xref: /netbsd/sys/arch/sun3/sun3x/pmap.c (revision c4a72b64)
1 /*	$NetBSD: pmap.c,v 1.75 2002/10/20 02:37:38 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * XXX These comments aren't quite accurate.  Need to change.
41  * The sun3x uses the MC68851 Memory Management Unit, which is built
42  * into the CPU.  The 68851 maps virtual to physical addresses using
43  * a multi-level table lookup, which is stored in the very memory that
44  * it maps.  The number of levels of lookup is configurable from one
45  * to four.  In this implementation, we use three, named 'A' through 'C'.
46  *
47  * The MMU translates virtual addresses into physical addresses by
48  * traversing these tables in a proccess called a 'table walk'.  The most
49  * significant 7 bits of the Virtual Address ('VA') being translated are
50  * used as an index into the level A table, whose base in physical memory
51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
52  * address found at that index in the A table is used as the base
53  * address for the next table, the B table.  The next six bits of the VA are
54  * used as an index into the B table, which in turn gives the base address
55  * of the third and final C table.
56  *
57  * The next six bits of the VA are used as an index into the C table to
58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
59  * to which the remaining 13 bits of the VA are added, producing the
60  * mapped physical address.
61  *
62  * To map the entire memory space in this manner would require 2114296 bytes
63  * of page tables per process - quite expensive.  Instead we will
64  * allocate a fixed but considerably smaller space for the page tables at
65  * the time the VM system is initialized.  When the pmap code is asked by
66  * the kernel to map a VA to a PA, it allocates tables as needed from this
67  * pool.  When there are no more tables in the pool, tables are stolen
68  * from the oldest mapped entries in the tree.  This is only possible
69  * because all memory mappings are stored in the kernel memory map
70  * structures, independent of the pmap structures.  A VA which references
71  * one of these invalidated maps will cause a page fault.  The kernel
72  * will determine that the page fault was caused by a task using a valid
73  * VA, but for some reason (which does not concern it), that address was
74  * not mapped.  It will ask the pmap code to re-map the entry and then
75  * it will resume executing the faulting task.
76  *
77  * In this manner the most efficient use of the page table space is
78  * achieved.  Tasks which do not execute often will have their tables
79  * stolen and reused by tasks which execute more frequently.  The best
80  * size for the page table pool will probably be determined by
81  * experimentation.
82  *
83  * You read all of the comments so far.  Good for you.
84  * Now go play!
85  */
86 
87 /*** A Note About the 68851 Address Translation Cache
88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
89  * or 'ATC'.  This cache stores the most recently used page descriptors
90  * accessed by the MMU when it does translations.  Using a marker called a
91  * 'task alias' the MMU can store the descriptors from 8 different table
92  * spaces concurrently.  The task alias is associated with the base
93  * address of the level A table of that address space.  When an address
94  * space is currently active (the CRP currently points to its A table)
95  * the only cached descriptors that will be obeyed are ones which have a
96  * matching task alias of the current space associated with them.
97  *
98  * Since the cache is always consulted before any table lookups are done,
99  * it is important that it accurately reflect the state of the MMU tables.
100  * Whenever a change has been made to a table that has been loaded into
101  * the MMU, the code must be sure to flush any cached entries that are
102  * affected by the change.  These instances are documented in the code at
103  * various points.
104  */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106  * 4 months into this code I discovered that the sun3x does not have
107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108  * the 68030 CPU.
109  * All though it behaves very similarly to the 68851, it only has 1 task
110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
111  * of the previous note does not apply to the sun3x pmap.
112  */
113 
114 #include "opt_ddb.h"
115 
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124 
125 #include <uvm/uvm.h>
126 
127 #include <machine/cpu.h>
128 #include <machine/kcore.h>
129 #include <machine/mon.h>
130 #include <machine/pmap.h>
131 #include <machine/pte.h>
132 #include <machine/vmparam.h>
133 #include <m68k/cacheops.h>
134 
135 #include <sun3/sun3/cache.h>
136 #include <sun3/sun3/machdep.h>
137 
138 #include "pmap_pvt.h"
139 
140 /* XXX - What headers declare these? */
141 extern struct pcb *curpcb;
142 extern int physmem;
143 
144 /* Defined in locore.s */
145 extern char kernel_text[];
146 
147 /* Defined by the linker */
148 extern char etext[], edata[], end[];
149 extern char *esym;	/* DDB */
150 
151 /*************************** DEBUGGING DEFINITIONS ***********************
152  * Macros, preprocessor defines and variables used in debugging can make *
153  * code hard to read.  Anything used exclusively for debugging purposes  *
154  * is defined here to avoid having such mess scattered around the file.  *
155  *************************************************************************/
156 #ifdef	PMAP_DEBUG
157 /*
158  * To aid the debugging process, macros should be expanded into smaller steps
159  * that accomplish the same goal, yet provide convenient places for placing
160  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
161  * 'INLINE' keyword is defined to an empty string.  This way, any function
162  * defined to be a 'static INLINE' will become 'outlined' and compiled as
163  * a separate function, which is much easier to debug.
164  */
165 #define	INLINE	/* nothing */
166 
167 /*
168  * It is sometimes convenient to watch the activity of a particular table
169  * in the system.  The following variables are used for that purpose.
170  */
171 a_tmgr_t *pmap_watch_atbl = 0;
172 b_tmgr_t *pmap_watch_btbl = 0;
173 c_tmgr_t *pmap_watch_ctbl = 0;
174 
175 int pmap_debug = 0;
176 #define DPRINT(args) if (pmap_debug) printf args
177 
178 #else	/********** Stuff below is defined if NOT debugging **************/
179 
180 #define	INLINE	inline
181 #define DPRINT(args)  /* nada */
182 
183 #endif	/* PMAP_DEBUG */
184 /*********************** END OF DEBUGGING DEFINITIONS ********************/
185 
186 /*** Management Structure - Memory Layout
187  * For every MMU table in the sun3x pmap system there must be a way to
188  * manage it; we must know which process is using it, what other tables
189  * depend on it, and whether or not it contains any locked pages.  This
190  * is solved by the creation of 'table management'  or 'tmgr'
191  * structures.  One for each MMU table in the system.
192  *
193  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
194  *
195  *      towards lower memory
196  * kernAbase -> +-------------------------------------------------------+
197  *              | Kernel     MMU A level table                          |
198  * kernBbase -> +-------------------------------------------------------+
199  *              | Kernel     MMU B level tables                         |
200  * kernCbase -> +-------------------------------------------------------+
201  *              |                                                       |
202  *              | Kernel     MMU C level tables                         |
203  *              |                                                       |
204  * mmuCbase  -> +-------------------------------------------------------+
205  *              | User       MMU C level tables                         |
206  * mmuAbase  -> +-------------------------------------------------------+
207  *              |                                                       |
208  *              | User       MMU A level tables                         |
209  *              |                                                       |
210  * mmuBbase  -> +-------------------------------------------------------+
211  *              | User       MMU B level tables                         |
212  * tmgrAbase -> +-------------------------------------------------------+
213  *              |  TMGR A level table structures                        |
214  * tmgrBbase -> +-------------------------------------------------------+
215  *              |  TMGR B level table structures                        |
216  * tmgrCbase -> +-------------------------------------------------------+
217  *              |  TMGR C level table structures                        |
218  * pvbase    -> +-------------------------------------------------------+
219  *              |  Physical to Virtual mapping table (list heads)       |
220  * pvebase   -> +-------------------------------------------------------+
221  *              |  Physical to Virtual mapping table (list elements)    |
222  *              |                                                       |
223  *              +-------------------------------------------------------+
224  *      towards higher memory
225  *
226  * For every A table in the MMU A area, there will be a corresponding
227  * a_tmgr structure in the TMGR A area.  The same will be true for
228  * the B and C tables.  This arrangement will make it easy to find the
229  * controling tmgr structure for any table in the system by use of
230  * (relatively) simple macros.
231  */
232 
233 /*
234  * Global variables for storing the base addresses for the areas
235  * labeled above.
236  */
237 static vaddr_t  	kernAphys;
238 static mmu_long_dte_t	*kernAbase;
239 static mmu_short_dte_t	*kernBbase;
240 static mmu_short_pte_t	*kernCbase;
241 static mmu_short_pte_t	*mmuCbase;
242 static mmu_short_dte_t	*mmuBbase;
243 static mmu_long_dte_t	*mmuAbase;
244 static a_tmgr_t		*Atmgrbase;
245 static b_tmgr_t		*Btmgrbase;
246 static c_tmgr_t		*Ctmgrbase;
247 static pv_t 		*pvbase;
248 static pv_elem_t	*pvebase;
249 struct pmap 		kernel_pmap;
250 
251 /*
252  * This holds the CRP currently loaded into the MMU.
253  */
254 struct mmu_rootptr kernel_crp;
255 
256 /*
257  * Just all around global variables.
258  */
259 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
260 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
261 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
262 
263 
264 /*
265  * Flags used to mark the safety/availability of certain operations or
266  * resources.
267  */
268 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
269 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
270 
271 /*
272  * XXX:  For now, retain the traditional variables that were
273  * used in the old pmap/vm interface (without NONCONTIG).
274  */
275 /* Kernel virtual address space available: */
276 vaddr_t	virtual_avail, virtual_end;
277 /* Physical address space available: */
278 paddr_t	avail_start, avail_end;
279 
280 /* This keep track of the end of the contiguously mapped range. */
281 vaddr_t virtual_contig_end;
282 
283 /* Physical address used by pmap_next_page() */
284 paddr_t avail_next;
285 
286 /* These are used by pmap_copy_page(), etc. */
287 vaddr_t tmp_vpages[2];
288 
289 /* memory pool for pmap structures */
290 struct pool	pmap_pmap_pool;
291 
292 /*
293  * The 3/80 is the only member of the sun3x family that has non-contiguous
294  * physical memory.  Memory is divided into 4 banks which are physically
295  * locatable on the system board.  Although the size of these banks varies
296  * with the size of memory they contain, their base addresses are
297  * permenently fixed.  The following structure, which describes these
298  * banks, is initialized by pmap_bootstrap() after it reads from a similar
299  * structure provided by the ROM Monitor.
300  *
301  * For the other machines in the sun3x architecture which do have contiguous
302  * RAM, this list will have only one entry, which will describe the entire
303  * range of available memory.
304  */
305 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
306 u_int total_phys_mem;
307 
308 /*************************************************************************/
309 
310 /*
311  * XXX - Should "tune" these based on statistics.
312  *
313  * My first guess about the relative numbers of these needed is
314  * based on the fact that a "typical" process will have several
315  * pages mapped at low virtual addresses (text, data, bss), then
316  * some mapped shared libraries, and then some stack pages mapped
317  * near the high end of the VA space.  Each process can use only
318  * one A table, and most will use only two B tables (maybe three)
319  * and probably about four C tables.  Therefore, the first guess
320  * at the relative numbers of these needed is 1:2:4 -gwr
321  *
322  * The number of C tables needed is closely related to the amount
323  * of physical memory available plus a certain amount attributable
324  * to the use of double mappings.  With a few simulation statistics
325  * we can find a reasonably good estimation of this unknown value.
326  * Armed with that and the above ratios, we have a good idea of what
327  * is needed at each level. -j
328  *
329  * Note: It is not physical memory memory size, but the total mapped
330  * virtual space required by the combined working sets of all the
331  * currently _runnable_ processes.  (Sleeping ones don't count.)
332  * The amount of physical memory should be irrelevant. -gwr
333  */
334 #ifdef	FIXED_NTABLES
335 #define NUM_A_TABLES	16
336 #define NUM_B_TABLES	32
337 #define NUM_C_TABLES	64
338 #else
339 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
340 #endif	/* FIXED_NTABLES */
341 
342 /*
343  * This determines our total virtual mapping capacity.
344  * Yes, it is a FIXED value so we can pre-allocate.
345  */
346 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
347 
348 /*
349  * The size of the Kernel Virtual Address Space (KVAS)
350  * for purposes of MMU table allocation is -KERNBASE
351  * (length from KERNBASE to 0xFFFFffff)
352  */
353 #define	KVAS_SIZE		(-KERNBASE)
354 
355 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
356 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
357 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
358 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
359 
360 /*************************** MISCELANEOUS MACROS *************************/
361 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
362 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
363 #define pmap_add_ref(pmap) ++pmap->pm_refcount
364 #define pmap_del_ref(pmap) --pmap->pm_refcount
365 #define pmap_refcount(pmap) pmap->pm_refcount
366 
367 void *pmap_bootstrap_alloc(int);
368 
369 static INLINE void *mmu_ptov __P((paddr_t));
370 static INLINE paddr_t mmu_vtop __P((void *));
371 
372 #if	0
373 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
374 #endif /* 0 */
375 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
376 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
377 
378 static INLINE pv_t *pa2pv __P((paddr_t));
379 static INLINE int   pteidx __P((mmu_short_pte_t *));
380 static INLINE pmap_t current_pmap __P((void));
381 
382 /*
383  * We can always convert between virtual and physical addresses
384  * for anything in the range [KERNBASE ... avail_start] because
385  * that range is GUARANTEED to be mapped linearly.
386  * We rely heavily upon this feature!
387  */
388 static INLINE void *
389 mmu_ptov(pa)
390 	paddr_t pa;
391 {
392 	vaddr_t va;
393 
394 	va = (pa + KERNBASE);
395 #ifdef	PMAP_DEBUG
396 	if ((va < KERNBASE) || (va >= virtual_contig_end))
397 		panic("mmu_ptov");
398 #endif
399 	return ((void*)va);
400 }
401 
402 static INLINE paddr_t
403 mmu_vtop(vva)
404 	void *vva;
405 {
406 	vaddr_t va;
407 
408 	va = (vaddr_t)vva;
409 #ifdef	PMAP_DEBUG
410 	if ((va < KERNBASE) || (va >= virtual_contig_end))
411 		panic("mmu_vtop");
412 #endif
413 	return (va - KERNBASE);
414 }
415 
416 /*
417  * These macros map MMU tables to their corresponding manager structures.
418  * They are needed quite often because many of the pointers in the pmap
419  * system reference MMU tables and not the structures that control them.
420  * There needs to be a way to find one when given the other and these
421  * macros do so by taking advantage of the memory layout described above.
422  * Here's a quick step through the first macro, mmuA2tmgr():
423  *
424  * 1) find the offset of the given MMU A table from the base of its table
425  *    pool (table - mmuAbase).
426  * 2) convert this offset into a table index by dividing it by the
427  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
428  * 3) use this index to select the corresponding 'A' table manager
429  *    structure from the 'A' table manager pool (Atmgrbase[index]).
430  */
431 /*  This function is not currently used. */
432 #if	0
433 static INLINE a_tmgr_t *
434 mmuA2tmgr(mmuAtbl)
435 	mmu_long_dte_t *mmuAtbl;
436 {
437 	int idx;
438 
439 	/* Which table is this in? */
440 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
441 #ifdef	PMAP_DEBUG
442 	if ((idx < 0) || (idx >= NUM_A_TABLES))
443 		panic("mmuA2tmgr");
444 #endif
445 	return (&Atmgrbase[idx]);
446 }
447 #endif	/* 0 */
448 
449 static INLINE b_tmgr_t *
450 mmuB2tmgr(mmuBtbl)
451 	mmu_short_dte_t *mmuBtbl;
452 {
453 	int idx;
454 
455 	/* Which table is this in? */
456 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
457 #ifdef	PMAP_DEBUG
458 	if ((idx < 0) || (idx >= NUM_B_TABLES))
459 		panic("mmuB2tmgr");
460 #endif
461 	return (&Btmgrbase[idx]);
462 }
463 
464 /* mmuC2tmgr			INTERNAL
465  **
466  * Given a pte known to belong to a C table, return the address of
467  * that table's management structure.
468  */
469 static INLINE c_tmgr_t *
470 mmuC2tmgr(mmuCtbl)
471 	mmu_short_pte_t *mmuCtbl;
472 {
473 	int idx;
474 
475 	/* Which table is this in? */
476 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
477 #ifdef	PMAP_DEBUG
478 	if ((idx < 0) || (idx >= NUM_C_TABLES))
479 		panic("mmuC2tmgr");
480 #endif
481 	return (&Ctmgrbase[idx]);
482 }
483 
484 /* This is now a function call below.
485  * #define pa2pv(pa) \
486  *	(&pvbase[(unsigned long)\
487  *		m68k_btop(pa)\
488  *	])
489  */
490 
491 /* pa2pv			INTERNAL
492  **
493  * Return the pv_list_head element which manages the given physical
494  * address.
495  */
496 static INLINE pv_t *
497 pa2pv(pa)
498 	paddr_t pa;
499 {
500 	struct pmap_physmem_struct *bank;
501 	int idx;
502 
503 	bank = &avail_mem[0];
504 	while (pa >= bank->pmem_end)
505 		bank = bank->pmem_next;
506 
507 	pa -= bank->pmem_start;
508 	idx = bank->pmem_pvbase + m68k_btop(pa);
509 #ifdef	PMAP_DEBUG
510 	if ((idx < 0) || (idx >= physmem))
511 		panic("pa2pv");
512 #endif
513 	return &pvbase[idx];
514 }
515 
516 /* pteidx			INTERNAL
517  **
518  * Return the index of the given PTE within the entire fixed table of
519  * PTEs.
520  */
521 static INLINE int
522 pteidx(pte)
523 	mmu_short_pte_t *pte;
524 {
525 	return (pte - kernCbase);
526 }
527 
528 /*
529  * This just offers a place to put some debugging checks,
530  * and reduces the number of places "curproc" appears...
531  */
532 static INLINE pmap_t
533 current_pmap()
534 {
535 	struct proc *p;
536 	struct vmspace *vm;
537 	struct vm_map *map;
538 	pmap_t	pmap;
539 
540 	p = curproc;	/* XXX */
541 	if (p == NULL)
542 		pmap = &kernel_pmap;
543 	else {
544 		vm = p->p_vmspace;
545 		map = &vm->vm_map;
546 		pmap = vm_map_pmap(map);
547 	}
548 
549 	return (pmap);
550 }
551 
552 
553 /*************************** FUNCTION DEFINITIONS ************************
554  * These appear here merely for the compiler to enforce type checking on *
555  * all function calls.                                                   *
556  *************************************************************************/
557 
558 /** Internal functions
559  ** Most functions used only within this module are defined in
560  **   pmap_pvt.h (why not here if used only here?)
561  **/
562 static void pmap_page_upload __P((void));
563 
564 /** Interface functions
565  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
566  **   defined.
567  **/
568 void pmap_pinit __P((pmap_t));
569 void pmap_release __P((pmap_t));
570 
571 /********************************** CODE ********************************
572  * Functions that are called from other parts of the kernel are labeled *
573  * as 'INTERFACE' functions.  Functions that are only called from       *
574  * within the pmap module are labeled as 'INTERNAL' functions.          *
575  * Functions that are internal, but are not (currently) used at all are *
576  * labeled 'INTERNAL_X'.                                                *
577  ************************************************************************/
578 
579 /* pmap_bootstrap			INTERNAL
580  **
581  * Initializes the pmap system.  Called at boot time from
582  * locore2.c:_vm_init()
583  *
584  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
585  *           system implement pmap_steal_memory() is redundant.
586  *           Don't release this code without removing one or the other!
587  */
588 void
589 pmap_bootstrap(nextva)
590 	vaddr_t nextva;
591 {
592 	struct physmemory *membank;
593 	struct pmap_physmem_struct *pmap_membank;
594 	vaddr_t va, eva;
595 	paddr_t pa;
596 	int b, c, i, j;	/* running table counts */
597 	int size, resvmem;
598 
599 	/*
600 	 * This function is called by __bootstrap after it has
601 	 * determined the type of machine and made the appropriate
602 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
603 	 * by that.)  It allocates and sets up enough of the pmap system
604 	 * to manage the kernel's address space.
605 	 */
606 
607 	/*
608 	 * Determine the range of kernel virtual and physical
609 	 * space available. Note that we ABSOLUTELY DEPEND on
610 	 * the fact that the first bank of memory (4MB) is
611 	 * mapped linearly to KERNBASE (which we guaranteed in
612 	 * the first instructions of locore.s).
613 	 * That is plenty for our bootstrap work.
614 	 */
615 	virtual_avail = m68k_round_page(nextva);
616 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
617 	virtual_end = VM_MAX_KERNEL_ADDRESS;
618 	/* Don't need avail_start til later. */
619 
620 	/* We may now call pmap_bootstrap_alloc(). */
621 	bootstrap_alloc_enabled = TRUE;
622 
623 	/*
624 	 * This is a somewhat unwrapped loop to deal with
625 	 * copying the PROM's 'phsymem' banks into the pmap's
626 	 * banks.  The following is always assumed:
627 	 * 1. There is always at least one bank of memory.
628 	 * 2. There is always a last bank of memory, and its
629 	 *    pmem_next member must be set to NULL.
630 	 */
631 	membank = romVectorPtr->v_physmemory;
632 	pmap_membank = avail_mem;
633 	total_phys_mem = 0;
634 
635 	for (;;) { /* break on !membank */
636 		pmap_membank->pmem_start = membank->address;
637 		pmap_membank->pmem_end = membank->address + membank->size;
638 		total_phys_mem += membank->size;
639 		membank = membank->next;
640 		if (!membank)
641 			break;
642 		/* This silly syntax arises because pmap_membank
643 		 * is really a pre-allocated array, but it is put into
644 		 * use as a linked list.
645 		 */
646 		pmap_membank->pmem_next = pmap_membank + 1;
647 		pmap_membank = pmap_membank->pmem_next;
648 	}
649 	/* This is the last element. */
650 	pmap_membank->pmem_next = NULL;
651 
652 	/*
653 	 * Note: total_phys_mem, physmem represent
654 	 * actual physical memory, including that
655 	 * reserved for the PROM monitor.
656 	 */
657 	physmem = btoc(total_phys_mem);
658 
659 	/*
660 	 * Avail_end is set to the first byte of physical memory
661 	 * after the end of the last bank.  We use this only to
662 	 * determine if a physical address is "managed" memory.
663 	 * This address range should be reduced to prevent the
664 	 * physical pages needed by the PROM monitor from being used
665 	 * in the VM system.
666 	 */
667 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
668 	resvmem = m68k_round_page(resvmem);
669 	avail_end = pmap_membank->pmem_end - resvmem;
670 
671 	/*
672 	 * First allocate enough kernel MMU tables to map all
673 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
674 	 * Note: All must be aligned on 256 byte boundaries.
675 	 * Start with the level-A table (one of those).
676 	 */
677 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
678 	kernAbase = pmap_bootstrap_alloc(size);
679 	memset(kernAbase, 0, size);
680 
681 	/* Now the level-B kernel tables... */
682 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
683 	kernBbase = pmap_bootstrap_alloc(size);
684 	memset(kernBbase, 0, size);
685 
686 	/* Now the level-C kernel tables... */
687 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
688 	kernCbase = pmap_bootstrap_alloc(size);
689 	memset(kernCbase, 0, size);
690 	/*
691 	 * Note: In order for the PV system to work correctly, the kernel
692 	 * and user-level C tables must be allocated contiguously.
693 	 * Nothing should be allocated between here and the allocation of
694 	 * mmuCbase below.  XXX: Should do this as one allocation, and
695 	 * then compute a pointer for mmuCbase instead of this...
696 	 *
697 	 * Allocate user MMU tables.
698 	 * These must be contiguous with the preceding.
699 	 */
700 
701 #ifndef	FIXED_NTABLES
702 	/*
703 	 * The number of user-level C tables that should be allocated is
704 	 * related to the size of physical memory.  In general, there should
705 	 * be enough tables to map four times the amount of available RAM.
706 	 * The extra amount is needed because some table space is wasted by
707 	 * fragmentation.
708 	 */
709 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
710 	NUM_B_TABLES = NUM_C_TABLES / 2;
711 	NUM_A_TABLES = NUM_B_TABLES / 2;
712 #endif	/* !FIXED_NTABLES */
713 
714 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
715 	mmuCbase = pmap_bootstrap_alloc(size);
716 
717 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
718 	mmuBbase = pmap_bootstrap_alloc(size);
719 
720 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
721 	mmuAbase = pmap_bootstrap_alloc(size);
722 
723 	/*
724 	 * Fill in the never-changing part of the kernel tables.
725 	 * For simplicity, the kernel's mappings will be editable as a
726 	 * flat array of page table entries at kernCbase.  The
727 	 * higher level 'A' and 'B' tables must be initialized to point
728 	 * to this lower one.
729 	 */
730 	b = c = 0;
731 
732 	/*
733 	 * Invalidate all mappings below KERNBASE in the A table.
734 	 * This area has already been zeroed out, but it is good
735 	 * practice to explicitly show that we are interpreting
736 	 * it as a list of A table descriptors.
737 	 */
738 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
739 		kernAbase[i].addr.raw = 0;
740 	}
741 
742 	/*
743 	 * Set up the kernel A and B tables so that they will reference the
744 	 * correct spots in the contiguous table of PTEs allocated for the
745 	 * kernel's virtual memory space.
746 	 */
747 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
748 		kernAbase[i].attr.raw =
749 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
750 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
751 
752 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
753 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
754 				| MMU_DT_SHORT;
755 			c += MMU_C_TBL_SIZE;
756 		}
757 		b += MMU_B_TBL_SIZE;
758 	}
759 
760 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
761 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
762 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
763 
764 	/*
765 	 * We are now done with pmap_bootstrap_alloc().  Round up
766 	 * `virtual_avail' to the nearest page, and set the flag
767 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
768 	 */
769 	pmap_bootstrap_aalign(NBPG);
770 	bootstrap_alloc_enabled = FALSE;
771 
772 	/*
773 	 * Now that we are done with pmap_bootstrap_alloc(), we
774 	 * must save the virtual and physical addresses of the
775 	 * end of the linearly mapped range, which are stored in
776 	 * virtual_contig_end and avail_start, respectively.
777 	 * These variables will never change after this point.
778 	 */
779 	virtual_contig_end = virtual_avail;
780 	avail_start = virtual_avail - KERNBASE;
781 
782 	/*
783 	 * `avail_next' is a running pointer used by pmap_next_page() to
784 	 * keep track of the next available physical page to be handed
785 	 * to the VM system during its initialization, in which it
786 	 * asks for physical pages, one at a time.
787 	 */
788 	avail_next = avail_start;
789 
790 	/*
791 	 * Now allocate some virtual addresses, but not the physical pages
792 	 * behind them.  Note that virtual_avail is already page-aligned.
793 	 *
794 	 * tmp_vpages[] is an array of two virtual pages used for temporary
795 	 * kernel mappings in the pmap module to facilitate various physical
796 	 * address-oritented operations.
797 	 */
798 	tmp_vpages[0] = virtual_avail;
799 	virtual_avail += NBPG;
800 	tmp_vpages[1] = virtual_avail;
801 	virtual_avail += NBPG;
802 
803 	/** Initialize the PV system **/
804 	pmap_init_pv();
805 
806 	/*
807 	 * Fill in the kernel_pmap structure and kernel_crp.
808 	 */
809 	kernAphys = mmu_vtop(kernAbase);
810 	kernel_pmap.pm_a_tmgr = NULL;
811 	kernel_pmap.pm_a_phys = kernAphys;
812 	kernel_pmap.pm_refcount = 1; /* always in use */
813 	simple_lock_init(&kernel_pmap.pm_lock);
814 
815 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
816 	kernel_crp.rp_addr = kernAphys;
817 
818 	/*
819 	 * Now pmap_enter_kernel() may be used safely and will be
820 	 * the main interface used hereafter to modify the kernel's
821 	 * virtual address space.  Note that since we are still running
822 	 * under the PROM's address table, none of these table modifications
823 	 * actually take effect until pmap_takeover_mmu() is called.
824 	 *
825 	 * Note: Our tables do NOT have the PROM linear mappings!
826 	 * Only the mappings created here exist in our tables, so
827 	 * remember to map anything we expect to use.
828 	 */
829 	va = (vaddr_t)KERNBASE;
830 	pa = 0;
831 
832 	/*
833 	 * The first page of the kernel virtual address space is the msgbuf
834 	 * page.  The page attributes (data, non-cached) are set here, while
835 	 * the address is assigned to this global pointer in cpu_startup().
836 	 * It is non-cached, mostly due to paranoia.
837 	 */
838 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
839 	va += NBPG; pa += NBPG;
840 
841 	/* Next page is used as the temporary stack. */
842 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
843 	va += NBPG; pa += NBPG;
844 
845 	/*
846 	 * Map all of the kernel's text segment as read-only and cacheable.
847 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
848 	 * of kernel text and the first bytes of kernel data will often be
849 	 * sharing the same page.  Therefore, the last page of kernel text
850 	 * has to be mapped as read/write, to accomodate the data.
851 	 */
852 	eva = m68k_trunc_page((vaddr_t)etext);
853 	for (; va < eva; va += NBPG, pa += NBPG)
854 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
855 
856 	/*
857 	 * Map all of the kernel's data as read/write and cacheable.
858 	 * This includes: data, BSS, symbols, and everything in the
859 	 * contiguous memory used by pmap_bootstrap_alloc()
860 	 */
861 	for (; pa < avail_start; va += NBPG, pa += NBPG)
862 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
863 
864 	/*
865 	 * At this point we are almost ready to take over the MMU.  But first
866 	 * we must save the PROM's address space in our map, as we call its
867 	 * routines and make references to its data later in the kernel.
868 	 */
869 	pmap_bootstrap_copyprom();
870 	pmap_takeover_mmu();
871 	pmap_bootstrap_setprom();
872 
873 	/* Notify the VM system of our page size. */
874 	uvmexp.pagesize = NBPG;
875 	uvm_setpagesize();
876 
877 	pmap_page_upload();
878 }
879 
880 
881 /* pmap_alloc_usermmu			INTERNAL
882  **
883  * Called from pmap_bootstrap() to allocate MMU tables that will
884  * eventually be used for user mappings.
885  */
886 void
887 pmap_alloc_usermmu()
888 {
889 	/* XXX: Moved into caller. */
890 }
891 
892 /* pmap_alloc_pv			INTERNAL
893  **
894  * Called from pmap_bootstrap() to allocate the physical
895  * to virtual mapping list.  Each physical page of memory
896  * in the system has a corresponding element in this list.
897  */
898 void
899 pmap_alloc_pv()
900 {
901 	int	i;
902 	unsigned int	total_mem;
903 
904 	/*
905 	 * Allocate a pv_head structure for every page of physical
906 	 * memory that will be managed by the system.  Since memory on
907 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
908 	 * count by subtraction of the lowest available address from the
909 	 * highest, but rather we have to step through each memory
910 	 * bank and add the number of pages in each to the total.
911 	 *
912 	 * At this time we also initialize the offset of each bank's
913 	 * starting pv_head within the pv_head list so that the physical
914 	 * memory state routines (pmap_is_referenced(),
915 	 * pmap_is_modified(), et al.) can quickly find coresponding
916 	 * pv_heads in spite of the non-contiguity.
917 	 */
918 	total_mem = 0;
919 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
920 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
921 		total_mem += avail_mem[i].pmem_end -
922 			avail_mem[i].pmem_start;
923 		if (avail_mem[i].pmem_next == NULL)
924 			break;
925 	}
926 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
927 		m68k_btop(total_phys_mem));
928 }
929 
930 /* pmap_alloc_usertmgr			INTERNAL
931  **
932  * Called from pmap_bootstrap() to allocate the structures which
933  * facilitate management of user MMU tables.  Each user MMU table
934  * in the system has one such structure associated with it.
935  */
936 void
937 pmap_alloc_usertmgr()
938 {
939 	/* Allocate user MMU table managers */
940 	/* It would be a lot simpler to just make these BSS, but */
941 	/* we may want to change their size at boot time... -j */
942 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
943 		* NUM_A_TABLES);
944 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
945 		* NUM_B_TABLES);
946 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
947 		* NUM_C_TABLES);
948 
949 	/*
950 	 * Allocate PV list elements for the physical to virtual
951 	 * mapping system.
952 	 */
953 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
954 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
955 }
956 
957 /* pmap_bootstrap_copyprom()			INTERNAL
958  **
959  * Copy the PROM mappings into our own tables.  Note, we
960  * can use physical addresses until __bootstrap returns.
961  */
962 void
963 pmap_bootstrap_copyprom()
964 {
965 	struct sunromvec *romp;
966 	int *mon_ctbl;
967 	mmu_short_pte_t *kpte;
968 	int i, len;
969 
970 	romp = romVectorPtr;
971 
972 	/*
973 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
974 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
975 	 */
976 	mon_ctbl = *romp->monptaddr;
977 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
978 	kpte = &kernCbase[i];
979 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
980 
981 	for (i = 0; i < len; i++) {
982 		kpte[i].attr.raw = mon_ctbl[i];
983 	}
984 
985 	/*
986 	 * Copy the mappings at MON_DVMA_BASE (to the end).
987 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
988 	 * Actually, we only want the last page, which the
989 	 * PROM has set up for use by the "ie" driver.
990 	 * (The i82686 needs its SCP there.)
991 	 * If we copy all the mappings, pmap_enter_kernel
992 	 * may complain about finding valid PTEs that are
993 	 * not recorded in our PV lists...
994 	 */
995 	mon_ctbl = *romp->shadowpteaddr;
996 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
997 	kpte = &kernCbase[i];
998 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
999 	for (i = (len-1); i < len; i++) {
1000 		kpte[i].attr.raw = mon_ctbl[i];
1001 	}
1002 }
1003 
1004 /* pmap_takeover_mmu			INTERNAL
1005  **
1006  * Called from pmap_bootstrap() after it has copied enough of the
1007  * PROM mappings into the kernel map so that we can use our own
1008  * MMU table.
1009  */
1010 void
1011 pmap_takeover_mmu()
1012 {
1013 
1014 	loadcrp(&kernel_crp);
1015 }
1016 
1017 /* pmap_bootstrap_setprom()			INTERNAL
1018  **
1019  * Set the PROM mappings so it can see kernel space.
1020  * Note that physical addresses are used here, which
1021  * we can get away with because this runs with the
1022  * low 1GB set for transparent translation.
1023  */
1024 void
1025 pmap_bootstrap_setprom()
1026 {
1027 	mmu_long_dte_t *mon_dte;
1028 	extern struct mmu_rootptr mon_crp;
1029 	int i;
1030 
1031 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1032 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1033 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1034 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1035 	}
1036 }
1037 
1038 
1039 /* pmap_init			INTERFACE
1040  **
1041  * Called at the end of vm_init() to set up the pmap system to go
1042  * into full time operation.  All initialization of kernel_pmap
1043  * should be already done by now, so this should just do things
1044  * needed for user-level pmaps to work.
1045  */
1046 void
1047 pmap_init()
1048 {
1049 	/** Initialize the manager pools **/
1050 	TAILQ_INIT(&a_pool);
1051 	TAILQ_INIT(&b_pool);
1052 	TAILQ_INIT(&c_pool);
1053 
1054 	/**************************************************************
1055 	 * Initialize all tmgr structures and MMU tables they manage. *
1056 	 **************************************************************/
1057 	/** Initialize A tables **/
1058 	pmap_init_a_tables();
1059 	/** Initialize B tables **/
1060 	pmap_init_b_tables();
1061 	/** Initialize C tables **/
1062 	pmap_init_c_tables();
1063 
1064 	/** Initialize the pmap pools **/
1065 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1066 	    &pool_allocator_nointr);
1067 }
1068 
1069 /* pmap_init_a_tables()			INTERNAL
1070  **
1071  * Initializes all A managers, their MMU A tables, and inserts
1072  * them into the A manager pool for use by the system.
1073  */
1074 void
1075 pmap_init_a_tables()
1076 {
1077 	int i;
1078 	a_tmgr_t *a_tbl;
1079 
1080 	for (i=0; i < NUM_A_TABLES; i++) {
1081 		/* Select the next available A manager from the pool */
1082 		a_tbl = &Atmgrbase[i];
1083 
1084 		/*
1085 		 * Clear its parent entry.  Set its wired and valid
1086 		 * entry count to zero.
1087 		 */
1088 		a_tbl->at_parent = NULL;
1089 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1090 
1091 		/* Assign it the next available MMU A table from the pool */
1092 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1093 
1094 		/*
1095 		 * Initialize the MMU A table with the table in the `proc0',
1096 		 * or kernel, mapping.  This ensures that every process has
1097 		 * the kernel mapped in the top part of its address space.
1098 		 */
1099 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1100 			sizeof(mmu_long_dte_t));
1101 
1102 		/*
1103 		 * Finally, insert the manager into the A pool,
1104 		 * making it ready to be used by the system.
1105 		 */
1106 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1107     }
1108 }
1109 
1110 /* pmap_init_b_tables()			INTERNAL
1111  **
1112  * Initializes all B table managers, their MMU B tables, and
1113  * inserts them into the B manager pool for use by the system.
1114  */
1115 void
1116 pmap_init_b_tables()
1117 {
1118 	int i,j;
1119 	b_tmgr_t *b_tbl;
1120 
1121 	for (i=0; i < NUM_B_TABLES; i++) {
1122 		/* Select the next available B manager from the pool */
1123 		b_tbl = &Btmgrbase[i];
1124 
1125 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1126 		b_tbl->bt_pidx = 0;		/* parent index,      */
1127 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1128 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1129 
1130 		/* Assign it the next available MMU B table from the pool */
1131 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1132 
1133 		/* Invalidate every descriptor in the table */
1134 		for (j=0; j < MMU_B_TBL_SIZE; j++)
1135 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1136 
1137 		/* Insert the manager into the B pool */
1138 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1139 	}
1140 }
1141 
1142 /* pmap_init_c_tables()			INTERNAL
1143  **
1144  * Initializes all C table managers, their MMU C tables, and
1145  * inserts them into the C manager pool for use by the system.
1146  */
1147 void
1148 pmap_init_c_tables()
1149 {
1150 	int i,j;
1151 	c_tmgr_t *c_tbl;
1152 
1153 	for (i=0; i < NUM_C_TABLES; i++) {
1154 		/* Select the next available C manager from the pool */
1155 		c_tbl = &Ctmgrbase[i];
1156 
1157 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1158 		c_tbl->ct_pidx = 0;		/* parent index,      */
1159 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1160 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1161 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1162 		c_tbl->ct_va = 0;		/* base of managed range */
1163 
1164 		/* Assign it the next available MMU C table from the pool */
1165 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1166 
1167 		for (j=0; j < MMU_C_TBL_SIZE; j++)
1168 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1169 
1170 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1171 	}
1172 }
1173 
1174 /* pmap_init_pv()			INTERNAL
1175  **
1176  * Initializes the Physical to Virtual mapping system.
1177  */
1178 void
1179 pmap_init_pv()
1180 {
1181 	int	i;
1182 
1183 	/* Initialize every PV head. */
1184 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1185 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1186 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1187 	}
1188 }
1189 
1190 /* get_a_table			INTERNAL
1191  **
1192  * Retrieve and return a level A table for use in a user map.
1193  */
1194 a_tmgr_t *
1195 get_a_table()
1196 {
1197 	a_tmgr_t *tbl;
1198 	pmap_t pmap;
1199 
1200 	/* Get the top A table in the pool */
1201 	tbl = a_pool.tqh_first;
1202 	if (tbl == NULL) {
1203 		/*
1204 		 * XXX - Instead of panicing here and in other get_x_table
1205 		 * functions, we do have the option of sleeping on the head of
1206 		 * the table pool.  Any function which updates the table pool
1207 		 * would then issue a wakeup() on the head, thus waking up any
1208 		 * processes waiting for a table.
1209 		 *
1210 		 * Actually, the place to sleep would be when some process
1211 		 * asks for a "wired" mapping that would run us short of
1212 		 * mapping resources.  This design DEPENDS on always having
1213 		 * some mapping resources in the pool for stealing, so we
1214 		 * must make sure we NEVER let the pool become empty. -gwr
1215 		 */
1216 		panic("get_a_table: out of A tables.");
1217 	}
1218 
1219 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1220 	/*
1221 	 * If the table has a non-null parent pointer then it is in use.
1222 	 * Forcibly abduct it from its parent and clear its entries.
1223 	 * No re-entrancy worries here.  This table would not be in the
1224 	 * table pool unless it was available for use.
1225 	 *
1226 	 * Note that the second argument to free_a_table() is FALSE.  This
1227 	 * indicates that the table should not be relinked into the A table
1228 	 * pool.  That is a job for the function that called us.
1229 	 */
1230 	if (tbl->at_parent) {
1231 		pmap = tbl->at_parent;
1232 		free_a_table(tbl, FALSE);
1233 		pmap->pm_a_tmgr = NULL;
1234 		pmap->pm_a_phys = kernAphys;
1235 	}
1236 	return tbl;
1237 }
1238 
1239 /* get_b_table			INTERNAL
1240  **
1241  * Return a level B table for use.
1242  */
1243 b_tmgr_t *
1244 get_b_table()
1245 {
1246 	b_tmgr_t *tbl;
1247 
1248 	/* See 'get_a_table' for comments. */
1249 	tbl = b_pool.tqh_first;
1250 	if (tbl == NULL)
1251 		panic("get_b_table: out of B tables.");
1252 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1253 	if (tbl->bt_parent) {
1254 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1255 		tbl->bt_parent->at_ecnt--;
1256 		free_b_table(tbl, FALSE);
1257 	}
1258 	return tbl;
1259 }
1260 
1261 /* get_c_table			INTERNAL
1262  **
1263  * Return a level C table for use.
1264  */
1265 c_tmgr_t *
1266 get_c_table()
1267 {
1268 	c_tmgr_t *tbl;
1269 
1270 	/* See 'get_a_table' for comments */
1271 	tbl = c_pool.tqh_first;
1272 	if (tbl == NULL)
1273 		panic("get_c_table: out of C tables.");
1274 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1275 	if (tbl->ct_parent) {
1276 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1277 		tbl->ct_parent->bt_ecnt--;
1278 		free_c_table(tbl, FALSE);
1279 	}
1280 	return tbl;
1281 }
1282 
1283 /*
1284  * The following 'free_table' and 'steal_table' functions are called to
1285  * detach tables from their current obligations (parents and children) and
1286  * prepare them for reuse in another mapping.
1287  *
1288  * Free_table is used when the calling function will handle the fate
1289  * of the parent table, such as returning it to the free pool when it has
1290  * no valid entries.  Functions that do not want to handle this should
1291  * call steal_table, in which the parent table's descriptors and entry
1292  * count are automatically modified when this table is removed.
1293  */
1294 
1295 /* free_a_table			INTERNAL
1296  **
1297  * Unmaps the given A table and all child tables from their current
1298  * mappings.  Returns the number of pages that were invalidated.
1299  * If 'relink' is true, the function will return the table to the head
1300  * of the available table pool.
1301  *
1302  * Cache note: The MC68851 will automatically flush all
1303  * descriptors derived from a given A table from its
1304  * Automatic Translation Cache (ATC) if we issue a
1305  * 'PFLUSHR' instruction with the base address of the
1306  * table.  This function should do, and does so.
1307  * Note note: We are using an MC68030 - there is no
1308  * PFLUSHR.
1309  */
1310 int
1311 free_a_table(a_tbl, relink)
1312 	a_tmgr_t *a_tbl;
1313 	boolean_t relink;
1314 {
1315 	int i, removed_cnt;
1316 	mmu_long_dte_t	*dte;
1317 	mmu_short_dte_t *dtbl;
1318 	b_tmgr_t	*tmgr;
1319 
1320 	/*
1321 	 * Flush the ATC cache of all cached descriptors derived
1322 	 * from this table.
1323 	 * Sun3x does not use 68851's cached table feature
1324 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1325 	 */
1326 
1327 	/*
1328 	 * Remove any pending cache flushes that were designated
1329 	 * for the pmap this A table belongs to.
1330 	 * a_tbl->parent->atc_flushq[0] = 0;
1331 	 * Not implemented in sun3x.
1332 	 */
1333 
1334 	/*
1335 	 * All A tables in the system should retain a map for the
1336 	 * kernel. If the table contains any valid descriptors
1337 	 * (other than those for the kernel area), invalidate them all,
1338 	 * stopping short of the kernel's entries.
1339 	 */
1340 	removed_cnt = 0;
1341 	if (a_tbl->at_ecnt) {
1342 		dte = a_tbl->at_dtbl;
1343 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
1344 			/*
1345 			 * If a table entry points to a valid B table, free
1346 			 * it and its children.
1347 			 */
1348 			if (MMU_VALID_DT(dte[i])) {
1349 				/*
1350 				 * The following block does several things,
1351 				 * from innermost expression to the
1352 				 * outermost:
1353 				 * 1) It extracts the base (cc 1996)
1354 				 *    address of the B table pointed
1355 				 *    to in the A table entry dte[i].
1356 				 * 2) It converts this base address into
1357 				 *    the virtual address it can be
1358 				 *    accessed with. (all MMU tables point
1359 				 *    to physical addresses.)
1360 				 * 3) It finds the corresponding manager
1361 				 *    structure which manages this MMU table.
1362 				 * 4) It frees the manager structure.
1363 				 *    (This frees the MMU table and all
1364 				 *    child tables. See 'free_b_table' for
1365 				 *    details.)
1366 				 */
1367 				dtbl = mmu_ptov(dte[i].addr.raw);
1368 				tmgr = mmuB2tmgr(dtbl);
1369 				removed_cnt += free_b_table(tmgr, TRUE);
1370 				dte[i].attr.raw = MMU_DT_INVALID;
1371 			}
1372 		}
1373 		a_tbl->at_ecnt = 0;
1374 	}
1375 	if (relink) {
1376 		a_tbl->at_parent = NULL;
1377 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1378 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1379 	}
1380 	return removed_cnt;
1381 }
1382 
1383 /* free_b_table			INTERNAL
1384  **
1385  * Unmaps the given B table and all its children from their current
1386  * mappings.  Returns the number of pages that were invalidated.
1387  * (For comments, see 'free_a_table()').
1388  */
1389 int
1390 free_b_table(b_tbl, relink)
1391 	b_tmgr_t *b_tbl;
1392 	boolean_t relink;
1393 {
1394 	int i, removed_cnt;
1395 	mmu_short_dte_t *dte;
1396 	mmu_short_pte_t	*dtbl;
1397 	c_tmgr_t	*tmgr;
1398 
1399 	removed_cnt = 0;
1400 	if (b_tbl->bt_ecnt) {
1401 		dte = b_tbl->bt_dtbl;
1402 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
1403 			if (MMU_VALID_DT(dte[i])) {
1404 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1405 				tmgr = mmuC2tmgr(dtbl);
1406 				removed_cnt += free_c_table(tmgr, TRUE);
1407 				dte[i].attr.raw = MMU_DT_INVALID;
1408 			}
1409 		}
1410 		b_tbl->bt_ecnt = 0;
1411 	}
1412 
1413 	if (relink) {
1414 		b_tbl->bt_parent = NULL;
1415 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1416 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1417 	}
1418 	return removed_cnt;
1419 }
1420 
1421 /* free_c_table			INTERNAL
1422  **
1423  * Unmaps the given C table from use and returns it to the pool for
1424  * re-use.  Returns the number of pages that were invalidated.
1425  *
1426  * This function preserves any physical page modification information
1427  * contained in the page descriptors within the C table by calling
1428  * 'pmap_remove_pte().'
1429  */
1430 int
1431 free_c_table(c_tbl, relink)
1432 	c_tmgr_t *c_tbl;
1433 	boolean_t relink;
1434 {
1435 	int i, removed_cnt;
1436 
1437 	removed_cnt = 0;
1438 	if (c_tbl->ct_ecnt) {
1439 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
1440 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1441 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1442 				removed_cnt++;
1443 			}
1444 		}
1445 		c_tbl->ct_ecnt = 0;
1446 	}
1447 
1448 	if (relink) {
1449 		c_tbl->ct_parent = NULL;
1450 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1451 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1452 	}
1453 	return removed_cnt;
1454 }
1455 
1456 
1457 /* pmap_remove_pte			INTERNAL
1458  **
1459  * Unmap the given pte and preserve any page modification
1460  * information by transfering it to the pv head of the
1461  * physical page it maps to.  This function does not update
1462  * any reference counts because it is assumed that the calling
1463  * function will do so.
1464  */
1465 void
1466 pmap_remove_pte(pte)
1467 	mmu_short_pte_t *pte;
1468 {
1469 	u_short     pv_idx, targ_idx;
1470 	paddr_t     pa;
1471 	pv_t       *pv;
1472 
1473 	pa = MMU_PTE_PA(*pte);
1474 	if (is_managed(pa)) {
1475 		pv = pa2pv(pa);
1476 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1477 
1478 		/*
1479 		 * If the PTE being removed is the first (or only) PTE in
1480 		 * the list of PTEs currently mapped to this page, remove the
1481 		 * PTE by changing the index found on the PV head.  Otherwise
1482 		 * a linear search through the list will have to be executed
1483 		 * in order to find the PVE which points to the PTE being
1484 		 * removed, so that it may be modified to point to its new
1485 		 * neighbor.
1486 		 */
1487 
1488 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1489 		if (pv_idx == targ_idx) {
1490 			pv->pv_idx = pvebase[targ_idx].pve_next;
1491 		} else {
1492 
1493 			/*
1494 			 * Find the PV element pointing to the target
1495 			 * element.  Note: may have pv_idx==PVE_EOL
1496 			 */
1497 
1498 			for (;;) {
1499 				if (pv_idx == PVE_EOL) {
1500 					goto pv_not_found;
1501 				}
1502 				if (pvebase[pv_idx].pve_next == targ_idx)
1503 					break;
1504 				pv_idx = pvebase[pv_idx].pve_next;
1505 			}
1506 
1507 			/*
1508 			 * At this point, pv_idx is the index of the PV
1509 			 * element just before the target element in the list.
1510 			 * Unlink the target.
1511 			 */
1512 
1513 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1514 		}
1515 
1516 		/*
1517 		 * Save the mod/ref bits of the pte by simply
1518 		 * ORing the entire pte onto the pv_flags member
1519 		 * of the pv structure.
1520 		 * There is no need to use a separate bit pattern
1521 		 * for usage information on the pv head than that
1522 		 * which is used on the MMU ptes.
1523 		 */
1524 
1525 pv_not_found:
1526 		pv->pv_flags |= (u_short) pte->attr.raw;
1527 	}
1528 	pte->attr.raw = MMU_DT_INVALID;
1529 }
1530 
1531 /* pmap_stroll			INTERNAL
1532  **
1533  * Retrieve the addresses of all table managers involved in the mapping of
1534  * the given virtual address.  If the table walk completed sucessfully,
1535  * return TRUE.  If it was only partially sucessful, return FALSE.
1536  * The table walk performed by this function is important to many other
1537  * functions in this module.
1538  *
1539  * Note: This function ought to be easier to read.
1540  */
1541 boolean_t
1542 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1543 	pmap_t pmap;
1544 	vaddr_t va;
1545 	a_tmgr_t **a_tbl;
1546 	b_tmgr_t **b_tbl;
1547 	c_tmgr_t **c_tbl;
1548 	mmu_short_pte_t **pte;
1549 	int *a_idx, *b_idx, *pte_idx;
1550 {
1551 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1552 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1553 
1554 	if (pmap == pmap_kernel())
1555 		return FALSE;
1556 
1557 	/* Does the given pmap have its own A table? */
1558 	*a_tbl = pmap->pm_a_tmgr;
1559 	if (*a_tbl == NULL)
1560 		return FALSE; /* No.  Return unknown. */
1561 	/* Does the A table have a valid B table
1562 	 * under the corresponding table entry?
1563 	 */
1564 	*a_idx = MMU_TIA(va);
1565 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1566 	if (!MMU_VALID_DT(*a_dte))
1567 		return FALSE; /* No. Return unknown. */
1568 	/* Yes. Extract B table from the A table. */
1569 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1570 	/* Does the B table have a valid C table
1571 	 * under the corresponding table entry?
1572 	 */
1573 	*b_idx = MMU_TIB(va);
1574 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1575 	if (!MMU_VALID_DT(*b_dte))
1576 		return FALSE; /* No. Return unknown. */
1577 	/* Yes. Extract C table from the B table. */
1578 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1579 	*pte_idx = MMU_TIC(va);
1580 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1581 
1582 	return	TRUE;
1583 }
1584 
1585 /* pmap_enter			INTERFACE
1586  **
1587  * Called by the kernel to map a virtual address
1588  * to a physical address in the given process map.
1589  *
1590  * Note: this function should apply an exclusive lock
1591  * on the pmap system for its duration.  (it certainly
1592  * would save my hair!!)
1593  * This function ought to be easier to read.
1594  */
1595 int
1596 pmap_enter(pmap, va, pa, prot, flags)
1597 	pmap_t	pmap;
1598 	vaddr_t va;
1599 	paddr_t pa;
1600 	vm_prot_t prot;
1601 	int flags;
1602 {
1603 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
1604 	u_short nidx;            /* PV list index                     */
1605 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1606 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1607 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1608 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1609 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1610 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1611 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1612 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1613 	pv_t      *pv;           /* pv list head                      */
1614 	boolean_t wired;         /* is the mapping to be wired?       */
1615 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1616 
1617 	if (pmap == pmap_kernel()) {
1618 		pmap_enter_kernel(va, pa, prot);
1619 		return 0;
1620 	}
1621 
1622 	/*
1623 	 * Determine if the mapping should be wired.
1624 	 */
1625 	wired = ((flags & PMAP_WIRED) != 0);
1626 
1627 	/*
1628 	 * NOTE1:
1629 	 *
1630 	 * On November 13, 1999, someone changed the pmap_enter() API such
1631 	 * that it now accepts a 'flags' argument.  This new argument
1632 	 * contains bit-flags for the architecture-independent (UVM) system to
1633 	 * use in signalling certain mapping requirements to the architecture-
1634 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1635 	 * one of the flags within it.
1636 	 *
1637 	 * In addition to flags signaled by the architecture-independent
1638 	 * system, parts of the architecture-dependent section of the sun3x
1639 	 * kernel pass their own flags in the lower, unused bits of the
1640 	 * physical address supplied to this function.  These flags are
1641 	 * extracted and stored in the temporary variable 'mapflags'.
1642 	 *
1643 	 * Extract sun3x specific flags from the physical address.
1644 	 */
1645 	mapflags  = (pa & ~MMU_PAGE_MASK);
1646 	pa       &= MMU_PAGE_MASK;
1647 
1648 	/*
1649 	 * Determine if the physical address being mapped is on-board RAM.
1650 	 * Any other area of the address space is likely to belong to a
1651 	 * device and hence it would be disasterous to cache its contents.
1652 	 */
1653 	if ((managed = is_managed(pa)) == FALSE)
1654 		mapflags |= PMAP_NC;
1655 
1656 	/*
1657 	 * For user mappings we walk along the MMU tables of the given
1658 	 * pmap, reaching a PTE which describes the virtual page being
1659 	 * mapped or changed.  If any level of the walk ends in an invalid
1660 	 * entry, a table must be allocated and the entry must be updated
1661 	 * to point to it.
1662 	 * There is a bit of confusion as to whether this code must be
1663 	 * re-entrant.  For now we will assume it is.  To support
1664 	 * re-entrancy we must unlink tables from the table pool before
1665 	 * we assume we may use them.  Tables are re-linked into the pool
1666 	 * when we are finished with them at the end of the function.
1667 	 * But I don't feel like doing that until we have proof that this
1668 	 * needs to be re-entrant.
1669 	 * 'llevel' records which tables need to be relinked.
1670 	 */
1671 	llevel = NONE;
1672 
1673 	/*
1674 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1675 	 * A table, allocate a new one from the available pool.
1676 	 */
1677 
1678 	a_tbl = pmap->pm_a_tmgr;
1679 	if (a_tbl == NULL) {
1680 		/*
1681 		 * This pmap does not currently have an A table.  Allocate
1682 		 * a new one.
1683 		 */
1684 		a_tbl = get_a_table();
1685 		a_tbl->at_parent = pmap;
1686 
1687 		/*
1688 		 * Assign this new A table to the pmap, and calculate its
1689 		 * physical address so that loadcrp() can be used to make
1690 		 * the table active.
1691 		 */
1692 		pmap->pm_a_tmgr = a_tbl;
1693 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1694 
1695 		/*
1696 		 * If the process receiving a new A table is the current
1697 		 * process, we are responsible for setting the MMU so that
1698 		 * it becomes the current address space.  This only adds
1699 		 * new mappings, so no need to flush anything.
1700 		 */
1701 		if (pmap == current_pmap()) {
1702 			kernel_crp.rp_addr = pmap->pm_a_phys;
1703 			loadcrp(&kernel_crp);
1704 		}
1705 
1706 		if (!wired)
1707 			llevel = NEWA;
1708 	} else {
1709 		/*
1710 		 * Use the A table already allocated for this pmap.
1711 		 * Unlink it from the A table pool if necessary.
1712 		 */
1713 		if (wired && !a_tbl->at_wcnt)
1714 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1715 	}
1716 
1717 	/*
1718 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1719 	 * allocate one.
1720 	 */
1721 
1722 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1723 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1724 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1725 		/* The descriptor is valid.  Use the B table it points to. */
1726 		/*************************************
1727 		 *               a_idx               *
1728 		 *                 v                 *
1729 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1730 		 *          | | | | | | | | | | | |  *
1731 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1732 		 *                 |                 *
1733 		 *                 \- b_tbl -> +-+-  *
1734 		 *                             | |   *
1735 		 *                             +-+-  *
1736 		 *************************************/
1737 		b_dte = mmu_ptov(a_dte->addr.raw);
1738 		b_tbl = mmuB2tmgr(b_dte);
1739 
1740 		/*
1741 		 * If the requested mapping must be wired, but this table
1742 		 * being used to map it is not, the table must be removed
1743 		 * from the available pool and its wired entry count
1744 		 * incremented.
1745 		 */
1746 		if (wired && !b_tbl->bt_wcnt) {
1747 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1748 			a_tbl->at_wcnt++;
1749 		}
1750 	} else {
1751 		/* The descriptor is invalid.  Allocate a new B table. */
1752 		b_tbl = get_b_table();
1753 
1754 		/* Point the parent A table descriptor to this new B table. */
1755 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1756 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1757 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1758 
1759 		/* Create the necessary back references to the parent table */
1760 		b_tbl->bt_parent = a_tbl;
1761 		b_tbl->bt_pidx = a_idx;
1762 
1763 		/*
1764 		 * If this table is to be wired, make sure the parent A table
1765 		 * wired count is updated to reflect that it has another wired
1766 		 * entry.
1767 		 */
1768 		if (wired)
1769 			a_tbl->at_wcnt++;
1770 		else if (llevel == NONE)
1771 			llevel = NEWB;
1772 	}
1773 
1774 	/*
1775 	 * Step 3 - Walk into the C table, if there is no valid C table,
1776 	 * allocate one.
1777 	 */
1778 
1779 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1780 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1781 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1782 		/* The descriptor is valid.  Use the C table it points to. */
1783 		/**************************************
1784 		 *               c_idx                *
1785 		 * |                v                 *
1786 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1787 		 *             | | | | | | | | | | |  *
1788 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1789 		 *                  |                 *
1790 		 *                  \- c_tbl -> +-+-- *
1791 		 *                              | | | *
1792 		 *                              +-+-- *
1793 		 **************************************/
1794 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1795 		c_tbl = mmuC2tmgr(c_pte);
1796 
1797 		/* If mapping is wired and table is not */
1798 		if (wired && !c_tbl->ct_wcnt) {
1799 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1800 			b_tbl->bt_wcnt++;
1801 		}
1802 	} else {
1803 		/* The descriptor is invalid.  Allocate a new C table. */
1804 		c_tbl = get_c_table();
1805 
1806 		/* Point the parent B table descriptor to this new C table. */
1807 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1808 		b_dte->attr.raw |= MMU_DT_SHORT;
1809 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1810 
1811 		/* Create the necessary back references to the parent table */
1812 		c_tbl->ct_parent = b_tbl;
1813 		c_tbl->ct_pidx = b_idx;
1814 		/*
1815 		 * Store the pmap and base virtual managed address for faster
1816 		 * retrieval in the PV functions.
1817 		 */
1818 		c_tbl->ct_pmap = pmap;
1819 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1820 
1821 		/*
1822 		 * If this table is to be wired, make sure the parent B table
1823 		 * wired count is updated to reflect that it has another wired
1824 		 * entry.
1825 		 */
1826 		if (wired)
1827 			b_tbl->bt_wcnt++;
1828 		else if (llevel == NONE)
1829 			llevel = NEWC;
1830 	}
1831 
1832 	/*
1833 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1834 	 * slot of the C table, describing the PA to which the VA is mapped.
1835 	 */
1836 
1837 	pte_idx = MMU_TIC(va);
1838 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1839 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1840 		/*
1841 		 * The PTE is currently valid.  This particular call
1842 		 * is just a synonym for one (or more) of the following
1843 		 * operations:
1844 		 *     change protection of a page
1845 		 *     change wiring status of a page
1846 		 *     remove the mapping of a page
1847 		 *
1848 		 * XXX - Semi critical: This code should unwire the PTE
1849 		 * and, possibly, associated parent tables if this is a
1850 		 * change wiring operation.  Currently it does not.
1851 		 *
1852 		 * This may be ok if pmap_unwire() is the only
1853 		 * interface used to UNWIRE a page.
1854 		 */
1855 
1856 		/* First check if this is a wiring operation. */
1857 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1858 			/*
1859 			 * The PTE is already wired.  To prevent it from being
1860 			 * counted as a new wiring operation, reset the 'wired'
1861 			 * variable.
1862 			 */
1863 			wired = FALSE;
1864 		}
1865 
1866 		/* Is the new address the same as the old? */
1867 		if (MMU_PTE_PA(*c_pte) == pa) {
1868 			/*
1869 			 * Yes, mark that it does not need to be reinserted
1870 			 * into the PV list.
1871 			 */
1872 			insert = FALSE;
1873 
1874 			/*
1875 			 * Clear all but the modified, referenced and wired
1876 			 * bits on the PTE.
1877 			 */
1878 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1879 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1880 		} else {
1881 			/* No, remove the old entry */
1882 			pmap_remove_pte(c_pte);
1883 			insert = TRUE;
1884 		}
1885 
1886 		/*
1887 		 * TLB flush is only necessary if modifying current map.
1888 		 * However, in pmap_enter(), the pmap almost always IS
1889 		 * the current pmap, so don't even bother to check.
1890 		 */
1891 		TBIS(va);
1892 	} else {
1893 		/*
1894 		 * The PTE is invalid.  Increment the valid entry count in
1895 		 * the C table manager to reflect the addition of a new entry.
1896 		 */
1897 		c_tbl->ct_ecnt++;
1898 
1899 		/* XXX - temporarily make sure the PTE is cleared. */
1900 		c_pte->attr.raw = 0;
1901 
1902 		/* It will also need to be inserted into the PV list. */
1903 		insert = TRUE;
1904 	}
1905 
1906 	/*
1907 	 * If page is changing from unwired to wired status, set an unused bit
1908 	 * within the PTE to indicate that it is wired.  Also increment the
1909 	 * wired entry count in the C table manager.
1910 	 */
1911 	if (wired) {
1912 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1913 		c_tbl->ct_wcnt++;
1914 	}
1915 
1916 	/*
1917 	 * Map the page, being careful to preserve modify/reference/wired
1918 	 * bits.  At this point it is assumed that the PTE either has no bits
1919 	 * set, or if there are set bits, they are only modified, reference or
1920 	 * wired bits.  If not, the following statement will cause erratic
1921 	 * behavior.
1922 	 */
1923 #ifdef	PMAP_DEBUG
1924 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1925 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1926 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1927 		Debugger();
1928 	}
1929 #endif
1930 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1931 
1932 	/*
1933 	 * If the mapping should be read-only, set the write protect
1934 	 * bit in the PTE.
1935 	 */
1936 	if (!(prot & VM_PROT_WRITE))
1937 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1938 
1939 	/*
1940 	 * If the mapping should be cache inhibited (indicated by the flag
1941 	 * bits found on the lower order of the physical address.)
1942 	 * mark the PTE as a cache inhibited page.
1943 	 */
1944 	if (mapflags & PMAP_NC)
1945 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1946 
1947 	/*
1948 	 * If the physical address being mapped is managed by the PV
1949 	 * system then link the pte into the list of pages mapped to that
1950 	 * address.
1951 	 */
1952 	if (insert && managed) {
1953 		pv = pa2pv(pa);
1954 		nidx = pteidx(c_pte);
1955 
1956 		pvebase[nidx].pve_next = pv->pv_idx;
1957 		pv->pv_idx = nidx;
1958 	}
1959 
1960 	/* Move any allocated tables back into the active pool. */
1961 
1962 	switch (llevel) {
1963 		case NEWA:
1964 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1965 			/* FALLTHROUGH */
1966 		case NEWB:
1967 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1968 			/* FALLTHROUGH */
1969 		case NEWC:
1970 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1971 			/* FALLTHROUGH */
1972 		default:
1973 			break;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 /* pmap_enter_kernel			INTERNAL
1980  **
1981  * Map the given virtual address to the given physical address within the
1982  * kernel address space.  This function exists because the kernel map does
1983  * not do dynamic table allocation.  It consists of a contiguous array of ptes
1984  * and can be edited directly without the need to walk through any tables.
1985  *
1986  * XXX: "Danger, Will Robinson!"
1987  * Note that the kernel should never take a fault on any page
1988  * between [ KERNBASE .. virtual_avail ] and this is checked in
1989  * trap.c for kernel-mode MMU faults.  This means that mappings
1990  * created in that range must be implicily wired. -gwr
1991  */
1992 void
1993 pmap_enter_kernel(va, pa, prot)
1994 	vaddr_t va;
1995 	paddr_t pa;
1996 	vm_prot_t   prot;
1997 {
1998 	boolean_t       was_valid, insert;
1999 	u_short         pte_idx;
2000 	int             flags;
2001 	mmu_short_pte_t *pte;
2002 	pv_t            *pv;
2003 	paddr_t     old_pa;
2004 
2005 	flags = (pa & ~MMU_PAGE_MASK);
2006 	pa &= MMU_PAGE_MASK;
2007 
2008 	if (is_managed(pa))
2009 		insert = TRUE;
2010 	else
2011 		insert = FALSE;
2012 
2013 	/*
2014 	 * Calculate the index of the PTE being modified.
2015 	 */
2016 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
2017 
2018 	/* This array is traditionally named "Sysmap" */
2019 	pte = &kernCbase[pte_idx];
2020 
2021 	if (MMU_VALID_DT(*pte)) {
2022 		was_valid = TRUE;
2023 		/*
2024 		 * If the PTE already maps a different
2025 		 * physical address, umap and pv_unlink.
2026 		 */
2027 		old_pa = MMU_PTE_PA(*pte);
2028 		if (pa != old_pa)
2029 			pmap_remove_pte(pte);
2030 		else {
2031 		    /*
2032 		     * Old PA and new PA are the same.  No need to
2033 		     * relink the mapping within the PV list.
2034 		     */
2035 		     insert = FALSE;
2036 
2037 		    /*
2038 		     * Save any mod/ref bits on the PTE.
2039 		     */
2040 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2041 		}
2042 	} else {
2043 		pte->attr.raw = MMU_DT_INVALID;
2044 		was_valid = FALSE;
2045 	}
2046 
2047 	/*
2048 	 * Map the page.  Being careful to preserve modified/referenced bits
2049 	 * on the PTE.
2050 	 */
2051 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2052 
2053 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2054 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2055 	if (flags & PMAP_NC)
2056 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2057 	if (was_valid)
2058 		TBIS(va);
2059 
2060 	/*
2061 	 * Insert the PTE into the PV system, if need be.
2062 	 */
2063 	if (insert) {
2064 		pv = pa2pv(pa);
2065 		pvebase[pte_idx].pve_next = pv->pv_idx;
2066 		pv->pv_idx = pte_idx;
2067 	}
2068 }
2069 
2070 void
2071 pmap_kenter_pa(va, pa, prot)
2072 	vaddr_t va;
2073 	paddr_t pa;
2074 	vm_prot_t prot;
2075 {
2076 	mmu_short_pte_t	*pte;
2077 
2078 	/* This array is traditionally named "Sysmap" */
2079 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2080 
2081 	KASSERT(!MMU_VALID_DT(*pte));
2082 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2083 	if (!(prot & VM_PROT_WRITE))
2084 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2085 }
2086 
2087 void
2088 pmap_kremove(va, len)
2089 	vaddr_t va;
2090 	vsize_t len;
2091 {
2092 	int idx, eidx;
2093 
2094 #ifdef	PMAP_DEBUG
2095 	if ((sva & PGOFSET) || (eva & PGOFSET))
2096 		panic("pmap_kremove: alignment");
2097 #endif
2098 
2099 	idx  = m68k_btop(va - KERNBASE);
2100 	eidx = m68k_btop(va + len - KERNBASE);
2101 
2102 	while (idx < eidx) {
2103 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2104 		TBIS(va);
2105 		va += NBPG;
2106 	}
2107 }
2108 
2109 /* pmap_map			INTERNAL
2110  **
2111  * Map a contiguous range of physical memory into a contiguous range of
2112  * the kernel virtual address space.
2113  *
2114  * Used for device mappings and early mapping of the kernel text/data/bss.
2115  * Returns the first virtual address beyond the end of the range.
2116  */
2117 vaddr_t
2118 pmap_map(va, pa, endpa, prot)
2119 	vaddr_t	va;
2120 	paddr_t	pa;
2121 	paddr_t	endpa;
2122 	int		prot;
2123 {
2124 	int sz;
2125 
2126 	sz = endpa - pa;
2127 	do {
2128 		pmap_enter_kernel(va, pa, prot);
2129 		va += NBPG;
2130 		pa += NBPG;
2131 		sz -= NBPG;
2132 	} while (sz > 0);
2133 	pmap_update(pmap_kernel());
2134 	return(va);
2135 }
2136 
2137 /* pmap_protect			INTERFACE
2138  **
2139  * Apply the given protection to the given virtual address range within
2140  * the given map.
2141  *
2142  * It is ok for the protection applied to be stronger than what is
2143  * specified.  We use this to our advantage when the given map has no
2144  * mapping for the virtual address.  By skipping a page when this
2145  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2146  * and therefore do not need to map the page just to apply a protection
2147  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2148  *
2149  * XXX - This function could be speeded up by using pmap_stroll() for inital
2150  *       setup, and then manual scrolling in the for() loop.
2151  */
2152 void
2153 pmap_protect(pmap, startva, endva, prot)
2154 	pmap_t pmap;
2155 	vaddr_t startva, endva;
2156 	vm_prot_t prot;
2157 {
2158 	boolean_t iscurpmap;
2159 	int a_idx, b_idx, c_idx;
2160 	a_tmgr_t *a_tbl;
2161 	b_tmgr_t *b_tbl;
2162 	c_tmgr_t *c_tbl;
2163 	mmu_short_pte_t *pte;
2164 
2165 	if (pmap == pmap_kernel()) {
2166 		pmap_protect_kernel(startva, endva, prot);
2167 		return;
2168 	}
2169 
2170 	/*
2171 	 * In this particular pmap implementation, there are only three
2172 	 * types of memory protection: 'all' (read/write/execute),
2173 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2174 	 * It is not possible for us to treat 'executable' as a separate
2175 	 * protection type.  Therefore, protection requests that seek to
2176 	 * remove execute permission while retaining read or write, and those
2177 	 * that make little sense (write-only for example) are ignored.
2178 	 */
2179 	switch (prot) {
2180 		case VM_PROT_NONE:
2181 			/*
2182 			 * A request to apply the protection code of
2183 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2184 			 */
2185 			pmap_remove(pmap, startva, endva);
2186 			return;
2187 		case	VM_PROT_EXECUTE:
2188 		case	VM_PROT_READ:
2189 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2190 			/* continue */
2191 			break;
2192 		case	VM_PROT_WRITE:
2193 		case	VM_PROT_WRITE|VM_PROT_READ:
2194 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2195 		case	VM_PROT_ALL:
2196 			/* None of these should happen in a sane system. */
2197 			return;
2198 	}
2199 
2200 	/*
2201 	 * If the pmap has no A table, it has no mappings and therefore
2202 	 * there is nothing to protect.
2203 	 */
2204 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2205 		return;
2206 
2207 	a_idx = MMU_TIA(startva);
2208 	b_idx = MMU_TIB(startva);
2209 	c_idx = MMU_TIC(startva);
2210 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
2211 
2212 	iscurpmap = (pmap == current_pmap());
2213 	while (startva < endva) {
2214 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2215 		  if (b_tbl == NULL) {
2216 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2217 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2218 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2219 		  }
2220 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2221 		    if (c_tbl == NULL) {
2222 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2223 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2224 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2225 		    }
2226 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2227 		      pte = &c_tbl->ct_dtbl[c_idx];
2228 		      /* make the mapping read-only */
2229 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2230 		      /*
2231 		       * If we just modified the current address space,
2232 		       * flush any translations for the modified page from
2233 		       * the translation cache and any data from it in the
2234 		       * data cache.
2235 		       */
2236 		      if (iscurpmap)
2237 		          TBIS(startva);
2238 		    }
2239 		    startva += NBPG;
2240 
2241 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2242 		      c_tbl = NULL;
2243 		      c_idx = 0;
2244 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2245 		        b_tbl = NULL;
2246 		        b_idx = 0;
2247 		      }
2248 		    }
2249 		  } else { /* C table wasn't valid */
2250 		    c_tbl = NULL;
2251 		    c_idx = 0;
2252 		    startva += MMU_TIB_RANGE;
2253 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2254 		      b_tbl = NULL;
2255 		      b_idx = 0;
2256 		    }
2257 		  } /* C table */
2258 		} else { /* B table wasn't valid */
2259 		  b_tbl = NULL;
2260 		  b_idx = 0;
2261 		  startva += MMU_TIA_RANGE;
2262 		  a_idx++;
2263 		} /* B table */
2264 	}
2265 }
2266 
2267 /* pmap_protect_kernel			INTERNAL
2268  **
2269  * Apply the given protection code to a kernel address range.
2270  */
2271 void
2272 pmap_protect_kernel(startva, endva, prot)
2273 	vaddr_t startva, endva;
2274 	vm_prot_t prot;
2275 {
2276 	vaddr_t va;
2277 	mmu_short_pte_t *pte;
2278 
2279 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2280 	for (va = startva; va < endva; va += NBPG, pte++) {
2281 		if (MMU_VALID_DT(*pte)) {
2282 		    switch (prot) {
2283 		        case VM_PROT_ALL:
2284 		            break;
2285 		        case VM_PROT_EXECUTE:
2286 		        case VM_PROT_READ:
2287 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2288 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2289 		            break;
2290 		        case VM_PROT_NONE:
2291 		            /* this is an alias for 'pmap_remove_kernel' */
2292 		            pmap_remove_pte(pte);
2293 		            break;
2294 		        default:
2295 		            break;
2296 		    }
2297 		    /*
2298 		     * since this is the kernel, immediately flush any cached
2299 		     * descriptors for this address.
2300 		     */
2301 		    TBIS(va);
2302 		}
2303 	}
2304 }
2305 
2306 /* pmap_unwire				INTERFACE
2307  **
2308  * Clear the wired attribute of the specified page.
2309  *
2310  * This function is called from vm_fault.c to unwire
2311  * a mapping.
2312  */
2313 void
2314 pmap_unwire(pmap, va)
2315 	pmap_t pmap;
2316 	vaddr_t va;
2317 {
2318 	int a_idx, b_idx, c_idx;
2319 	a_tmgr_t *a_tbl;
2320 	b_tmgr_t *b_tbl;
2321 	c_tmgr_t *c_tbl;
2322 	mmu_short_pte_t *pte;
2323 
2324 	/* Kernel mappings always remain wired. */
2325 	if (pmap == pmap_kernel())
2326 		return;
2327 
2328 	/*
2329 	 * Walk through the tables.  If the walk terminates without
2330 	 * a valid PTE then the address wasn't wired in the first place.
2331 	 * Return immediately.
2332 	 */
2333 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2334 		&b_idx, &c_idx) == FALSE)
2335 		return;
2336 
2337 
2338 	/* Is the PTE wired?  If not, return. */
2339 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2340 		return;
2341 
2342 	/* Remove the wiring bit. */
2343 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2344 
2345 	/*
2346 	 * Decrement the wired entry count in the C table.
2347 	 * If it reaches zero the following things happen:
2348 	 * 1. The table no longer has any wired entries and is considered
2349 	 *    unwired.
2350 	 * 2. It is placed on the available queue.
2351 	 * 3. The parent table's wired entry count is decremented.
2352 	 * 4. If it reaches zero, this process repeats at step 1 and
2353 	 *    stops at after reaching the A table.
2354 	 */
2355 	if (--c_tbl->ct_wcnt == 0) {
2356 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2357 		if (--b_tbl->bt_wcnt == 0) {
2358 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2359 			if (--a_tbl->at_wcnt == 0) {
2360 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2361 			}
2362 		}
2363 	}
2364 }
2365 
2366 /* pmap_copy				INTERFACE
2367  **
2368  * Copy the mappings of a range of addresses in one pmap, into
2369  * the destination address of another.
2370  *
2371  * This routine is advisory.  Should we one day decide that MMU tables
2372  * may be shared by more than one pmap, this function should be used to
2373  * link them together.  Until that day however, we do nothing.
2374  */
2375 void
2376 pmap_copy(pmap_a, pmap_b, dst, len, src)
2377 	pmap_t pmap_a, pmap_b;
2378 	vaddr_t dst;
2379 	vsize_t len;
2380 	vaddr_t src;
2381 {
2382 	/* not implemented. */
2383 }
2384 
2385 /* pmap_copy_page			INTERFACE
2386  **
2387  * Copy the contents of one physical page into another.
2388  *
2389  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2390  * to map the two specified physical pages into the kernel address space.
2391  *
2392  * Note: We could use the transparent translation registers to make the
2393  * mappings.  If we do so, be sure to disable interrupts before using them.
2394  */
2395 void
2396 pmap_copy_page(srcpa, dstpa)
2397 	paddr_t srcpa, dstpa;
2398 {
2399 	vaddr_t srcva, dstva;
2400 	int s;
2401 
2402 	srcva = tmp_vpages[0];
2403 	dstva = tmp_vpages[1];
2404 
2405 	s = splvm();
2406 #ifdef DIAGNOSTIC
2407 	if (tmp_vpages_inuse++)
2408 		panic("pmap_copy_page: temporary vpages are in use.");
2409 #endif
2410 
2411 	/* Map pages as non-cacheable to avoid cache polution? */
2412 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2413 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2414 
2415 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
2416 	copypage((char *) srcva, (char *) dstva);
2417 
2418 	pmap_kremove(srcva, NBPG);
2419 	pmap_kremove(dstva, NBPG);
2420 
2421 #ifdef DIAGNOSTIC
2422 	--tmp_vpages_inuse;
2423 #endif
2424 	splx(s);
2425 }
2426 
2427 /* pmap_zero_page			INTERFACE
2428  **
2429  * Zero the contents of the specified physical page.
2430  *
2431  * Uses one of the virtual pages allocated in pmap_boostrap()
2432  * to map the specified page into the kernel address space.
2433  */
2434 void
2435 pmap_zero_page(dstpa)
2436 	paddr_t dstpa;
2437 {
2438 	vaddr_t dstva;
2439 	int s;
2440 
2441 	dstva = tmp_vpages[1];
2442 	s = splvm();
2443 #ifdef DIAGNOSTIC
2444 	if (tmp_vpages_inuse++)
2445 		panic("pmap_zero_page: temporary vpages are in use.");
2446 #endif
2447 
2448 	/* The comments in pmap_copy_page() above apply here also. */
2449 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2450 
2451 	/* Hand-optimized version of bzero(ptr, NBPG) */
2452 	zeropage((char *) dstva);
2453 
2454 	pmap_kremove(dstva, NBPG);
2455 #ifdef DIAGNOSTIC
2456 	--tmp_vpages_inuse;
2457 #endif
2458 	splx(s);
2459 }
2460 
2461 /* pmap_collect			INTERFACE
2462  **
2463  * Called from the VM system when we are about to swap out
2464  * the process using this pmap.  This should give up any
2465  * resources held here, including all its MMU tables.
2466  */
2467 void
2468 pmap_collect(pmap)
2469 	pmap_t pmap;
2470 {
2471 	/* XXX - todo... */
2472 }
2473 
2474 /* pmap_create			INTERFACE
2475  **
2476  * Create and return a pmap structure.
2477  */
2478 pmap_t
2479 pmap_create()
2480 {
2481 	pmap_t	pmap;
2482 
2483 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2484 	pmap_pinit(pmap);
2485 	return pmap;
2486 }
2487 
2488 /* pmap_pinit			INTERNAL
2489  **
2490  * Initialize a pmap structure.
2491  */
2492 void
2493 pmap_pinit(pmap)
2494 	pmap_t pmap;
2495 {
2496 	memset(pmap, 0, sizeof(struct pmap));
2497 	pmap->pm_a_tmgr = NULL;
2498 	pmap->pm_a_phys = kernAphys;
2499 	pmap->pm_refcount = 1;
2500 	simple_lock_init(&pmap->pm_lock);
2501 }
2502 
2503 /* pmap_release				INTERFACE
2504  **
2505  * Release any resources held by the given pmap.
2506  *
2507  * This is the reverse analog to pmap_pinit.  It does not
2508  * necessarily mean for the pmap structure to be deallocated,
2509  * as in pmap_destroy.
2510  */
2511 void
2512 pmap_release(pmap)
2513 	pmap_t pmap;
2514 {
2515 	/*
2516 	 * As long as the pmap contains no mappings,
2517 	 * which always should be the case whenever
2518 	 * this function is called, there really should
2519 	 * be nothing to do.
2520 	 */
2521 #ifdef	PMAP_DEBUG
2522 	if (pmap == pmap_kernel())
2523 		panic("pmap_release: kernel pmap");
2524 #endif
2525 	/*
2526 	 * XXX - If this pmap has an A table, give it back.
2527 	 * The pmap SHOULD be empty by now, and pmap_remove
2528 	 * should have already given back the A table...
2529 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2530 	 * at this point, which means some mapping was not
2531 	 * removed when it should have been. -gwr
2532 	 */
2533 	if (pmap->pm_a_tmgr != NULL) {
2534 		/* First make sure we are not using it! */
2535 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2536 			kernel_crp.rp_addr = kernAphys;
2537 			loadcrp(&kernel_crp);
2538 		}
2539 #ifdef	PMAP_DEBUG /* XXX - todo! */
2540 		/* XXX - Now complain... */
2541 		printf("pmap_release: still have table\n");
2542 		Debugger();
2543 #endif
2544 		free_a_table(pmap->pm_a_tmgr, TRUE);
2545 		pmap->pm_a_tmgr = NULL;
2546 		pmap->pm_a_phys = kernAphys;
2547 	}
2548 }
2549 
2550 /* pmap_reference			INTERFACE
2551  **
2552  * Increment the reference count of a pmap.
2553  */
2554 void
2555 pmap_reference(pmap)
2556 	pmap_t pmap;
2557 {
2558 	pmap_lock(pmap);
2559 	pmap_add_ref(pmap);
2560 	pmap_unlock(pmap);
2561 }
2562 
2563 /* pmap_dereference			INTERNAL
2564  **
2565  * Decrease the reference count on the given pmap
2566  * by one and return the current count.
2567  */
2568 int
2569 pmap_dereference(pmap)
2570 	pmap_t pmap;
2571 {
2572 	int rtn;
2573 
2574 	pmap_lock(pmap);
2575 	rtn = pmap_del_ref(pmap);
2576 	pmap_unlock(pmap);
2577 
2578 	return rtn;
2579 }
2580 
2581 /* pmap_destroy			INTERFACE
2582  **
2583  * Decrement a pmap's reference count and delete
2584  * the pmap if it becomes zero.  Will be called
2585  * only after all mappings have been removed.
2586  */
2587 void
2588 pmap_destroy(pmap)
2589 	pmap_t pmap;
2590 {
2591 	if (pmap_dereference(pmap) == 0) {
2592 		pmap_release(pmap);
2593 		pool_put(&pmap_pmap_pool, pmap);
2594 	}
2595 }
2596 
2597 /* pmap_is_referenced			INTERFACE
2598  **
2599  * Determine if the given physical page has been
2600  * referenced (read from [or written to.])
2601  */
2602 boolean_t
2603 pmap_is_referenced(pg)
2604 	struct vm_page *pg;
2605 {
2606 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2607 	pv_t      *pv;
2608 	int       idx;
2609 
2610 	/*
2611 	 * Check the flags on the pv head.  If they are set,
2612 	 * return immediately.  Otherwise a search must be done.
2613 	 */
2614 
2615 	pv = pa2pv(pa);
2616 	if (pv->pv_flags & PV_FLAGS_USED)
2617 		return TRUE;
2618 
2619 	/*
2620 	 * Search through all pv elements pointing
2621 	 * to this page and query their reference bits
2622 	 */
2623 
2624 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2625 		if (MMU_PTE_USED(kernCbase[idx])) {
2626 			return TRUE;
2627 		}
2628 	}
2629 	return FALSE;
2630 }
2631 
2632 /* pmap_is_modified			INTERFACE
2633  **
2634  * Determine if the given physical page has been
2635  * modified (written to.)
2636  */
2637 boolean_t
2638 pmap_is_modified(pg)
2639 	struct vm_page *pg;
2640 {
2641 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2642 	pv_t      *pv;
2643 	int       idx;
2644 
2645 	/* see comments in pmap_is_referenced() */
2646 	pv = pa2pv(pa);
2647 	if (pv->pv_flags & PV_FLAGS_MDFY)
2648 		return TRUE;
2649 
2650 	for (idx = pv->pv_idx;
2651 		 idx != PVE_EOL;
2652 		 idx = pvebase[idx].pve_next) {
2653 
2654 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2655 			return TRUE;
2656 		}
2657 	}
2658 
2659 	return FALSE;
2660 }
2661 
2662 /* pmap_page_protect			INTERFACE
2663  **
2664  * Applies the given protection to all mappings to the given
2665  * physical page.
2666  */
2667 void
2668 pmap_page_protect(pg, prot)
2669 	struct vm_page *pg;
2670 	vm_prot_t prot;
2671 {
2672 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2673 	pv_t      *pv;
2674 	int       idx;
2675 	vaddr_t va;
2676 	struct mmu_short_pte_struct *pte;
2677 	c_tmgr_t  *c_tbl;
2678 	pmap_t    pmap, curpmap;
2679 
2680 	curpmap = current_pmap();
2681 	pv = pa2pv(pa);
2682 
2683 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2684 		pte = &kernCbase[idx];
2685 		switch (prot) {
2686 			case VM_PROT_ALL:
2687 				/* do nothing */
2688 				break;
2689 			case VM_PROT_EXECUTE:
2690 			case VM_PROT_READ:
2691 			case VM_PROT_READ|VM_PROT_EXECUTE:
2692 				/*
2693 				 * Determine the virtual address mapped by
2694 				 * the PTE and flush ATC entries if necessary.
2695 				 */
2696 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2697 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2698 				if (pmap == curpmap || pmap == pmap_kernel())
2699 					TBIS(va);
2700 				break;
2701 			case VM_PROT_NONE:
2702 				/* Save the mod/ref bits. */
2703 				pv->pv_flags |= pte->attr.raw;
2704 				/* Invalidate the PTE. */
2705 				pte->attr.raw = MMU_DT_INVALID;
2706 
2707 				/*
2708 				 * Update table counts.  And flush ATC entries
2709 				 * if necessary.
2710 				 */
2711 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2712 
2713 				/*
2714 				 * If the PTE belongs to the kernel map,
2715 				 * be sure to flush the page it maps.
2716 				 */
2717 				if (pmap == pmap_kernel()) {
2718 					TBIS(va);
2719 				} else {
2720 					/*
2721 					 * The PTE belongs to a user map.
2722 					 * update the entry count in the C
2723 					 * table to which it belongs and flush
2724 					 * the ATC if the mapping belongs to
2725 					 * the current pmap.
2726 					 */
2727 					c_tbl->ct_ecnt--;
2728 					if (pmap == curpmap)
2729 						TBIS(va);
2730 				}
2731 				break;
2732 			default:
2733 				break;
2734 		}
2735 	}
2736 
2737 	/*
2738 	 * If the protection code indicates that all mappings to the page
2739 	 * be removed, truncate the PV list to zero entries.
2740 	 */
2741 	if (prot == VM_PROT_NONE)
2742 		pv->pv_idx = PVE_EOL;
2743 }
2744 
2745 /* pmap_get_pteinfo		INTERNAL
2746  **
2747  * Called internally to find the pmap and virtual address within that
2748  * map to which the pte at the given index maps.  Also includes the PTE's C
2749  * table manager.
2750  *
2751  * Returns the pmap in the argument provided, and the virtual address
2752  * by return value.
2753  */
2754 vaddr_t
2755 pmap_get_pteinfo(idx, pmap, tbl)
2756 	u_int idx;
2757 	pmap_t *pmap;
2758 	c_tmgr_t **tbl;
2759 {
2760 	vaddr_t     va = 0;
2761 
2762 	/*
2763 	 * Determine if the PTE is a kernel PTE or a user PTE.
2764 	 */
2765 	if (idx >= NUM_KERN_PTES) {
2766 		/*
2767 		 * The PTE belongs to a user mapping.
2768 		 */
2769 		/* XXX: Would like an inline for this to validate idx... */
2770 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2771 
2772 		*pmap = (*tbl)->ct_pmap;
2773 		/*
2774 		 * To find the va to which the PTE maps, we first take
2775 		 * the table's base virtual address mapping which is stored
2776 		 * in ct_va.  We then increment this address by a page for
2777 		 * every slot skipped until we reach the PTE.
2778 		 */
2779 		va =    (*tbl)->ct_va;
2780 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2781 	} else {
2782 		/*
2783 		 * The PTE belongs to the kernel map.
2784 		 */
2785 		*pmap = pmap_kernel();
2786 
2787 		va = m68k_ptob(idx);
2788 		va += KERNBASE;
2789 	}
2790 
2791 	return va;
2792 }
2793 
2794 /* pmap_clear_modify			INTERFACE
2795  **
2796  * Clear the modification bit on the page at the specified
2797  * physical address.
2798  *
2799  */
2800 boolean_t
2801 pmap_clear_modify(pg)
2802 	struct vm_page *pg;
2803 {
2804 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2805 	boolean_t rv;
2806 
2807 	rv = pmap_is_modified(pg);
2808 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2809 	return rv;
2810 }
2811 
2812 /* pmap_clear_reference			INTERFACE
2813  **
2814  * Clear the referenced bit on the page at the specified
2815  * physical address.
2816  */
2817 boolean_t
2818 pmap_clear_reference(pg)
2819 	struct vm_page *pg;
2820 {
2821 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2822 	boolean_t rv;
2823 
2824 	rv = pmap_is_referenced(pg);
2825 	pmap_clear_pv(pa, PV_FLAGS_USED);
2826 	return rv;
2827 }
2828 
2829 /* pmap_clear_pv			INTERNAL
2830  **
2831  * Clears the specified flag from the specified physical address.
2832  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2833  *
2834  * Flag is one of:
2835  *   PV_FLAGS_MDFY - Page modified bit.
2836  *   PV_FLAGS_USED - Page used (referenced) bit.
2837  *
2838  * This routine must not only clear the flag on the pv list
2839  * head.  It must also clear the bit on every pte in the pv
2840  * list associated with the address.
2841  */
2842 void
2843 pmap_clear_pv(pa, flag)
2844 	paddr_t pa;
2845 	int flag;
2846 {
2847 	pv_t      *pv;
2848 	int       idx;
2849 	vaddr_t   va;
2850 	pmap_t          pmap;
2851 	mmu_short_pte_t *pte;
2852 	c_tmgr_t        *c_tbl;
2853 
2854 	pv = pa2pv(pa);
2855 	pv->pv_flags &= ~(flag);
2856 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2857 		pte = &kernCbase[idx];
2858 		pte->attr.raw &= ~(flag);
2859 
2860 		/*
2861 		 * The MC68030 MMU will not set the modified or
2862 		 * referenced bits on any MMU tables for which it has
2863 		 * a cached descriptor with its modify bit set.  To insure
2864 		 * that it will modify these bits on the PTE during the next
2865 		 * time it is written to or read from, we must flush it from
2866 		 * the ATC.
2867 		 *
2868 		 * Ordinarily it is only necessary to flush the descriptor
2869 		 * if it is used in the current address space.  But since I
2870 		 * am not sure that there will always be a notion of
2871 		 * 'the current address space' when this function is called,
2872 		 * I will skip the test and always flush the address.  It
2873 		 * does no harm.
2874 		 */
2875 
2876 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2877 		TBIS(va);
2878 	}
2879 }
2880 
2881 /* pmap_extract			INTERFACE
2882  **
2883  * Return the physical address mapped by the virtual address
2884  * in the specified pmap.
2885  *
2886  * Note: this function should also apply an exclusive lock
2887  * on the pmap system during its duration.
2888  */
2889 boolean_t
2890 pmap_extract(pmap, va, pap)
2891 	pmap_t pmap;
2892 	vaddr_t va;
2893 	paddr_t *pap;
2894 {
2895 	int a_idx, b_idx, pte_idx;
2896 	a_tmgr_t	*a_tbl;
2897 	b_tmgr_t	*b_tbl;
2898 	c_tmgr_t	*c_tbl;
2899 	mmu_short_pte_t	*c_pte;
2900 
2901 	if (pmap == pmap_kernel())
2902 		return pmap_extract_kernel(va, pap);
2903 
2904 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2905 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2906 		return FALSE;
2907 
2908 	if (!MMU_VALID_DT(*c_pte))
2909 		return FALSE;
2910 
2911 	if (pap != NULL)
2912 		*pap = MMU_PTE_PA(*c_pte);
2913 	return (TRUE);
2914 }
2915 
2916 /* pmap_extract_kernel		INTERNAL
2917  **
2918  * Extract a translation from the kernel address space.
2919  */
2920 boolean_t
2921 pmap_extract_kernel(va, pap)
2922 	vaddr_t va;
2923 	paddr_t *pap;
2924 {
2925 	mmu_short_pte_t *pte;
2926 
2927 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2928 	if (!MMU_VALID_DT(*pte))
2929 		return (FALSE);
2930 	if (pap != NULL)
2931 		*pap = MMU_PTE_PA(*pte);
2932 	return (TRUE);
2933 }
2934 
2935 /* pmap_remove_kernel		INTERNAL
2936  **
2937  * Remove the mapping of a range of virtual addresses from the kernel map.
2938  * The arguments are already page-aligned.
2939  */
2940 void
2941 pmap_remove_kernel(sva, eva)
2942 	vaddr_t sva;
2943 	vaddr_t eva;
2944 {
2945 	int idx, eidx;
2946 
2947 #ifdef	PMAP_DEBUG
2948 	if ((sva & PGOFSET) || (eva & PGOFSET))
2949 		panic("pmap_remove_kernel: alignment");
2950 #endif
2951 
2952 	idx  = m68k_btop(sva - KERNBASE);
2953 	eidx = m68k_btop(eva - KERNBASE);
2954 
2955 	while (idx < eidx) {
2956 		pmap_remove_pte(&kernCbase[idx++]);
2957 		TBIS(sva);
2958 		sva += NBPG;
2959 	}
2960 }
2961 
2962 /* pmap_remove			INTERFACE
2963  **
2964  * Remove the mapping of a range of virtual addresses from the given pmap.
2965  *
2966  * If the range contains any wired entries, this function will probably create
2967  * disaster.
2968  */
2969 void
2970 pmap_remove(pmap, start, end)
2971 	pmap_t pmap;
2972 	vaddr_t start;
2973 	vaddr_t end;
2974 {
2975 
2976 	if (pmap == pmap_kernel()) {
2977 		pmap_remove_kernel(start, end);
2978 		return;
2979 	}
2980 
2981 	/*
2982 	 * If the pmap doesn't have an A table of its own, it has no mappings
2983 	 * that can be removed.
2984 	 */
2985 	if (pmap->pm_a_tmgr == NULL)
2986 		return;
2987 
2988 	/*
2989 	 * Remove the specified range from the pmap.  If the function
2990 	 * returns true, the operation removed all the valid mappings
2991 	 * in the pmap and freed its A table.  If this happened to the
2992 	 * currently loaded pmap, the MMU root pointer must be reloaded
2993 	 * with the default 'kernel' map.
2994 	 */
2995 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
2996 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2997 			kernel_crp.rp_addr = kernAphys;
2998 			loadcrp(&kernel_crp);
2999 			/* will do TLB flush below */
3000 		}
3001 		pmap->pm_a_tmgr = NULL;
3002 		pmap->pm_a_phys = kernAphys;
3003 	}
3004 
3005 	/*
3006 	 * If we just modified the current address space,
3007 	 * make sure to flush the MMU cache.
3008 	 *
3009 	 * XXX - this could be an unecessarily large flush.
3010 	 * XXX - Could decide, based on the size of the VA range
3011 	 * to be removed, whether to flush "by pages" or "all".
3012 	 */
3013 	if (pmap == current_pmap())
3014 		TBIAU();
3015 }
3016 
3017 /* pmap_remove_a			INTERNAL
3018  **
3019  * This is function number one in a set of three that removes a range
3020  * of memory in the most efficient manner by removing the highest possible
3021  * tables from the memory space.  This particular function attempts to remove
3022  * as many B tables as it can, delegating the remaining fragmented ranges to
3023  * pmap_remove_b().
3024  *
3025  * If the removal operation results in an empty A table, the function returns
3026  * TRUE.
3027  *
3028  * It's ugly but will do for now.
3029  */
3030 boolean_t
3031 pmap_remove_a(a_tbl, start, end)
3032 	a_tmgr_t *a_tbl;
3033 	vaddr_t start;
3034 	vaddr_t end;
3035 {
3036 	boolean_t empty;
3037 	int idx;
3038 	vaddr_t nstart, nend;
3039 	b_tmgr_t *b_tbl;
3040 	mmu_long_dte_t  *a_dte;
3041 	mmu_short_dte_t *b_dte;
3042 
3043 	/*
3044 	 * The following code works with what I call a 'granularity
3045 	 * reduction algorithim'.  A range of addresses will always have
3046 	 * the following properties, which are classified according to
3047 	 * how the range relates to the size of the current granularity
3048 	 * - an A table entry:
3049 	 *
3050 	 *            1 2       3 4
3051 	 * -+---+---+---+---+---+---+---+-
3052 	 * -+---+---+---+---+---+---+---+-
3053 	 *
3054 	 * A range will always start on a granularity boundary, illustrated
3055 	 * by '+' signs in the table above, or it will start at some point
3056 	 * inbetween a granularity boundary, as illustrated by point 1.
3057 	 * The first step in removing a range of addresses is to remove the
3058 	 * range between 1 and 2, the nearest granularity boundary.  This
3059 	 * job is handled by the section of code governed by the
3060 	 * 'if (start < nstart)' statement.
3061 	 *
3062 	 * A range will always encompass zero or more intergral granules,
3063 	 * illustrated by points 2 and 3.  Integral granules are easy to
3064 	 * remove.  The removal of these granules is the second step, and
3065 	 * is handled by the code block 'if (nstart < nend)'.
3066 	 *
3067 	 * Lastly, a range will always end on a granularity boundary,
3068 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3069 	 * 4.  The last step involves removing this range and is handled by
3070 	 * the code block 'if (nend < end)'.
3071 	 */
3072 	nstart = MMU_ROUND_UP_A(start);
3073 	nend = MMU_ROUND_A(end);
3074 
3075 	if (start < nstart) {
3076 		/*
3077 		 * This block is executed if the range starts between
3078 		 * a granularity boundary.
3079 		 *
3080 		 * First find the DTE which is responsible for mapping
3081 		 * the start of the range.
3082 		 */
3083 		idx = MMU_TIA(start);
3084 		a_dte = &a_tbl->at_dtbl[idx];
3085 
3086 		/*
3087 		 * If the DTE is valid then delegate the removal of the sub
3088 		 * range to pmap_remove_b(), which can remove addresses at
3089 		 * a finer granularity.
3090 		 */
3091 		if (MMU_VALID_DT(*a_dte)) {
3092 			b_dte = mmu_ptov(a_dte->addr.raw);
3093 			b_tbl = mmuB2tmgr(b_dte);
3094 
3095 			/*
3096 			 * The sub range to be removed starts at the start
3097 			 * of the full range we were asked to remove, and ends
3098 			 * at the greater of:
3099 			 * 1. The end of the full range, -or-
3100 			 * 2. The end of the full range, rounded down to the
3101 			 *    nearest granularity boundary.
3102 			 */
3103 			if (end < nstart)
3104 				empty = pmap_remove_b(b_tbl, start, end);
3105 			else
3106 				empty = pmap_remove_b(b_tbl, start, nstart);
3107 
3108 			/*
3109 			 * If the removal resulted in an empty B table,
3110 			 * invalidate the DTE that points to it and decrement
3111 			 * the valid entry count of the A table.
3112 			 */
3113 			if (empty) {
3114 				a_dte->attr.raw = MMU_DT_INVALID;
3115 				a_tbl->at_ecnt--;
3116 			}
3117 		}
3118 		/*
3119 		 * If the DTE is invalid, the address range is already non-
3120 		 * existent and can simply be skipped.
3121 		 */
3122 	}
3123 	if (nstart < nend) {
3124 		/*
3125 		 * This block is executed if the range spans a whole number
3126 		 * multiple of granules (A table entries.)
3127 		 *
3128 		 * First find the DTE which is responsible for mapping
3129 		 * the start of the first granule involved.
3130 		 */
3131 		idx = MMU_TIA(nstart);
3132 		a_dte = &a_tbl->at_dtbl[idx];
3133 
3134 		/*
3135 		 * Remove entire sub-granules (B tables) one at a time,
3136 		 * until reaching the end of the range.
3137 		 */
3138 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3139 			if (MMU_VALID_DT(*a_dte)) {
3140 				/*
3141 				 * Find the B table manager for the
3142 				 * entry and free it.
3143 				 */
3144 				b_dte = mmu_ptov(a_dte->addr.raw);
3145 				b_tbl = mmuB2tmgr(b_dte);
3146 				free_b_table(b_tbl, TRUE);
3147 
3148 				/*
3149 				 * Invalidate the DTE that points to the
3150 				 * B table and decrement the valid entry
3151 				 * count of the A table.
3152 				 */
3153 				a_dte->attr.raw = MMU_DT_INVALID;
3154 				a_tbl->at_ecnt--;
3155 			}
3156 	}
3157 	if (nend < end) {
3158 		/*
3159 		 * This block is executed if the range ends beyond a
3160 		 * granularity boundary.
3161 		 *
3162 		 * First find the DTE which is responsible for mapping
3163 		 * the start of the nearest (rounded down) granularity
3164 		 * boundary.
3165 		 */
3166 		idx = MMU_TIA(nend);
3167 		a_dte = &a_tbl->at_dtbl[idx];
3168 
3169 		/*
3170 		 * If the DTE is valid then delegate the removal of the sub
3171 		 * range to pmap_remove_b(), which can remove addresses at
3172 		 * a finer granularity.
3173 		 */
3174 		if (MMU_VALID_DT(*a_dte)) {
3175 			/*
3176 			 * Find the B table manager for the entry
3177 			 * and hand it to pmap_remove_b() along with
3178 			 * the sub range.
3179 			 */
3180 			b_dte = mmu_ptov(a_dte->addr.raw);
3181 			b_tbl = mmuB2tmgr(b_dte);
3182 
3183 			empty = pmap_remove_b(b_tbl, nend, end);
3184 
3185 			/*
3186 			 * If the removal resulted in an empty B table,
3187 			 * invalidate the DTE that points to it and decrement
3188 			 * the valid entry count of the A table.
3189 			 */
3190 			if (empty) {
3191 				a_dte->attr.raw = MMU_DT_INVALID;
3192 				a_tbl->at_ecnt--;
3193 			}
3194 		}
3195 	}
3196 
3197 	/*
3198 	 * If there are no more entries in the A table, release it
3199 	 * back to the available pool and return TRUE.
3200 	 */
3201 	if (a_tbl->at_ecnt == 0) {
3202 		a_tbl->at_parent = NULL;
3203 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3204 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3205 		empty = TRUE;
3206 	} else {
3207 		empty = FALSE;
3208 	}
3209 
3210 	return empty;
3211 }
3212 
3213 /* pmap_remove_b			INTERNAL
3214  **
3215  * Remove a range of addresses from an address space, trying to remove entire
3216  * C tables if possible.
3217  *
3218  * If the operation results in an empty B table, the function returns TRUE.
3219  */
3220 boolean_t
3221 pmap_remove_b(b_tbl, start, end)
3222 	b_tmgr_t *b_tbl;
3223 	vaddr_t start;
3224 	vaddr_t end;
3225 {
3226 	boolean_t empty;
3227 	int idx;
3228 	vaddr_t nstart, nend, rstart;
3229 	c_tmgr_t *c_tbl;
3230 	mmu_short_dte_t  *b_dte;
3231 	mmu_short_pte_t  *c_dte;
3232 
3233 
3234 	nstart = MMU_ROUND_UP_B(start);
3235 	nend = MMU_ROUND_B(end);
3236 
3237 	if (start < nstart) {
3238 		idx = MMU_TIB(start);
3239 		b_dte = &b_tbl->bt_dtbl[idx];
3240 		if (MMU_VALID_DT(*b_dte)) {
3241 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3242 			c_tbl = mmuC2tmgr(c_dte);
3243 			if (end < nstart)
3244 				empty = pmap_remove_c(c_tbl, start, end);
3245 			else
3246 				empty = pmap_remove_c(c_tbl, start, nstart);
3247 			if (empty) {
3248 				b_dte->attr.raw = MMU_DT_INVALID;
3249 				b_tbl->bt_ecnt--;
3250 			}
3251 		}
3252 	}
3253 	if (nstart < nend) {
3254 		idx = MMU_TIB(nstart);
3255 		b_dte = &b_tbl->bt_dtbl[idx];
3256 		rstart = nstart;
3257 		while (rstart < nend) {
3258 			if (MMU_VALID_DT(*b_dte)) {
3259 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3260 				c_tbl = mmuC2tmgr(c_dte);
3261 				free_c_table(c_tbl, TRUE);
3262 				b_dte->attr.raw = MMU_DT_INVALID;
3263 				b_tbl->bt_ecnt--;
3264 			}
3265 			b_dte++;
3266 			rstart += MMU_TIB_RANGE;
3267 		}
3268 	}
3269 	if (nend < end) {
3270 		idx = MMU_TIB(nend);
3271 		b_dte = &b_tbl->bt_dtbl[idx];
3272 		if (MMU_VALID_DT(*b_dte)) {
3273 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3274 			c_tbl = mmuC2tmgr(c_dte);
3275 			empty = pmap_remove_c(c_tbl, nend, end);
3276 			if (empty) {
3277 				b_dte->attr.raw = MMU_DT_INVALID;
3278 				b_tbl->bt_ecnt--;
3279 			}
3280 		}
3281 	}
3282 
3283 	if (b_tbl->bt_ecnt == 0) {
3284 		b_tbl->bt_parent = NULL;
3285 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3286 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3287 		empty = TRUE;
3288 	} else {
3289 		empty = FALSE;
3290 	}
3291 
3292 	return empty;
3293 }
3294 
3295 /* pmap_remove_c			INTERNAL
3296  **
3297  * Remove a range of addresses from the given C table.
3298  */
3299 boolean_t
3300 pmap_remove_c(c_tbl, start, end)
3301 	c_tmgr_t *c_tbl;
3302 	vaddr_t start;
3303 	vaddr_t end;
3304 {
3305 	boolean_t empty;
3306 	int idx;
3307 	mmu_short_pte_t *c_pte;
3308 
3309 	idx = MMU_TIC(start);
3310 	c_pte = &c_tbl->ct_dtbl[idx];
3311 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3312 		if (MMU_VALID_DT(*c_pte)) {
3313 			pmap_remove_pte(c_pte);
3314 			c_tbl->ct_ecnt--;
3315 		}
3316 	}
3317 
3318 	if (c_tbl->ct_ecnt == 0) {
3319 		c_tbl->ct_parent = NULL;
3320 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3321 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3322 		empty = TRUE;
3323 	} else {
3324 		empty = FALSE;
3325 	}
3326 
3327 	return empty;
3328 }
3329 
3330 /* is_managed				INTERNAL
3331  **
3332  * Determine if the given physical address is managed by the PV system.
3333  * Note that this logic assumes that no one will ask for the status of
3334  * addresses which lie in-between the memory banks on the 3/80.  If they
3335  * do so, it will falsely report that it is managed.
3336  *
3337  * Note: A "managed" address is one that was reported to the VM system as
3338  * a "usable page" during system startup.  As such, the VM system expects the
3339  * pmap module to keep an accurate track of the useage of those pages.
3340  * Any page not given to the VM system at startup does not exist (as far as
3341  * the VM system is concerned) and is therefore "unmanaged."  Examples are
3342  * those pages which belong to the ROM monitor and the memory allocated before
3343  * the VM system was started.
3344  */
3345 boolean_t
3346 is_managed(pa)
3347 	paddr_t pa;
3348 {
3349 	if (pa >= avail_start && pa < avail_end)
3350 		return TRUE;
3351 	else
3352 		return FALSE;
3353 }
3354 
3355 /* pmap_bootstrap_alloc			INTERNAL
3356  **
3357  * Used internally for memory allocation at startup when malloc is not
3358  * available.  This code will fail once it crosses the first memory
3359  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3360  * will be in charge of allocation.
3361  */
3362 void *
3363 pmap_bootstrap_alloc(size)
3364 	int size;
3365 {
3366 	void *rtn;
3367 
3368 #ifdef	PMAP_DEBUG
3369 	if (bootstrap_alloc_enabled == FALSE) {
3370 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3371 		sunmon_abort();
3372 	}
3373 #endif
3374 
3375 	rtn = (void *) virtual_avail;
3376 	virtual_avail += size;
3377 
3378 #ifdef	PMAP_DEBUG
3379 	if (virtual_avail > virtual_contig_end) {
3380 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3381 		sunmon_abort();
3382 	}
3383 #endif
3384 
3385 	return rtn;
3386 }
3387 
3388 /* pmap_bootstap_aalign			INTERNAL
3389  **
3390  * Used to insure that the next call to pmap_bootstrap_alloc() will
3391  * return a chunk of memory aligned to the specified size.
3392  *
3393  * Note: This function will only support alignment sizes that are powers
3394  * of two.
3395  */
3396 void
3397 pmap_bootstrap_aalign(size)
3398 	int size;
3399 {
3400 	int off;
3401 
3402 	off = virtual_avail & (size - 1);
3403 	if (off) {
3404 		(void) pmap_bootstrap_alloc(size - off);
3405 	}
3406 }
3407 
3408 /* pmap_pa_exists
3409  **
3410  * Used by the /dev/mem driver to see if a given PA is memory
3411  * that can be mapped.  (The PA is not in a hole.)
3412  */
3413 int
3414 pmap_pa_exists(pa)
3415 	paddr_t pa;
3416 {
3417 	int i;
3418 
3419 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3420 		if ((pa >= avail_mem[i].pmem_start) &&
3421 			(pa <  avail_mem[i].pmem_end))
3422 			return (1);
3423 		if (avail_mem[i].pmem_next == NULL)
3424 			break;
3425 	}
3426 	return (0);
3427 }
3428 
3429 /* Called only from locore.s and pmap.c */
3430 void	_pmap_switch __P((pmap_t pmap));
3431 
3432 /*
3433  * _pmap_switch			INTERNAL
3434  *
3435  * This is called by locore.s:cpu_switch() when it is
3436  * switching to a new process.  Load new translations.
3437  * Note: done in-line by locore.s unless PMAP_DEBUG
3438  *
3439  * Note that we do NOT allocate a context here, but
3440  * share the "kernel only" context until we really
3441  * need our own context for user-space mappings in
3442  * pmap_enter_user().  [ s/context/mmu A table/ ]
3443  */
3444 void
3445 _pmap_switch(pmap)
3446 	pmap_t pmap;
3447 {
3448 	u_long rootpa;
3449 
3450 	/*
3451 	 * Only do reload/flush if we have to.
3452 	 * Note that if the old and new process
3453 	 * were BOTH using the "null" context,
3454 	 * then this will NOT flush the TLB.
3455 	 */
3456 	rootpa = pmap->pm_a_phys;
3457 	if (kernel_crp.rp_addr != rootpa) {
3458 		DPRINT(("pmap_activate(%p)\n", pmap));
3459 		kernel_crp.rp_addr = rootpa;
3460 		loadcrp(&kernel_crp);
3461 		TBIAU();
3462 	}
3463 }
3464 
3465 /*
3466  * Exported version of pmap_activate().  This is called from the
3467  * machine-independent VM code when a process is given a new pmap.
3468  * If (p == curproc) do like cpu_switch would do; otherwise just
3469  * take this as notification that the process has a new pmap.
3470  */
3471 void
3472 pmap_activate(p)
3473 	struct proc *p;
3474 {
3475 	if (p == curproc) {
3476 		_pmap_switch(p->p_vmspace->vm_map.pmap);
3477 	}
3478 }
3479 
3480 /*
3481  * pmap_deactivate			INTERFACE
3482  **
3483  * This is called to deactivate the specified process's address space.
3484  */
3485 void
3486 pmap_deactivate(p)
3487 struct proc *p;
3488 {
3489 	/* Nothing to do. */
3490 }
3491 
3492 /*
3493  * Fill in the sun3x-specific part of the kernel core header
3494  * for dumpsys().  (See machdep.c for the rest.)
3495  */
3496 void
3497 pmap_kcore_hdr(sh)
3498 	struct sun3x_kcore_hdr *sh;
3499 {
3500 	u_long spa, len;
3501 	int i;
3502 
3503 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3504 	sh->pg_valid = MMU_DT_PAGE;
3505 	sh->contig_end = virtual_contig_end;
3506 	sh->kernCbase = (u_long)kernCbase;
3507 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3508 		spa = avail_mem[i].pmem_start;
3509 		spa = m68k_trunc_page(spa);
3510 		len = avail_mem[i].pmem_end - spa;
3511 		len = m68k_round_page(len);
3512 		sh->ram_segs[i].start = spa;
3513 		sh->ram_segs[i].size  = len;
3514 	}
3515 }
3516 
3517 
3518 /* pmap_virtual_space			INTERFACE
3519  **
3520  * Return the current available range of virtual addresses in the
3521  * arguuments provided.  Only really called once.
3522  */
3523 void
3524 pmap_virtual_space(vstart, vend)
3525 	vaddr_t *vstart, *vend;
3526 {
3527 	*vstart = virtual_avail;
3528 	*vend = virtual_end;
3529 }
3530 
3531 /*
3532  * Provide memory to the VM system.
3533  *
3534  * Assume avail_start is always in the
3535  * first segment as pmap_bootstrap does.
3536  */
3537 static void
3538 pmap_page_upload()
3539 {
3540 	paddr_t	a, b;	/* memory range */
3541 	int i;
3542 
3543 	/* Supply the memory in segments. */
3544 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3545 		a = atop(avail_mem[i].pmem_start);
3546 		b = atop(avail_mem[i].pmem_end);
3547 		if (i == 0)
3548 			a = atop(avail_start);
3549 		if (avail_mem[i].pmem_end > avail_end)
3550 			b = atop(avail_end);
3551 
3552 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3553 
3554 		if (avail_mem[i].pmem_next == NULL)
3555 			break;
3556 	}
3557 }
3558 
3559 /* pmap_count			INTERFACE
3560  **
3561  * Return the number of resident (valid) pages in the given pmap.
3562  *
3563  * Note:  If this function is handed the kernel map, it will report
3564  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3565  * map statistics.
3566  */
3567 segsz_t
3568 pmap_count(pmap, type)
3569 	pmap_t pmap;
3570 	int    type;
3571 {
3572 	u_int     count;
3573 	int       a_idx, b_idx;
3574 	a_tmgr_t *a_tbl;
3575 	b_tmgr_t *b_tbl;
3576 	c_tmgr_t *c_tbl;
3577 
3578 	/*
3579 	 * If the pmap does not have its own A table manager, it has no
3580 	 * valid entires.
3581 	 */
3582 	if (pmap->pm_a_tmgr == NULL)
3583 		return 0;
3584 
3585 	a_tbl = pmap->pm_a_tmgr;
3586 
3587 	count = 0;
3588 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3589 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3590 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3591 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3592 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3593 	                c_tbl = mmuC2tmgr(
3594 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3595 	                if (type == 0)
3596 	                    /*
3597 	                     * A resident entry count has been requested.
3598 	                     */
3599 	                    count += c_tbl->ct_ecnt;
3600 	                else
3601 	                    /*
3602 	                     * A wired entry count has been requested.
3603 	                     */
3604 	                    count += c_tbl->ct_wcnt;
3605 	            }
3606 	        }
3607 	    }
3608 	}
3609 
3610 	return count;
3611 }
3612 
3613 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3614  * The following routines are only used by DDB for tricky kernel text    *
3615  * text operations in db_memrw.c.  They are provided for sun3            *
3616  * compatibility.                                                        *
3617  *************************************************************************/
3618 /* get_pte			INTERNAL
3619  **
3620  * Return the page descriptor the describes the kernel mapping
3621  * of the given virtual address.
3622  */
3623 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
3624 u_int
3625 get_pte(va)
3626 	vaddr_t va;
3627 {
3628 	u_long pte_pa;
3629 	mmu_short_pte_t *pte;
3630 
3631 	/* Get the physical address of the PTE */
3632 	pte_pa = ptest_addr(va & ~PGOFSET);
3633 
3634 	/* Convert to a virtual address... */
3635 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3636 
3637 	/* Make sure it is in our level-C tables... */
3638 	if ((pte < kernCbase) ||
3639 		(pte >= &mmuCbase[NUM_USER_PTES]))
3640 		return 0;
3641 
3642 	/* ... and just return its contents. */
3643 	return (pte->attr.raw);
3644 }
3645 
3646 
3647 /* set_pte			INTERNAL
3648  **
3649  * Set the page descriptor that describes the kernel mapping
3650  * of the given virtual address.
3651  */
3652 void
3653 set_pte(va, pte)
3654 	vaddr_t va;
3655 	u_int pte;
3656 {
3657 	u_long idx;
3658 
3659 	if (va < KERNBASE)
3660 		return;
3661 
3662 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3663 	kernCbase[idx].attr.raw = pte;
3664 	TBIS(va);
3665 }
3666 
3667 /*
3668  *	Routine:        pmap_procwr
3669  *
3670  *	Function:
3671  *		Synchronize caches corresponding to [addr, addr+len) in p.
3672  */
3673 void
3674 pmap_procwr(p, va, len)
3675 	struct proc	*p;
3676 	vaddr_t		va;
3677 	size_t		len;
3678 {
3679 	(void)cachectl1(0x80000004, va, len, p);
3680 }
3681 
3682 
3683 #ifdef	PMAP_DEBUG
3684 /************************** DEBUGGING ROUTINES **************************
3685  * The following routines are meant to be an aid to debugging the pmap  *
3686  * system.  They are callable from the DDB command line and should be   *
3687  * prepared to be handed unstable or incomplete states of the system.   *
3688  ************************************************************************/
3689 
3690 /* pv_list
3691  **
3692  * List all pages found on the pv list for the given physical page.
3693  * To avoid endless loops, the listing will stop at the end of the list
3694  * or after 'n' entries - whichever comes first.
3695  */
3696 void
3697 pv_list(pa, n)
3698 	paddr_t pa;
3699 	int n;
3700 {
3701 	int  idx;
3702 	vaddr_t va;
3703 	pv_t *pv;
3704 	c_tmgr_t *c_tbl;
3705 	pmap_t pmap;
3706 
3707 	pv = pa2pv(pa);
3708 	idx = pv->pv_idx;
3709 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3710 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3711 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3712 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3713 	}
3714 }
3715 #endif	/* PMAP_DEBUG */
3716 
3717 #ifdef NOT_YET
3718 /* and maybe not ever */
3719 /************************** LOW-LEVEL ROUTINES **************************
3720  * These routines will eventualy be re-written into assembly and placed *
3721  * in locore.s.  They are here now as stubs so that the pmap module can *
3722  * be linked as a standalone user program for testing.                  *
3723  ************************************************************************/
3724 /* flush_atc_crp			INTERNAL
3725  **
3726  * Flush all page descriptors derived from the given CPU Root Pointer
3727  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3728  * cache.
3729  */
3730 void
3731 flush_atc_crp(a_tbl)
3732 {
3733 	mmu_long_rp_t rp;
3734 
3735 	/* Create a temporary root table pointer that points to the
3736 	 * given A table.
3737 	 */
3738 	rp.attr.raw = ~MMU_LONG_RP_LU;
3739 	rp.addr.raw = (unsigned int) a_tbl;
3740 
3741 	mmu_pflushr(&rp);
3742 	/* mmu_pflushr:
3743 	 * 	movel   sp(4)@,a0
3744 	 * 	pflushr a0@
3745 	 *	rts
3746 	 */
3747 }
3748 #endif /* NOT_YET */
3749