659 	 * entry, a table must be allocated and the entry must be updated
1660 	 * to point to it.
1661 	 * There is a bit of confusion as to whether this code must be
1662 	 * re-entrant.  For now we will assume it is.  To support
1663 	 * re-entrancy we must unlink tables from the table pool before
1664 	 * we assume we may use them.  Tables are re-linked into the pool
1665 	 * when we are finished with them at the end of the function.
1666 	 * But I don't feel like doing that until we have proof that this
1667 	 * needs to be re-entrant.
1668 	 * 'llevel' records which tables need to be relinked.
1669 	 */
1670 	llevel = NONE;
1671 
1672 	/*
1673 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1674 	 * A table, allocate a new one from the available pool.
1675 	 */
1676 
1677 	a_tbl = pmap->pm_a_tmgr;
1678 	if (a_tbl == NULL) {
1679 		/*
1680 		 * This pmap does not currently have an A table.  Allocate
1681 		 * a new one.
1682 		 */
1683 		a_tbl = get_a_table();
1684 		a_tbl->at_parent = pmap;
1685 
1686 		/*
1687 		 * Assign this new A table to the pmap, and calculate its
1688 		 * physical address so that loadcrp() can be used to make
1689 		 * the table active.
1690 		 */
1691 		pmap->pm_a_tmgr = a_tbl;
1692 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1693 
1694 		/*
1695 		 * If the process receiving a new A table is the current
1696 		 * process, we are responsible for setting the MMU so that
1697 		 * it becomes the current address space.  This only adds
1698 		 * new mappings, so no need to flush anything.
1699 		 */
1700 		if (pmap == current_pmap()) {
1701 			kernel_crp.rp_addr = pmap->pm_a_phys;
1702 			loadcrp(&kernel_crp);
1703 		}
1704 
1705 		if (!wired)
1706 			llevel = NEWA;
1707 	} else {
1708 		/*
1709 		 * Use the A table already allocated for this pmap.
1710 		 * Unlink it from the A table pool if necessary.
1711 		 */
1712 		if (wired && !a_tbl->at_wcnt)
1713 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1714 	}
1715 
1716 	/*
1717 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1718 	 * allocate one.
1719 	 */
1720 
1721 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1722 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1723 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1724 		/* The descriptor is valid.  Use the B table it points to. */
1725 		/*************************************
1726 		 *               a_idx               *
1727 		 *                 v                 *
1728 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1729 		 *          | | | | | | | | | | | |  *
1730 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1731 		 *                 |                 *
1732 		 *                 \- b_tbl -> +-+-  *
1733 		 *                             | |   *
1734 		 *                             +-+-  *
1735 		 *************************************/
1736 		b_dte = mmu_ptov(a_dte->addr.raw);
1737 		b_tbl = mmuB2tmgr(b_dte);
1738 
1739 		/*
1740 		 * If the requested mapping must be wired, but this table
1741 		 * being used to map it is not, the table must be removed
1742 		 * from the available pool and its wired entry count
1743 		 * incremented.
1744 		 */
1745 		if (wired && !b_tbl->bt_wcnt) {
1746 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1747 			a_tbl->at_wcnt++;
1748 		}
1749 	} else {
1750 		/* The descriptor is invalid.  Allocate a new B table. */
1751 		b_tbl = get_b_table();
1752 
1753 		/* Point the parent A table descriptor to this new B table. */
1754 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1755 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1756 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1757 
1758 		/* Create the necessary back references to the parent table */
1759 		b_tbl->bt_parent = a_tbl;
1760 		b_tbl->bt_pidx = a_idx;
1761 
1762 		/*
1763 		 * If this table is to be wired, make sure the parent A table
1764 		 * wired count is updated to reflect that it has another wired
1765 		 * entry.
1766 		 */
1767 		if (wired)
1768 			a_tbl->at_wcnt++;
1769 		else if (llevel == NONE)
1770 			llevel = NEWB;
1771 	}
1772 
1773 	/*
1774 	 * Step 3 - Walk into the C table, if there is no valid C table,
1775 	 * allocate one.
1776 	 */
1777 
1778 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1779 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1780 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1781 		/* The descriptor is valid.  Use the C table it points to. */
1782 		/**************************************
1783 		 *               c_idx                *
1784 		 * |                v                 *
1785 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1786 		 *             | | | | | | | | | | |  *
1787 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1788 		 *                  |                 *
1789 		 *                  \- c_tbl -> +-+-- *
1790 		 *                              | | | *
1791 		 *                              +-+-- *
1792 		 **************************************/
1793 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1794 		c_tbl = mmuC2tmgr(c_pte);
1795 
1796 		/* If mapping is wired and table is not */
1797 		if (wired && !c_tbl->ct_wcnt) {
1798 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1799 			b_tbl->bt_wcnt++;
1800 		}
1801 	} else {
1802 		/* The descriptor is invalid.  Allocate a new C table. */
1803 		c_tbl = get_c_table();
1804 
1805 		/* Point the parent B table descriptor to this new C table. */
1806 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1807 		b_dte->attr.raw |= MMU_DT_SHORT;
1808 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1809 
1810 		/* Create the necessary back references to the parent table */
1811 		c_tbl->ct_parent = b_tbl;
1812 		c_tbl->ct_pidx = b_idx;
1813 		/*
1814 		 * Store the pmap and base virtual managed address for faster
1815 		 * retrieval in the PV functions.
1816 		 */
1817 		c_tbl->ct_pmap = pmap;
1818 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1819 
1820 		/*
1821 		 * If this table is to be wired, make sure the parent B table
1822 		 * wired count is updated to reflect that it has another wired
1823 		 * entry.
1824 		 */
1825 		if (wired)
1826 			b_tbl->bt_wcnt++;
1827 		else if (llevel == NONE)
1828 			llevel = NEWC;
1829 	}
1830 
1831 	/*
1832 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1833 	 * slot of the C table, describing the PA to which the VA is mapped.
1834 	 */
1835 
1836 	pte_idx = MMU_TIC(va);
1837 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1838 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1839 		/*
1840 		 * The PTE is currently valid.  This particular call
1841 		 * is just a synonym for one (or more) of the following
1842 		 * operations:
1843 		 *     change protection of a page
1844 		 *     change wiring status of a page
1845 		 *     remove the mapping of a page
1846 		 *
1847 		 * XXX - Semi critical: This code should unwire the PTE
1848 		 * and, possibly, associated parent tables if this is a
1849 		 * change wiring operation.  Currently it does not.
1850 		 *
1851 		 * This may be ok if pmap_unwire() is the only
1852 		 * interface used to UNWIRE a page.
1853 		 */
1854 
1855 		/* First check if this is a wiring operation. */
1856 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1857 			/*
1858 			 * The PTE is already wired.  To prevent it from being
1859 			 * counted as a new wiring operation, reset the 'wired'
1860 			 * variable.
1861 			 */
1862 			wired = FALSE;
1863 		}
1864 
1865 		/* Is the new address the same as the old? */
1866 		if (MMU_PTE_PA(*c_pte) == pa) {
1867 			/*
1868 			 * Yes, mark that it does not need to be reinserted
1869 			 * into the PV list.
1870 			 */
1871 			insert = FALSE;
1872 
1873 			/*
1874 			 * Clear all but the modified, referenced and wired
1875 			 * bits on the PTE.
1876 			 */
1877 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1878 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1879 		} else {
1880 			/* No, remove the old entry */
1881 			pmap_remove_pte(c_pte);
1882 			insert = TRUE;
1883 		}
1884 
1885 		/*
1886 		 * TLB flush is only necessary if modifying current map.
1887 		 * However, in pmap_enter(), the pmap almost always IS
1888 		 * the current pmap, so don't even bother to check.
1889 		 */
1890 		TBIS(va);
1891 	} else {
1892 		/*
1893 		 * The PTE is invalid.  Increment the valid entry count in
1894 		 * the C table manager to reflect the addition of a new entry.
1895 		 */
1896 		c_tbl->ct_ecnt++;
1897 
1898 		/* XXX - temporarily make sure the PTE is cleared. */
1899 		c_pte->attr.raw = 0;
1900 
1901 		/* It will also need to be inserted into the PV list. */
1902 		insert = TRUE;
1903 	}
1904 
1905 	/*
1906 	 * If page is changing from unwired to wired status, set an unused bit
1907 	 * within the PTE to indicate that it is wired.  Also increment the
1908 	 * wired entry count in the C table manager.
1909 	 */
1910 	if (wired) {
1911 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1912 		c_tbl->ct_wcnt++;
1913 	}
1914 
1915 	/*
1916 	 * Map the page, being careful to preserve modify/reference/wired
1917 	 * bits.  At this point it is assumed that the PTE either has no bits
1918 	 * set, or if there are set bits, they are only modified, reference or
1919 	 * wired bits.  If not, the following statement will cause erratic
1920 	 * behavior.
1921 	 */
1922 #ifdef	PMAP_DEBUG
1923 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1924 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1925 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1926 		Debugger();
1927 	}
1928 #endif
1929 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1930 
1931 	/*
1932 	 * If the mapping should be read-only, set the write protect
1933 	 * bit in the PTE.
1934 	 */
1935 	if (!(prot & VM_PROT_WRITE))
1936 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1937 
1938 	/*
1939 	 * If the mapping should be cache inhibited (indicated by the flag
1940 	 * bits found on the lower order of the physical address.)
1941 	 * mark the PTE as a cache inhibited page.
1942 	 */
1943 	if (mapflags & PMAP_NC)
1944 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1945 
1946 	/*
1947 	 * If the physical address being mapped is managed by the PV
1948 	 * system then link the pte into the list of pages mapped to that
1949 	 * address.
1950 	 */
1951 	if (insert && managed) {
1952 		pv = pa2pv(pa);
1953 		nidx = pteidx(c_pte);
1954 
1955 		pvebase[nidx].pve_next = pv->pv_idx;
1956 		pv->pv_idx = nidx;
1957 	}
1958 
1959 	/* Move any allocated tables back into the active pool. */
1960 
1961 	switch (llevel) {
1962 		case NEWA:
1963 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1964 			/* FALLTHROUGH */
1965 		case NEWB:
1966 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1967 			/* FALLTHROUGH */
1968 		case NEWC:
1969 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1970 			/* FALLTHROUGH */
1971 		default:
1972 			break;
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 /* pmap_enter_kernel			INTERNAL
1979  **
1980  * Map the given virtual address to the given physical address within the
1981  * kernel address space.  This function exists because the kernel map does
1982  * not do dynamic table allocation.  It consists of a contiguous array of ptes
1983  * and can be edited directly without the need to walk through any tables.
1984  *
1985  * XXX: "Danger, Will Robinson!"
1986  * Note that the kernel should never take a fault on any page
1987  * between [ KERNBASE .. virtual_avail ] and this is checked in
1988  * trap.c for kernel-mode MMU faults.  This means that mappings
1989  * created in that range must be implicily wired. -gwr
1990  */
1991 void
1992 pmap_enter_kernel(va, pa, prot)
1993 	vaddr_t va;
1994 	paddr_t pa;
1995 	vm_prot_t   prot;
1996 {
1997 	boolean_t       was_valid, insert;
1998 	u_short         pte_idx;
1999 	int             flags;
2000 	mmu_short_pte_t *pte;
2001 	pv_t            *pv;
2002 	paddr_t     old_pa;
2003 
2004 	flags = (pa & ~MMU_PAGE_MASK);
2005 	pa &= MMU_PAGE_MASK;
2006 
2007 	if (is_managed(pa))
2008 		insert = TRUE;
2009 	else
2010 		insert = FALSE;
2011 
2012 	/*
2013 	 * Calculate the index of the PTE being modified.
2014 	 */
2015 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
2016 
2017 	/* This array is traditionally named "Sysmap" */
2018 	pte = &kernCbase[pte_idx];
2019 
2020 	if (MMU_VALID_DT(*pte)) {
2021 		was_valid = TRUE;
2022 		/*
2023 		 * If the PTE already maps a different
2024 		 * physical address, umap and pv_unlink.
2025 		 */
2026 		old_pa = MMU_PTE_PA(*pte);
2027 		if (pa != old_pa)
2028 			pmap_remove_pte(pte);
2029 		else {
2030 		    /*
2031 		     * Old PA and new PA are the same.  No need to
2032 		     * relink the mapping within the PV list.
2033 		     */
2034 		     insert = FALSE;
2035 
2036 		    /*
2037 		     * Save any mod/ref bits on the PTE.
2038 		     */
2039 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2040 		}
2041 	} else {
2042 		pte->attr.raw = MMU_DT_INVALID;
2043 		was_valid = FALSE;
2044 	}
2045 
2046 	/*
2047 	 * Map the page.  Being careful to preserve modified/referenced bits
2048 	 * on the PTE.
2049 	 */
2050 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2051 
2052 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2053 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2054 	if (flags & PMAP_NC)
2055 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2056 	if (was_valid)
2057 		TBIS(va);
2058 
2059 	/*
2060 	 * Insert the PTE into the PV system, if need be.
2061 	 */
2062 	if (insert) {
2063 		pv = pa2pv(pa);
2064 		pvebase[pte_idx].pve_next = pv->pv_idx;
2065 		pv->pv_idx = pte_idx;
2066 	}
2067 }
2068 
2069 void
2070 pmap_kenter_pa(va, pa, prot)
2071 	vaddr_t va;
2072 	paddr_t pa;
2073 	vm_prot_t prot;
2074 {
2075 	mmu_short_pte_t	*pte;
2076 
2077 	/* This array is traditionally named "Sysmap" */
2078 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2079 
2080 	KASSERT(!MMU_VALID_DT(*pte));
2081 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2082 	if (!(prot & VM_PROT_WRITE))
2083 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2084 }
2085 
2086 void
2087 pmap_kremove(va, len)
2088 	vaddr_t va;
2089 	vsize_t len;
2090 {
2091 	int idx, eidx;
2092 
2093 #ifdef	PMAP_DEBUG
2094 	if ((sva & PGOFSET) || (eva & PGOFSET))
2095 		panic("pmap_kremove: alignment");
2096 #endif
2097 
2098 	idx  = m68k_btop(va - KERNBASE);
2099 	eidx = m68k_btop(va + len - KERNBASE);
2100 
2101 	while (idx < eidx) {
2102 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2103 		TBIS(va);
2104 		va += NBPG;
2105 	}
2106 }
2107 
2108 /* pmap_map			INTERNAL
2109  **
2110  * Map a contiguous range of physical memory into a contiguous range of
2111  * the kernel virtual address space.
2112  *
2113  * Used for device mappings and early mapping of the kernel text/data/bss.
2114  * Returns the first virtual address beyond the end of the range.
2115  */
2116 vaddr_t
2117 pmap_map(va, pa, endpa, prot)
2118 	vaddr_t	va;
2119 	paddr_t	pa;
2120 	paddr_t	endpa;
2121 	int		prot;
2122 {
2123 	int sz;
2124 
2125 	sz = endpa - pa;
2126 	do {
2127 		pmap_enter_kernel(va, pa, prot);
2128 		va += NBPG;
2129 		pa += NBPG;
2130 		sz -= NBPG;
2131 	} while (sz > 0);
2132 	pmap_update(pmap_kernel());
2133 	return(va);
2134 }
2135 
2136 /* pmap_protect			INTERFACE
2137  **
2138  * Apply the given protection to the given virtual address range within
2139  * the given map.
2140  *
2141  * It is ok for the protection applied to be stronger than what is
2142  * specified.  We use this to our advantage when the given map has no
2143  * mapping for the virtual address.  By skipping a page when this
2144  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2145  * and therefore do not need to map the page just to apply a protection
2146  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2147  *
2148  * XXX - This function could be speeded up by using pmap_stroll() for inital
2149  *       setup, and then manual scrolling in the for() loop.
2150  */
2151 void
2152 pmap_protect(pmap, startva, endva, prot)
2153 	pmap_t pmap;
2154 	vaddr_t startva, endva;
2155 	vm_prot_t prot;
2156 {
2157 	boolean_t iscurpmap;
2158 	int a_idx, b_idx, c_idx;
2159 	a_tmgr_t *a_tbl;
2160 	b_tmgr_t *b_tbl;
2161 	c_tmgr_t *c_tbl;
2162 	mmu_short_pte_t *pte;
2163 
2164 	if (pmap == pmap_kernel()) {
2165 		pmap_protect_kernel(startva, endva, prot);
2166 		return;
2167 	}
2168 
2169 	/*
2170 	 * In this particular pmap implementation, there are only three
2171 	 * types of memory protection: 'all' (read/write/execute),
2172 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2173 	 * It is not possible for us to treat 'executable' as a separate
2174 	 * protection type.  Therefore, protection requests that seek to
2175 	 * remove execute permission while retaining read or write, and those
2176 	 * that make little sense (write-only for example) are ignored.
2177 	 */
2178 	switch (prot) {
2179 		case VM_PROT_NONE:
2180 			/*
2181 			 * A request to apply the protection code of
2182 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2183 			 */
2184 			pmap_remove(pmap, startva, endva);
2185 			return;
2186 		case	VM_PROT_EXECUTE:
2187 		case	VM_PROT_READ:
2188 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2189 			/* continue */
2190 			break;
2191 		case	VM_PROT_WRITE:
2192 		case	VM_PROT_WRITE|VM_PROT_READ:
2193 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2194 		case	VM_PROT_ALL:
2195 			/* None of these should happen in a sane system. */
2196 			return;
2197 	}
2198 
2199 	/*
2200 	 * If the pmap has no A table, it has no mappings and therefore
2201 	 * there is nothing to protect.
2202 	 */
2203 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2204 		return;
2205 
2206 	a_idx = MMU_TIA(startva);
2207 	b_idx = MMU_TIB(startva);
2208 	c_idx = MMU_TIC(startva);
2209 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
2210 
2211 	iscurpmap = (pmap == current_pmap());
2212 	while (startva < endva) {
2213 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2214 		  if (b_tbl == NULL) {
2215 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2216 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2217 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2218 		  }
2219 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2220 		    if (c_tbl == NULL) {
2221 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2222 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2223 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2224 		    }
2225 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2226 		      pte = &c_tbl->ct_dtbl[c_idx];
2227 		      /* make the mapping read-only */
2228 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2229 		      /*
2230 		       * If we just modified the current address space,
2231 		       * flush any translations for the modified page from
2232 		       * the translation cache and any data from it in the
2233 		       * data cache.
2234 		       */
2235 		      if (iscurpmap)
2236 		          TBIS(startva);
2237 		    }
2238 		    startva += NBPG;
2239 
2240 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2241 		      c_tbl = NULL;
2242 		      c_idx = 0;
2243 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2244 		        b_tbl = NULL;
2245 		        b_idx = 0;
2246 		      }
2247 		    }
2248 		  } else { /* C table wasn't valid */
2249 		    c_tbl = NULL;
2250 		    c_idx = 0;
2251 		    startva += MMU_TIB_RANGE;
2252 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2253 		      b_tbl = NULL;
2254 		      b_idx = 0;
2255 		    }
2256 		  } /* C table */
2257 		} else { /* B table wasn't valid */
2258 		  b_tbl = NULL;
2259 		  b_idx = 0;
2260 		  startva += MMU_TIA_RANGE;
2261 		  a_idx++;
2262 		} /* B table */
2263 	}
2264 }
2265 
2266 /* pmap_protect_kernel			INTERNAL
2267  **
2268  * Apply the given protection code to a kernel address range.
2269  */
2270 void
2271 pmap_protect_kernel(startva, endva, prot)
2272 	vaddr_t startva, endva;
2273 	vm_prot_t prot;
2274 {
2275 	vaddr_t va;
2276 	mmu_short_pte_t *pte;
2277 
2278 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2279 	for (va = startva; va < endva; va += NBPG, pte++) {
2280 		if (MMU_VALID_DT(*pte)) {
2281 		    switch (prot) {
2282 		        case VM_PROT_ALL:
2283 		            break;
2284 		        case VM_PROT_EXECUTE:
2285 		        case VM_PROT_READ:
2286 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2287 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2288 		            break;
2289 		        case VM_PROT_NONE:
2290 		            /* this is an alias for 'pmap_remove_kernel' */
2291 		            pmap_remove_pte(pte);
2292 		            break;
2293 		        default:
2294 		            break;
2295 		    }
2296 		    /*
2297 		     * since this is the kernel, immediately flush any cached
2298 		     * descriptors for this address.
2299 		     */
2300 		    TBIS(va);
2301 		}
2302 	}
2303 }
2304 
2305 /* pmap_unwire				INTERFACE
2306  **
2307  * Clear the wired attribute of the specified page.
2308  *
2309  * This function is called from vm_fault.c to unwire
2310  * a mapping.
2311  */
2312 void
2313 pmap_unwire(pmap, va)
2314 	pmap_t pmap;
2315 	vaddr_t va;
2316 {
2317 	int a_idx, b_idx, c_idx;
2318 	a_tmgr_t *a_tbl;
2319 	b_tmgr_t *b_tbl;
2320 	c_tmgr_t *c_tbl;
2321 	mmu_short_pte_t *pte;
2322 
2323 	/* Kernel mappings always remain wired. */
2324 	if (pmap == pmap_kernel())
2325 		return;
2326 
2327 	/*
2328 	 * Walk through the tables.  If the walk terminates without
2329 	 * a valid PTE then the address wasn't wired in the first place.
2330 	 * Return immediately.
2331 	 */
2332 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2333 		&b_idx, &c_idx) == FALSE)
2334 		return;
2335 
2336 
2337 	/* Is the PTE wired?  If not, return. */
2338 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2339 		return;
2340 
2341 	/* Remove the wiring bit. */
2342 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2343 
2344 	/*
2345 	 * Decrement the wired entry count in the C table.
2346 	 * If it reaches zero the following things happen:
2347 	 * 1. The table no longer has any wired entries and is considered
2348 	 *    unwired.
2349 	 * 2. It is placed on the available queue.
2350 	 * 3. The parent table's wired entry count is decremented.
2351 	 * 4. If it reaches zero, this process repeats at step 1 and
2352 	 *    stops at after reaching the A table.
2353 	 */
2354 	if (--c_tbl->ct_wcnt == 0) {
2355 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2356 		if (--b_tbl->bt_wcnt == 0) {
2357 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2358 			if (--a_tbl->at_wcnt == 0) {
2359 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2360 			}
2361 		}
2362 	}
2363 }
2364 
2365 /* pmap_copy				INTERFACE
2366  **
2367  * Copy the mappings of a range of addresses in one pmap, into
2368  * the destination address of another.
2369  *
2370  * This routine is advisory.  Should we one day decide that MMU tables
2371  * may be shared by more than one pmap, this function should be used to
2372  * link them together.  Until that day however, we do nothing.
2373  */
2374 void
2375 pmap_copy(pmap_a, pmap_b, dst, len, src)
2376 	pmap_t pmap_a, pmap_b;
2377 	vaddr_t dst;
2378 	vsize_t len;
2379 	vaddr_t src;
2380 {
2381 	/* not implemented. */
2382 }
2383 
2384 /* pmap_copy_page			INTERFACE
2385  **
2386  * Copy the contents of one physical page into another.
2387  *
2388  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2389  * to map the two specified physical pages into the kernel address space.
2390  *
2391  * Note: We could use the transparent translation registers to make the
2392  * mappings.  If we do so, be sure to disable interrupts before using them.
2393  */
2394 void
2395 pmap_copy_page(srcpa, dstpa)
2396 	paddr_t srcpa, dstpa;
2397 {
2398 	vaddr_t srcva, dstva;
2399 	int s;
2400 
2401 	srcva = tmp_vpages[0];
2402 	dstva = tmp_vpages[1];
2403 
2404 	s = splvm();
2405 #ifdef DIAGNOSTIC
2406 	if (tmp_vpages_inuse++)
2407 		panic("pmap_copy_page: temporary vpages are in use.");
2408 #endif
2409 
2410 	/* Map pages as non-cacheable to avoid cache polution? */
2411 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2412 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2413 
2414 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
2415 	copypage((char *) srcva, (char *) dstva);
2416 
2417 	pmap_kremove(srcva, NBPG);
2418 	pmap_kremove(dstva, NBPG);
2419 
2420 #ifdef DIAGNOSTIC
2421 	--tmp_vpages_inuse;
2422 #endif
2423 	splx(s);
2424 }
2425 
2426 /* pmap_zero_page			INTERFACE
2427  **
2428  * Zero the contents of the specified physical page.
2429  *
2430  * Uses one of the virtual pages allocated in pmap_boostrap()
2431  * to map the specified page into the kernel address space.
2432  */
2433 void
2434 pmap_zero_page(dstpa)
2435 	paddr_t dstpa;
2436 {
2437 	vaddr_t dstva;
2438 	int s;
2439 
2440 	dstva = tmp_vpages[1];
2441 	s = splvm();
2442 #ifdef DIAGNOSTIC
2443 	if (tmp_vpages_inuse++)
2444 		panic("pmap_zero_page: temporary vpages are in use.");
2445 #endif
2446 
2447 	/* The comments in pmap_copy_page() above apply here also. */
2448 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2449 
2450 	/* Hand-optimized version of bzero(ptr, NBPG) */
2451 	zeropage((char *) dstva);
2452 
2453 	pmap_kremove(dstva, NBPG);
2454 #ifdef DIAGNOSTIC
2455 	--tmp_vpages_inuse;
2456 #endif
2457 	splx(s);
2458 }
2459 
2460 /* pmap_collect			INTERFACE
2461  **
2462  * Called from the VM system when we are about to swap out
2463  * the process using this pmap.  This should give up any
2464  * resources held here, including all its MMU tables.
2465  */
2466 void
2467 pmap_collect(pmap)
2468 	pmap_t pmap;
2469 {
2470 	/* XXX - todo... */
2471 }
2472 
2473 /* pmap_create			INTERFACE
2474  **
2475  * Create and return a pmap structure.
2476  */
2477 pmap_t
2478 pmap_create()
2479 {
2480 	pmap_t	pmap;
2481 
2482 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2483 	pmap_pinit(pmap);
2484 	return pmap;
2485 }
2486 
2487 /* pmap_pinit			INTERNAL
2488  **
2489  * Initialize a pmap structure.
2490  */
2491 void
2492 pmap_pinit(pmap)
2493 	pmap_t pmap;
2494 {
2495 	memset(pmap, 0, sizeof(struct pmap));
2496 	pmap->pm_a_tmgr = NULL;
2497 	pmap->pm_a_phys = kernAphys;
2498 	pmap->pm_refcount = 1;
2499 	simple_lock_init(&pmap->pm_lock);
2500 }
2501 
2502 /* pmap_release				INTERFACE
2503  **
2504  * Release any resources held by the given pmap.
2505  *
2506  * This is the reverse analog to pmap_pinit.  It does not
2507  * necessarily mean for the pmap structure to be deallocated,
2508  * as in pmap_destroy.
2509  */
2510 void
2511 pmap_release(pmap)
2512 	pmap_t pmap;
2513 {
2514 	/*
2515 	 * As long as the pmap contains no mappings,
2516 	 * which always should be the case whenever
2517 	 * this function is called, there really should
2518 	 * be nothing to do.
2519 	 */
2520 #ifdef	PMAP_DEBUG
2521 	if (pmap == pmap_kernel())
2522 		panic("pmap_release: kernel pmap");
2523 #endif
2524 	/*
2525 	 * XXX - If this pmap has an A table, give it back.
2526 	 * The pmap SHOULD be empty by now, and pmap_remove
2527 	 * should have already given back the A table...
2528 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2529 	 * at this point, which means some mapping was not
2530 	 * removed when it should have been. -gwr
2531 	 */
2532 	if (pmap->pm_a_tmgr != NULL) {
2533 		/* First make sure we are not using it! */
2534 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2535 			kernel_crp.rp_addr = kernAphys;
2536 			loadcrp(&kernel_crp);
2537 		}
2538 #ifdef	PMAP_DEBUG /* XXX - todo! */
2539 		/* XXX - Now complain... */
2540 		printf("pmap_release: still have table\n");
2541 		Debugger();
2542 #endif
2543 		free_a_table(pmap->pm_a_tmgr, TRUE);
2544 		pmap->pm_a_tmgr = NULL;
2545 		pmap->pm_a_phys = kernAphys;
2546 	}
2547 }
2548 
2549 /* pmap_reference			INTERFACE
2550  **
2551  * Increment the reference count of a pmap.
2552  */
2553 void
2554 pmap_reference(pmap)
2555 	pmap_t pmap;
2556 {
2557 	pmap_lock(pmap);
2558 	pmap_add_ref(pmap);
2559 	pmap_unlock(pmap);
2560 }
2561 
2562 /* pmap_dereference			INTERNAL
2563  **
2564  * Decrease the reference count on the given pmap
2565  * by one and return the current count.
2566  */
2567 int
2568 pmap_dereference(pmap)
2569 	pmap_t pmap;
2570 {
2571 	int rtn;
2572 
2573 	pmap_lock(pmap);
2574 	rtn = pmap_del_ref(pmap);
2575 	pmap_unlock(pmap);
2576 
2577 	return rtn;
2578 }
2579 
2580 /* pmap_destroy			INTERFACE
2581  **
2582  * Decrement a pmap's reference count and delete
2583  * the pmap if it becomes zero.  Will be called
2584  * only after all mappings have been removed.
2585  */
2586 void
2587 pmap_destroy(pmap)
2588 	pmap_t pmap;
2589 {
2590 	if (pmap_dereference(pmap) == 0) {
2591 		pmap_release(pmap);
2592 		pool_put(&pmap_pmap_pool, pmap);
2593 	}
2594 }
2595 
2596 /* pmap_is_referenced			INTERFACE
2597  **
2598  * Determine if the given physical page has been
2599  * referenced (read from [or written to.])
2600  */
2601 boolean_t
2602 pmap_is_referenced(pg)
2603 	struct vm_page *pg;
2604 {
2605 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2606 	pv_t      *pv;
2607 	int       idx;
2608 
2609 	/*
2610 	 * Check the flags on the pv head.  If they are set,
2611 	 * return immediately.  Otherwise a search must be done.
2612 	 */
2613 
2614 	pv = pa2pv(pa);
2615 	if (pv->pv_flags & PV_FLAGS_USED)
2616 		return TRUE;
2617 
2618 	/*
2619 	 * Search through all pv elements pointing
2620 	 * to this page and query their reference bits
2621 	 */
2622 
2623 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2624 		if (MMU_PTE_USED(kernCbase[idx])) {
2625 			return TRUE;
2626 		}
2627 	}
2628 	return FALSE;
2629 }
2630 
2631 /* pmap_is_modified			INTERFACE
2632  **
2633  * Determine if the given physical page has been
2634  * modified (written to.)
2635  */
2636 boolean_t
2637 pmap_is_modified(pg)
2638 	struct vm_page *pg;
2639 {
2640 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2641 	pv_t      *pv;
2642 	int       idx;
2643 
2644 	/* see comments in pmap_is_referenced() */
2645 	pv = pa2pv(pa);
2646 	if (pv->pv_flags & PV_FLAGS_MDFY)
2647 		return TRUE;
2648 
2649 	for (idx = pv->pv_idx;
2650 		 idx != PVE_EOL;
2651 		 idx = pvebase[idx].pve_next) {
2652 
2653 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2654 			return TRUE;
2655 		}
2656 	}
2657 
2658 	return FALSE;
2659 }
2660 
2661 /* pmap_page_protect			INTERFACE
2662  **
2663  * Applies the given protection to all mappings to the given
2664  * physical page.
2665  */
2666 void
2667 pmap_page_protect(pg, prot)
2668 	struct vm_page *pg;
2669 	vm_prot_t prot;
2670 {
2671 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2672 	pv_t      *pv;
2673 	int       idx;
2674 	vaddr_t va;
2675 	struct mmu_short_pte_struct *pte;
2676 	c_tmgr_t  *c_tbl;
2677 	pmap_t    pmap, curpmap;
2678 
2679 	curpmap = current_pmap();
2680 	pv = pa2pv(pa);
2681 
2682 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2683 		pte = &kernCbase[idx];
2684 		switch (prot) {
2685 			case VM_PROT_ALL:
2686 				/* do nothing */
2687 				break;
2688 			case VM_PROT_EXECUTE:
2689 			case VM_PROT_READ:
2690 			case VM_PROT_READ|VM_PROT_EXECUTE:
2691 				/*
2692 				 * Determine the virtual address mapped by
2693 				 * the PTE and flush ATC entries if necessary.
2694 				 */
2695 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2696 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2697 				if (pmap == curpmap || pmap == pmap_kernel())
2698 					TBIS(va);
2699 				break;
2700 			case VM_PROT_NONE:
2701 				/* Save the mod/ref bits. */
2702 				pv->pv_flags |= pte->attr.raw;
2703 				/* Invalidate the PTE. */
2704 				pte->attr.raw = MMU_DT_INVALID;
2705 
2706 				/*
2707 				 * Update table counts.  And flush ATC entries
2708 				 * if necessary.
2709 				 */
2710 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2711 
2712 				/*
2713 				 * If the PTE belongs to the kernel map,
2714 				 * be sure to flush the page it maps.
2715 				 */
2716 				if (pmap == pmap_kernel()) {
2717 					TBIS(va);
2718 				} else {
2719 					/*
2720 					 * The PTE belongs to a user map.
2721 					 * update the entry count in the C
2722 					 * table to which it belongs and flush
2723 					 * the ATC if the mapping belongs to
2724 					 * the current pmap.
2725 					 */
2726 					c_tbl->ct_ecnt--;
2727 					if (pmap == curpmap)
2728 						TBIS(va);
2729 				}
2730 				break;
2731 			default:
2732 				break;
2733 		}
2734 	}
2735 
2736 	/*
2737 	 * If the protection code indicates that all mappings to the page
2738 	 * be removed, truncate the PV list to zero entries.
2739 	 */
2740 	if (prot == VM_PROT_NONE)
2741 		pv->pv_idx = PVE_EOL;
2742 }
2743 
2744 /* pmap_get_pteinfo		INTERNAL
2745  **
2746  * Called internally to find the pmap and virtual address within that
2747  * map to which the pte at the given index maps.  Also includes the PTE's C
2748  * table manager.
2749  *
2750  * Returns the pmap in the argument provided, and the virtual address
2751  * by return value.
2752  */
2753 vaddr_t
2754 pmap_get_pteinfo(idx, pmap, tbl)
2755 	u_int idx;
2756 	pmap_t *pmap;
2757 	c_tmgr_t **tbl;
2758 {
2759 	vaddr_t     va = 0;
2760 
2761 	/*
2762 	 * Determine if the PTE is a kernel PTE or a user PTE.
2763 	 */
2764 	if (idx >= NUM_KERN_PTES) {
2765 		/*
2766 		 * The PTE belongs to a user mapping.
2767 		 */
2768 		/* XXX: Would like an inline for this to validate idx... */
2769 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2770 
2771 		*pmap = (*tbl)->ct_pmap;
2772 		/*
2773 		 * To find the va to which the PTE maps, we first take
2774 		 * the table's base virtual address mapping which is stored
2775 		 * in ct_va.  We then increment this address by a page for
2776 		 * every slot skipped until we reach the PTE.
2777 		 */
2778 		va =    (*tbl)->ct_va;
2779 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2780 	} else {
2781 		/*
2782 		 * The PTE belongs to the kernel map.
2783 		 */
2784 		*pmap = pmap_kernel();
2785 
2786 		va = m68k_ptob(idx);
2787 		va += KERNBASE;
2788 	}
2789 
2790 	return va;
2791 }
2792 
2793 /* pmap_clear_modify			INTERFACE
2794  **
2795  * Clear the modification bit on the page at the specified
2796  * physical address.
2797  *
2798  */
2799 boolean_t
2800 pmap_clear_modify(pg)
2801 	struct vm_page *pg;
2802 {
2803 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2804 	boolean_t rv;
2805 
2806 	rv = pmap_is_modified(pg);
2807 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2808 	return rv;
2809 }
2810 
2811 /* pmap_clear_reference			INTERFACE
2812  **
2813  * Clear the referenced bit on the page at the specified
2814  * physical address.
2815  */
2816 boolean_t
2817 pmap_clear_reference(pg)
2818 	struct vm_page *pg;
2819 {
2820 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2821 	boolean_t rv;
2822 
2823 	rv = pmap_is_referenced(pg);
2824 	pmap_clear_pv(pa, PV_FLAGS_USED);
2825 	return rv;
2826 }
2827 
2828 /* pmap_clear_pv			INTERNAL
2829  **
2830  * Clears the specified flag from the specified physical address.
2831  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2832  *
2833  * Flag is one of:
2834  *   PV_FLAGS_MDFY - Page modified bit.
2835  *   PV_FLAGS_USED - Page used (referenced) bit.
2836  *
2837  * This routine must not only clear the flag on the pv list
2838  * head.  It must also clear the bit on every pte in the pv
2839  * list associated with the address.
2840  */
2841 void
2842 pmap_clear_pv(pa, flag)
2843 	paddr_t pa;
2844 	int flag;
2845 {
2846 	pv_t      *pv;
2847 	int       idx;
2848 	vaddr_t   va;
2849 	pmap_t          pmap;
2850 	mmu_short_pte_t *pte;
2851 	c_tmgr_t        *c_tbl;
2852 
2853 	pv = pa2pv(pa);
2854 	pv->pv_flags &= ~(flag);
2855 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2856 		pte = &kernCbase[idx];
2857 		pte->attr.raw &= ~(flag);
2858 
2859 		/*
2860 		 * The MC68030 MMU will not set the modified or
2861 		 * referenced bits on any MMU tables for which it has
2862 		 * a cached descriptor with its modify bit set.  To insure
2863 		 * that it will modify these bits on the PTE during the next
2864 		 * time it is written to or read from, we must flush it from
2865 		 * the ATC.
2866 		 *
2867 		 * Ordinarily it is only necessary to flush the descriptor
2868 		 * if it is used in the current address space.  But since I
2869 		 * am not sure that there will always be a notion of
2870 		 * 'the current address space' when this function is called,
2871 		 * I will skip the test and always flush the address.  It
2872 		 * does no harm.
2873 		 */
2874 
2875 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2876 		TBIS(va);
2877 	}
2878 }
2879 
2880 /* pmap_extract			INTERFACE
2881  **
2882  * Return the physical address mapped by the virtual address
2883  * in the specified pmap.
2884  *
2885  * Note: this function should also apply an exclusive lock
2886  * on the pmap system during its duration.
2887  */
2888 boolean_t
2889 pmap_extract(pmap, va, pap)
2890 	pmap_t pmap;
2891 	vaddr_t va;
2892 	paddr_t *pap;
2893 {
2894 	int a_idx, b_idx, pte_idx;
2895 	a_tmgr_t	*a_tbl;
2896 	b_tmgr_t	*b_tbl;
2897 	c_tmgr_t	*c_tbl;
2898 	mmu_short_pte_t	*c_pte;
2899 
2900 	if (pmap == pmap_kernel())
2901 		return pmap_extract_kernel(va, pap);
2902 
2903 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2904 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2905 		return FALSE;
2906 
2907 	if (!MMU_VALID_DT(*c_pte))
2908 		return FALSE;
2909 
2910 	if (pap != NULL)
2911 		*pap = MMU_PTE_PA(*c_pte);
2912 	return (TRUE);
2913 }
2914 
2915 /* pmap_extract_kernel		INTERNAL
2916  **
2917  * Extract a translation from the kernel address space.
2918  */
2919 boolean_t
2920 pmap_extract_kernel(va, pap)
2921 	vaddr_t va;
2922 	paddr_t *pap;
2923 {
2924 	mmu_short_pte_t *pte;
2925 
2926 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2927 	if (!MMU_VALID_DT(*pte))
2928 		return (FALSE);
2929 	if (pap != NULL)
2930 		*pap = MMU_PTE_PA(*pte);
2931 	return (TRUE);
2932 }
2933 
2934 /* pmap_remove_kernel		INTERNAL
2935  **
2936  * Remove the mapping of a range of virtual addresses from the kernel map.
2937  * The arguments are already page-aligned.
2938  */
2939 void
2940 pmap_remove_kernel(sva, eva)
2941 	vaddr_t sva;
2942 	vaddr_t eva;
2943 {
2944 	int idx, eidx;
2945 
2946 #ifdef	PMAP_DEBUG
2947 	if ((sva & PGOFSET) || (eva & PGOFSET))
2948 		panic("pmap_remove_kernel: alignment");
2949 #endif
2950 
2951 	idx  = m68k_btop(sva - KERNBASE);
2952 	eidx = m68k_btop(eva - KERNBASE);
2953 
2954 	while (idx < eidx) {
2955 		pmap_remove_pte(&kernCbase[idx++]);
2956 		TBIS(sva);
2957 		sva += NBPG;
2958 	}
2959 }
2960 
2961 /* pmap_remove			INTERFACE
2962  **
2963  * Remove the mapping of a range of virtual addresses from the given pmap.
2964  *
2965  * If the range contains any wired entries, this function will probably create
2966  * disaster.
2967  */
2968 void
2969 pmap_remove(pmap, start, end)
2970 	pmap_t pmap;
2971 	vaddr_t start;
2972 	vaddr_t end;
2973 {
2974 
2975 	if (pmap == pmap_kernel()) {
2976 		pmap_remove_kernel(start, end);
2977 		return;
2978 	}
2979 
2980 	/*
2981 	 * If the pmap doesn't have an A table of its own, it has no mappings
2982 	 * that can be removed.
2983 	 */
2984 	if (pmap->pm_a_tmgr == NULL)
2985 		return;
2986 
2987 	/*
2988 	 * Remove the specified range from the pmap.  If the function
2989 	 * returns true, the operation removed all the valid mappings
2990 	 * in the pmap and freed its A table.  If this happened to the
2991 	 * currently loaded pmap, the MMU root pointer must be reloaded
2992 	 * with the default 'kernel' map.
2993 	 */
2994 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
2995 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2996 			kernel_crp.rp_addr = kernAphys;
2997 			loadcrp(&kernel_crp);
2998 			/* will do TLB flush below */
2999 		}
3000 		pmap->pm_a_tmgr = NULL;
3001 		pmap->pm_a_phys = kernAphys;
3002 	}
3003 
3004 	/*
3005 	 * If we just modified the current address space,
3006 	 * make sure to flush the MMU cache.
3007 	 *
3008 	 * XXX - this could be an unecessarily large flush.
3009 	 * XXX - Could decide, based on the size of the VA range
3010 	 * to be removed, whether to flush "by pages" or "all".
3011 	 */
3012 	if (pmap == current_pmap())
3013 		TBIAU();
3014 }
3015 
3016 /* pmap_remove_a			INTERNAL
3017  **
3018  * This is function number one in a set of three that removes a range
3019  * of memory in the most efficient manner by removing the highest possible
3020  * tables from the memory space.  This particular function attempts to remove
3021  * as many B tables as it can, delegating the remaining fragmented ranges to
3022  * pmap_remove_b().
3023  *
3024  * If the removal operation results in an empty A table, the function returns
3025  * TRUE.
3026  *
3027  * It's ugly but will do for now.
3028  */
3029 boolean_t
3030 pmap_remove_a(a_tbl, start, end)
3031 	a_tmgr_t *a_tbl;
3032 	vaddr_t start;
3033 	vaddr_t end;
3034 {
3035 	boolean_t empty;
3036 	int idx;
3037 	vaddr_t nstart, nend;
3038 	b_tmgr_t *b_tbl;
3039 	mmu_long_dte_t  *a_dte;
3040 	mmu_short_dte_t *b_dte;
3041 
3042 	/*
3043 	 * The following code works with what I call a 'granularity
3044 	 * reduction algorithim'.  A range of addresses will always have
3045 	 * the following properties, which are classified according to
3046 	 * how the range relates to the size of the current granularity
3047 	 * - an A table entry:
3048 	 *
3049 	 *            1 2       3 4
3050 	 * -+---+---+---+---+---+---+---+-
3051 	 * -+---+---+---+---+---+---+---+-
3052 	 *
3053 	 * A range will always start on a granularity boundary, illustrated
3054 	 * by '+' signs in the table above, or it will start at some point
3055 	 * inbetween a granularity boundary, as illustrated by point 1.
3056 	 * The first step in removing a range of addresses is to remove the
3057 	 * range between 1 and 2, the nearest granularity boundary.  This
3058 	 * job is handled by the section of code governed by the
3059 	 * 'if (start < nstart)' statement.
3060 	 *
3061 	 * A range will always encompass zero or more intergral granules,
3062 	 * illustrated by points 2 and 3.  Integral granules are easy to
3063 	 * remove.  The removal of these granules is the second step, and
3064 	 * is handled by the code block 'if (nstart < nend)'.
3065 	 *
3066 	 * Lastly, a range will always end on a granularity boundary,
3067 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3068 	 * 4.  The last step involves removing this range and is handled by
3069 	 * the code block 'if (nend < end)'.
3070 	 */
3071 	nstart = MMU_ROUND_UP_A(start);
3072 	nend = MMU_ROUND_A(end);
3073 
3074 	if (start < nstart) {
3075 		/*
3076 		 * This block is executed if the range starts between
3077 		 * a granularity boundary.
3078 		 *
3079 		 * First find the DTE which is responsible for mapping
3080 		 * the start of the range.
3081 		 */
3082 		idx = MMU_TIA(start);
3083 		a_dte = &a_tbl->at_dtbl[idx];
3084 
3085 		/*
3086 		 * If the DTE is valid then delegate the removal of the sub
3087 		 * range to pmap_remove_b(), which can remove addresses at
3088 		 * a finer granularity.
3089 		 */
3090 		if (MMU_VALID_DT(*a_dte)) {
3091 			b_dte = mmu_ptov(a_dte->addr.raw);
3092 			b_tbl = mmuB2tmgr(b_dte);
3093 
3094 			/*
3095 			 * The sub range to be removed starts at the start
3096 			 * of the full range we were asked to remove, and ends
3097 			 * at the greater of:
3098 			 * 1. The end of the full range, -or-
3099 			 * 2. The end of the full range, rounded down to the
3100 			 *    nearest granularity boundary.
3101 			 */
3102 			if (end < nstart)
3103 				empty = pmap_remove_b(b_tbl, start, end);
3104 			else
3105 				empty = pmap_remove_b(b_tbl, start, nstart);
3106 
3107 			/*
3108 			 * If the removal resulted in an empty B table,
3109 			 * invalidate the DTE that points to it and decrement
3110 			 * the valid entry count of the A table.
3111 			 */
3112 			if (empty) {
3113 				a_dte->attr.raw = MMU_DT_INVALID;
3114 				a_tbl->at_ecnt--;
3115 			}
3116 		}
3117 		/*
3118 		 * If the DTE is invalid, the address range is already non-
3119 		 * existent and can simply be skipped.
3120 		 */
3121 	}
3122 	if (nstart < nend) {
3123 		/*
3124 		 * This block is executed if the range spans a whole number
3125 		 * multiple of granules (A table entries.)
3126 		 *
3127 		 * First find the DTE which is responsible for mapping
3128 		 * the start of the first granule involved.
3129 		 */
3130 		idx = MMU_TIA(nstart);
3131 		a_dte = &a_tbl->at_dtbl[idx];
3132 
3133 		/*
3134 		 * Remove entire sub-granules (B tables) one at a time,
3135 		 * until reaching the end of the range.
3136 		 */
3137 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3138 			if (MMU_VALID_DT(*a_dte)) {
3139 				/*
3140 				 * Find the B table manager for the
3141 				 * entry and free it.
3142 				 */
3143 				b_dte = mmu_ptov(a_dte->addr.raw);
3144 				b_tbl = mmuB2tmgr(b_dte);
3145 				free_b_table(b_tbl, TRUE);
3146 
3147 				/*
3148 				 * Invalidate the DTE that points to the
3149 				 * B table and decrement the valid entry
3150 				 * count of the A table.
3151 				 */
3152 				a_dte->attr.raw = MMU_DT_INVALID;
3153 				a_tbl->at_ecnt--;
3154 			}
3155 	}
3156 	if (nend < end) {
3157 		/*
3158 		 * This block is executed if the range ends beyond a
3159 		 * granularity boundary.
3160 		 *
3161 		 * First find the DTE which is responsible for mapping
3162 		 * the start of the nearest (rounded down) granularity
3163 		 * boundary.
3164 		 */
3165 		idx = MMU_TIA(nend);
3166 		a_dte = &a_tbl->at_dtbl[idx];
3167 
3168 		/*
3169 		 * If the DTE is valid then delegate the removal of the sub
3170 		 * range to pmap_remove_b(), which can remove addresses at
3171 		 * a finer granularity.
3172 		 */
3173 		if (MMU_VALID_DT(*a_dte)) {
3174 			/*
3175 			 * Find the B table manager for the entry
3176 			 * and hand it to pmap_remove_b() along with
3177 			 * the sub range.
3178 			 */
3179 			b_dte = mmu_ptov(a_dte->addr.raw);
3180 			b_tbl = mmuB2tmgr(b_dte);
3181 
3182 			empty = pmap_remove_b(b_tbl, nend, end);
3183 
3184 			/*
3185 			 * If the removal resulted in an empty B table,
3186 			 * invalidate the DTE that points to it and decrement
3187 			 * the valid entry count of the A table.
3188 			 */
3189 			if (empty) {
3190 				a_dte->attr.raw = MMU_DT_INVALID;
3191 				a_tbl->at_ecnt--;
3192 			}
3193 		}
3194 	}
3195 
3196 	/*
3197 	 * If there are no more entries in the A table, release it
3198 	 * back to the available pool and return TRUE.
3199 	 */
3200 	if (a_tbl->at_ecnt == 0) {
3201 		a_tbl->at_parent = NULL;
3202 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3203 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3204 		empty = TRUE;
3205 	} else {
3206 		empty = FALSE;
3207 	}
3208 
3209 	return empty;
3210 }
3211 
3212 /* pmap_remove_b			INTERNAL
3213  **
3214  * Remove a range of addresses from an address space, trying to remove entire
3215  * C tables if possible.
3216  *
3217  * If the operation results in an empty B table, the function returns TRUE.
3218  */
3219 boolean_t
3220 pmap_remove_b(b_tbl, start, end)
3221 	b_tmgr_t *b_tbl;
3222 	vaddr_t start;
3223 	vaddr_t end;
3224 {
3225 	boolean_t empty;
3226 	int idx;
3227 	vaddr_t nstart, nend, rstart;
3228 	c_tmgr_t *c_tbl;
3229 	mmu_short_dte_t  *b_dte;
3230 	mmu_short_pte_t  *c_dte;
3231 
3232 
3233 	nstart = MMU_ROUND_UP_B(start);
3234 	nend = MMU_ROUND_B(end);
3235 
3236 	if (start < nstart) {
3237 		idx = MMU_TIB(start);
3238 		b_dte = &b_tbl->bt_dtbl[idx];
3239 		if (MMU_VALID_DT(*b_dte)) {
3240 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3241 			c_tbl = mmuC2tmgr(c_dte);
3242 			if (end < nstart)
3243 				empty = pmap_remove_c(c_tbl, start, end);
3244 			else
3245 				empty = pmap_remove_c(c_tbl, start, nstart);
3246 			if (empty) {
3247 				b_dte->attr.raw = MMU_DT_INVALID;
3248 				b_tbl->bt_ecnt--;
3249 			}
3250 		}
3251 	}
3252 	if (nstart < nend) {
3253 		idx = MMU_TIB(nstart);
3254 		b_dte = &b_tbl->bt_dtbl[idx];
3255 		rstart = nstart;
3256 		while (rstart < nend) {
3257 			if (MMU_VALID_DT(*b_dte)) {
3258 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3259 				c_tbl = mmuC2tmgr(c_dte);
3260 				free_c_table(c_tbl, TRUE);
3261 				b_dte->attr.raw = MMU_DT_INVALID;
3262 				b_tbl->bt_ecnt--;
3263 			}
3264 			b_dte++;
3265 			rstart += MMU_TIB_RANGE;
3266 		}
3267 	}
3268 	if (nend < end) {
3269 		idx = MMU_TIB(nend);
3270 		b_dte = &b_tbl->bt_dtbl[idx];
3271 		if (MMU_VALID_DT(*b_dte)) {
3272 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3273 			c_tbl = mmuC2tmgr(c_dte);
3274 			empty = pmap_remove_c(c_tbl, nend, end);
3275 			if (empty) {
3276 				b_dte->attr.raw = MMU_DT_INVALID;
3277 				b_tbl->bt_ecnt--;
3278 			}
3279 		}
3280 	}
3281 
3282 	if (b_tbl->bt_ecnt == 0) {
3283 		b_tbl->bt_parent = NULL;
3284 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3285 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3286 		empty = TRUE;
3287 	} else {
3288 		empty = FALSE;
3289 	}
3290 
3291 	return empty;
3292 }
3293 
3294 /* pmap_remove_c			INTERNAL
3295  **
3296  * Remove a range of addresses from the given C table.
3297  */
3298 boolean_t
3299 pmap_remove_c(c_tbl, start, end)
3300 	c_tmgr_t *c_tbl;
3301 	vaddr_t start;
3302 	vaddr_t end;
3303 {
3304 	boolean_t empty;
3305 	int idx;
3306 	mmu_short_pte_t *c_pte;
3307 
3308 	idx = MMU_TIC(start);
3309 	c_pte = &c_tbl->ct_dtbl[idx];
3310 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3311 		if (MMU_VALID_DT(*c_pte)) {
3312 			pmap_remove_pte(c_pte);
3313 			c_tbl->ct_ecnt--;
3314 		}
3315 	}
3316 
3317 	if (c_tbl->ct_ecnt == 0) {
3318 		c_tbl->ct_parent = NULL;
3319 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3320 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3321 		empty = TRUE;
3322 	} else {
3323 		empty = FALSE;
3324 	}
3325 
3326 	return empty;
3327 }
3328 
3329 /* is_managed				INTERNAL
3330  **
3331  * Determine if the given physical address is managed by the PV system.
3332  * Note that this logic assumes that no one will ask for the status of
3333  * addresses which lie in-between the memory banks on the 3/80.  If they
3334  * do so, it will falsely report that it is managed.
3335  *
3336  * Note: A "managed" address is one that was reported to the VM system as
3337  * a "usable page" during system startup.  As such, the VM system expects the
3338  * pmap module to keep an accurate track of the useage of those pages.
3339  * Any page not given to the VM system at startup does not exist (as far as
3340  * the VM system is concerned) and is therefore "unmanaged."  Examples are
3341  * those pages which belong to the ROM monitor and the memory allocated before
3342  * the VM system was started.
3343  */
3344 boolean_t
3345 is_managed(pa)
3346 	paddr_t pa;
3347 {
3348 	if (pa >= avail_start && pa < avail_end)
3349 		return TRUE;
3350 	else
3351 		return FALSE;
3352 }
3353 
3354 /* pmap_bootstrap_alloc			INTERNAL
3355  **
3356  * Used internally for memory allocation at startup when malloc is not
3357  * available.  This code will fail once it crosses the first memory
3358  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3359  * will be in charge of allocation.
3360  */
3361 void *
3362 pmap_bootstrap_alloc(size)
3363 	int size;
3364 {
3365 	void *rtn;
3366 
3367 #ifdef	PMAP_DEBUG
3368 	if (bootstrap_alloc_enabled == FALSE) {
3369 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3370 		sunmon_abort();
3371 	}
3372 #endif
3373 
3374 	rtn = (void *) virtual_avail;
3375 	virtual_avail += size;
3376 
3377 #ifdef	PMAP_DEBUG
3378 	if (virtual_avail > virtual_contig_end) {
3379 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3380 		sunmon_abort();
3381 	}
3382 #endif
3383 
3384 	return rtn;
3385 }
3386 
3387 /* pmap_bootstap_aalign			INTERNAL
3388  **
3389  * Used to insure that the next call to pmap_bootstrap_alloc() will
3390  * return a chunk of memory aligned to the specified size.
3391  *
3392  * Note: This function will only support alignment sizes that are powers
3393  * of two.
3394  */
3395 void
3396 pmap_bootstrap_aalign(size)
3397 	int size;
3398 {
3399 	int off;
3400 
3401 	off = virtual_avail & (size - 1);
3402 	if (off) {
3403 		(void) pmap_bootstrap_alloc(size - off);
3404 	}
3405 }
3406 
3407 /* pmap_pa_exists
3408  **
3409  * Used by the /dev/mem driver to see if a given PA is memory
3410  * that can be mapped.  (The PA is not in a hole.)
3411  */
3412 int
3413 pmap_pa_exists(pa)
3414 	paddr_t pa;
3415 {
3416 	int i;
3417 
3418 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3419 		if ((pa >= avail_mem[i].pmem_start) &&
3420 			(pa <  avail_mem[i].pmem_end))
3421 			return (1);
3422 		if (avail_mem[i].pmem_next == NULL)
3423 			break;
3424 	}
3425 	return (0);
3426 }
3427 
3428 /* Called only from locore.s and pmap.c */
3429 void	_pmap_switch __P((pmap_t pmap));
3430 
3431 /*
3432  * _pmap_switch			INTERNAL
3433  *
3434  * This is called by locore.s:cpu_switch() when it is
3435  * switching to a new process.  Load new translations.
3436  * Note: done in-line by locore.s unless PMAP_DEBUG
3437  *
3438  * Note that we do NOT allocate a context here, but
3439  * share the "kernel only" context until we really
3440  * need our own context for user-space mappings in
3441  * pmap_enter_user().  [ s/context/mmu A table/ ]
3442  */
3443 void
3444 _pmap_switch(pmap)
3445 	pmap_t pmap;
3446 {
3447 	u_long rootpa;
3448 
3449 	/*
3450 	 * Only do reload/flush if we have to.
3451 	 * Note that if the old and new process
3452 	 * were BOTH using the "null" context,
3453 	 * then this will NOT flush the TLB.
3454 	 */
3455 	rootpa = pmap->pm_a_phys;
3456 	if (kernel_crp.rp_addr != rootpa) {
3457 		DPRINT(("pmap_activate(%p)\n", pmap));
3458 		kernel_crp.rp_addr = rootpa;
3459 		loadcrp(&kernel_crp);
3460 		TBIAU();
3461 	}
3462 }
3463 
3464 /*
3465  * Exported version of pmap_activate().  This is called from the
3466  * machine-independent VM code when a process is given a new pmap.
3467  * If (p == curproc) do like cpu_switch would do; otherwise just
3468  * take this as notification that the process has a new pmap.
3469  */
3470 void
3471 pmap_activate(p)
3472 	struct proc *p;
3473 {
3474 	if (p == curproc) {
3475 		_pmap_switch(p->p_vmspace->vm_map.pmap);
3476 	}
3477 }
3478 
3479 /*
3480  * pmap_deactivate			INTERFACE
3481  **
3482  * This is called to deactivate the specified process's address space.
3483  */
3484 void
3485 pmap_deactivate(p)
3486 struct proc *p;
3487 {
3488 	/* Nothing to do. */
3489 }
3490 
3491 /*
3492  * Fill in the sun3x-specific part of the kernel core header
3493  * for dumpsys().  (See machdep.c for the rest.)
3494  */
3495 void
3496 pmap_kcore_hdr(sh)
3497 	struct sun3x_kcore_hdr *sh;
3498 {
3499 	u_long spa, len;
3500 	int i;
3501 
3502 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3503 	sh->pg_valid = MMU_DT_PAGE;
3504 	sh->contig_end = virtual_contig_end;
3505 	sh->kernCbase = (u_long)kernCbase;
3506 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3507 		spa = avail_mem[i].pmem_start;
3508 		spa = m68k_trunc_page(spa);
3509 		len = avail_mem[i].pmem_end - spa;
3510 		len = m68k_round_page(len);
3511 		sh->ram_segs[i].start = spa;
3512 		sh->ram_segs[i].size  = len;
3513 	}
3514 }
3515 
3516 
3517 /* pmap_virtual_space			INTERFACE
3518  **
3519  * Return the current available range of virtual addresses in the
3520  * arguuments provided.  Only really called once.
3521  */
3522 void
3523 pmap_virtual_space(vstart, vend)
3524 	vaddr_t *vstart, *vend;
3525 {
3526 	*vstart = virtual_avail;
3527 	*vend = virtual_end;
3528 }
3529 
3530 /*
3531  * Provide memory to the VM system.
3532  *
3533  * Assume avail_start is always in the
3534  * first segment as pmap_bootstrap does.
3535  */
3536 static void
3537 pmap_page_upload()
3538 {
3539 	paddr_t	a, b;	/* memory range */
3540 	int i;
3541 
3542 	/* Supply the memory in segments. */
3543 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3544 		a = atop(avail_mem[i].pmem_start);
3545 		b = atop(avail_mem[i].pmem_end);
3546 		if (i == 0)
3547 			a = atop(avail_start);
3548 		if (avail_mem[i].pmem_end > avail_end)
3549 			b = atop(avail_end);
3550 
3551 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3552 
3553 		if (avail_mem[i].pmem_next == NULL)
3554 			break;
3555 	}
3556 }
3557 
3558 /* pmap_count			INTERFACE
3559  **
3560  * Return the number of resident (valid) pages in the given pmap.
3561  *
3562  * Note:  If this function is handed the kernel map, it will report
3563  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3564  * map statistics.
3565  */
3566 segsz_t
3567 pmap_count(pmap, type)
3568 	pmap_t pmap;
3569 	int    type;
3570 {
3571 	u_int     count;
3572 	int       a_idx, b_idx;
3573 	a_tmgr_t *a_tbl;
3574 	b_tmgr_t *b_tbl;
3575 	c_tmgr_t *c_tbl;
3576 
3577 	/*
3578 	 * If the pmap does not have its own A table manager, it has no
3579 	 * valid entires.
3580 	 */
3581 	if (pmap->pm_a_tmgr == NULL)
3582 		return 0;
3583 
3584 	a_tbl = pmap->pm_a_tmgr;
3585 
3586 	count = 0;
3587 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3588 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3589 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3590 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3591 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3592 	                c_tbl = mmuC2tmgr(
3593 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3594 	                if (type == 0)
3595 	                    /*
3596 	                     * A resident entry count has been requested.
3597 	                     */
3598 	                    count += c_tbl->ct_ecnt;
3599 	                else
3600 	                    /*
3601 	                     * A wired entry count has been requested.
3602 	                     */
3603 	                    count += c_tbl->ct_wcnt;
3604 	            }
3605 	        }
3606 	    }
3607 	}
3608 
3609 	return count;
3610 }
3611 
3612 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3613  * The following routines are only used by DDB for tricky kernel text    *
3614  * text operations in db_memrw.c.  They are provided for sun3            *
3615  * compatibility.                                                        *
3616  *************************************************************************/
3617 /* get_pte			INTERNAL
3618  **
3619  * Return the page descriptor the describes the kernel mapping
3620  * of the given virtual address.
3621  */
3622 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
3623 u_int
3624 get_pte(va)
3625 	vaddr_t va;
3626 {
3627 	u_long pte_pa;
3628 	mmu_short_pte_t *pte;
3629 
3630 	/* Get the physical address of the PTE */
3631 	pte_pa = ptest_addr(va & ~PGOFSET);
3632 
3633 	/* Convert to a virtual address... */
3634 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3635 
3636 	/* Make sure it is in our level-C tables... */
3637 	if ((pte < kernCbase) ||
3638 		(pte >= &mmuCbase[NUM_USER_PTES]))
3639 		return 0;
3640 
3641 	/* ... and just return its contents. */
3642 	return (pte->attr.raw);
3643 }
3644 
3645 
3646 /* set_pte			INTERNAL
3647  **
3648  * Set the page descriptor that describes the kernel mapping
3649  * of the given virtual address.
3650  */
3651 void
3652 set_pte(va, pte)
3653 	vaddr_t va;
3654 	u_int pte;
3655 {
3656 	u_long idx;
3657 
3658 	if (va < KERNBASE)
3659 		return;
3660 
3661 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3662 	kernCbase[idx].attr.raw = pte;
3663 	TBIS(va);
3664 }
3665 
3666 /*
3667  *	Routine:        pmap_procwr
3668  *
3669  *	Function:
3670  *		Synchronize caches corresponding to [addr, addr+len) in p.
3671  */
3672 void
3673 pmap_procwr(p, va, len)
3674 	struct proc	*p;
3675 	vaddr_t		va;
3676 	size_t		len;
3677 {
3678 	(void)cachectl1(0x80000004, va, len, p);
3679 }
3680 
3681 
3682 #ifdef	PMAP_DEBUG
3683 /************************** DEBUGGING ROUTINES **************************
3684  * The following routines are meant to be an aid to debugging the pmap  *
3685  * system.  They are callable from the DDB command line and should be   *
3686  * prepared to be handed unstable or incomplete states of the system.   *
3687  ************************************************************************/
3688 
3689 /* pv_list
3690  **
3691  * List all pages found on the pv list for the given physical page.
3692  * To avoid endless loops, the listing will stop at the end of the list
3693  * or after 'n' entries - whichever comes first.
3694  */
3695 void
3696 pv_list(pa, n)
3697 	paddr_t pa;
3698 	int n;
3699 {
3700 	int  idx;
3701 	vaddr_t va;
3702 	pv_t *pv;
3703 	c_tmgr_t *c_tbl;
3704 	pmap_t pmap;
3705 
3706 	pv = pa2pv(pa);
3707 	idx = pv->pv_idx;
3708 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3709 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3710 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3711 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3712 	}
3713 }
3714 #endif	/* PMAP_DEBUG */
3715 
3716 #ifdef NOT_YET
3717 /* and maybe not ever */
3718 /************************** LOW-LEVEL ROUTINES **************************
3719  * These routines will eventualy be re-written into assembly and placed *
3720  * in locore.s.  They are here now as stubs so that the pmap module can *
3721  * be linked as a standalone user program for testing.                  *
3722  ************************************************************************/
3723 /* flush_atc_crp			INTERNAL
3724  **
3725  * Flush all page descriptors derived from the given CPU Root Pointer
3726  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3727  * cache.
3728  */
3729 void
3730 flush_atc_crp(a_tbl)
3731 {
3732 	mmu_long_rp_t rp;
3733 
3734 	/* Create a temporary root table pointer that points to the
3735 	 * given A table.
3736 	 */
3737 	rp.attr.raw = ~MMU_LONG_RP_LU;
3738 	rp.addr.raw = (unsigned int) a_tbl;
3739 
3740 	mmu_pflushr(&rp);
3741 	/* mmu_pflushr:
3742 	 * 	movel   sp(4)@,a0
3743 	 * 	pflushr a0@
3744 	 *	rts
3745 	 */
3746 }
3747 #endif /* NOT_YET */
3748