xref: /netbsd/sys/arch/x86/acpi/acpi_cpu_md.c (revision 6550d01e)
1 /* $NetBSD: acpi_cpu_md.c,v 1.38 2011/01/13 03:40:50 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.38 2011/01/13 03:40:50 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37 
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44 
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47 
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #include <machine/acpi_machdep.h>
52 
53 /*
54  * AMD C1E.
55  */
56 #define MSR_CMPHALT		0xc0010055
57 
58 #define MSR_CMPHALT_SMI		__BIT(27)
59 #define MSR_CMPHALT_C1E		__BIT(28)
60 #define MSR_CMPHALT_BMSTS	__BIT(29)
61 
62 /*
63  * AMD families 10h and 11h.
64  */
65 #define MSR_10H_LIMIT		0xc0010061
66 #define MSR_10H_CONTROL		0xc0010062
67 #define MSR_10H_STATUS		0xc0010063
68 #define MSR_10H_CONFIG		0xc0010064
69 
70 /*
71  * AMD family 0Fh.
72  */
73 #define MSR_0FH_CONTROL		0xc0010041
74 #define MSR_0FH_STATUS		0xc0010042
75 
76 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
77 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
78 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
79 
80 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
81 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
82 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
83 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
84 
85 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
86 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
87 
88 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
89 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
90 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
91 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
92 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
93 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
94 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
95 
96 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97 
98 static char	  native_idle_text[16];
99 void		(*native_idle)(void) = NULL;
100 
101 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
102 static void	 acpicpu_md_pstate_status(void *, void *);
103 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
104                                               uint32_t *);
105 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
106 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
107 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
108 					        uint32_t, uint32_t);
109 static void	 acpicpu_md_tstate_status(void *, void *);
110 static int	 acpicpu_md_pstate_sysctl_init(void);
111 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
112 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
113 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
114 
115 extern struct acpicpu_softc **acpicpu_sc;
116 static bool acpicpu_pstate_status = false;
117 static struct sysctllog *acpicpu_log = NULL;
118 
119 uint32_t
120 acpicpu_md_cap(void)
121 {
122 	struct cpu_info *ci = curcpu();
123 	uint32_t val = 0;
124 
125 	if (cpu_vendor != CPUVENDOR_IDT &&
126 	    cpu_vendor != CPUVENDOR_INTEL)
127 		return val;
128 
129 	/*
130 	 * Basic SMP C-states (required for _CST).
131 	 */
132 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
133 
134         /*
135 	 * If MONITOR/MWAIT is available, announce
136 	 * support for native instructions in all C-states.
137 	 */
138         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
139 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
140 
141 	/*
142 	 * Set native P- and T-states, if available.
143 	 */
144         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
145 		val |= ACPICPU_PDC_P_FFH;
146 
147 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
148 		val |= ACPICPU_PDC_T_FFH;
149 
150 	return val;
151 }
152 
153 uint32_t
154 acpicpu_md_quirks(void)
155 {
156 	struct cpu_info *ci = curcpu();
157 	struct pci_attach_args pa;
158 	uint32_t family, val = 0;
159 	uint32_t regs[4];
160 
161 	if (acpi_md_ncpus() == 1)
162 		val |= ACPICPU_FLAG_C_BM;
163 
164 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
165 		val |= ACPICPU_FLAG_C_FFH;
166 
167 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
168 
169 	switch (cpu_vendor) {
170 
171 	case CPUVENDOR_IDT:
172 
173 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
174 			val |= ACPICPU_FLAG_P_FFH;
175 
176 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
177 			val |= ACPICPU_FLAG_T_FFH;
178 
179 		break;
180 
181 	case CPUVENDOR_INTEL:
182 
183 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
184 
185 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
186 			val |= ACPICPU_FLAG_P_FFH;
187 
188 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
189 			val |= ACPICPU_FLAG_T_FFH;
190 
191 		/*
192 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
193 		 * Boost are available. Also see if we might have
194 		 * an invariant local APIC timer ("ARAT").
195 		 */
196 		if (cpuid_level >= 0x06) {
197 
198 			x86_cpuid(0x06, regs);
199 
200 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
201 				val |= ACPICPU_FLAG_P_HW;
202 
203 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
204 				val |= ACPICPU_FLAG_P_TURBO;
205 
206 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
207 				val &= ~ACPICPU_FLAG_C_APIC;
208 		}
209 
210 		/*
211 		 * Detect whether TSC is invariant. If it is not,
212 		 * we keep the flag to note that TSC will not run
213 		 * at constant rate. Depending on the CPU, this may
214 		 * affect P- and T-state changes, but especially
215 		 * relevant are C-states; with variant TSC, states
216 		 * larger than C1 may completely stop the counter.
217 		 */
218 		x86_cpuid(0x80000000, regs);
219 
220 		if (regs[0] >= 0x80000007) {
221 
222 			x86_cpuid(0x80000007, regs);
223 
224 			if ((regs[3] & __BIT(8)) != 0)
225 				val &= ~ACPICPU_FLAG_C_TSC;
226 		}
227 
228 		break;
229 
230 	case CPUVENDOR_AMD:
231 
232 		x86_cpuid(0x80000000, regs);
233 
234 		if (regs[0] < 0x80000007)
235 			break;
236 
237 		x86_cpuid(0x80000007, regs);
238 
239 		family = CPUID2FAMILY(ci->ci_signature);
240 
241 		if (family == 0xf)
242 			family += CPUID2EXTFAMILY(ci->ci_signature);
243 
244     		switch (family) {
245 
246 		case 0x0f:
247 
248 			if ((regs[3] & CPUID_APM_FID) == 0)
249 				break;
250 
251 			if ((regs[3] & CPUID_APM_VID) == 0)
252 				break;
253 
254 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
255 			break;
256 
257 		case 0x10:
258 		case 0x11:
259 
260 			if ((regs[3] & CPUID_APM_TSC) != 0)
261 				val &= ~ACPICPU_FLAG_C_TSC;
262 
263 			if ((regs[3] & CPUID_APM_HWP) != 0)
264 				val |= ACPICPU_FLAG_P_FFH;
265 
266 			if ((regs[3] & CPUID_APM_CPB) != 0)
267 				val |= ACPICPU_FLAG_P_TURBO;
268 
269 			val |= ACPICPU_FLAG_C_C1E;
270 			break;
271 		}
272 
273 		break;
274 	}
275 
276 	/*
277 	 * There are several erratums for PIIX4.
278 	 */
279 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
280 		val |= ACPICPU_FLAG_PIIX4;
281 
282 	return val;
283 }
284 
285 static int
286 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
287 {
288 
289 	/*
290 	 * XXX: The pci_find_device(9) function only
291 	 *	deals with attached devices. Change this
292 	 *	to use something like pci_device_foreach().
293 	 */
294 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
295 		return 0;
296 
297 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
298 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
299 		return 1;
300 
301 	return 0;
302 }
303 
304 void
305 acpicpu_md_quirks_c1e(void)
306 {
307 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
308 	uint64_t val;
309 
310 	val = rdmsr(MSR_CMPHALT);
311 
312 	if ((val & c1e) != 0)
313 		wrmsr(MSR_CMPHALT, val & ~c1e);
314 }
315 
316 int
317 acpicpu_md_idle_start(struct acpicpu_softc *sc)
318 {
319 	const size_t size = sizeof(native_idle_text);
320 	struct acpicpu_cstate *cs;
321 	bool ipi = false;
322 	int i;
323 
324 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
325 
326 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
327 
328 		cs = &sc->sc_cstate[i];
329 
330 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
331 			ipi = true;
332 			break;
333 		}
334 	}
335 
336 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
337 
338 	return 0;
339 }
340 
341 int
342 acpicpu_md_idle_stop(void)
343 {
344 	uint64_t xc;
345 	bool ipi;
346 
347 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
348 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
349 
350 	/*
351 	 * Run a cross-call to ensure that all CPUs are
352 	 * out from the ACPI idle-loop before detachment.
353 	 */
354 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
355 	xc_wait(xc);
356 
357 	return 0;
358 }
359 
360 /*
361  * Called with interrupts disabled.
362  * Caller should enable interrupts after return.
363  */
364 void
365 acpicpu_md_idle_enter(int method, int state)
366 {
367 	struct cpu_info *ci = curcpu();
368 
369 	switch (method) {
370 
371 	case ACPICPU_C_STATE_FFH:
372 
373 		x86_enable_intr();
374 		x86_monitor(&ci->ci_want_resched, 0, 0);
375 
376 		if (__predict_false(ci->ci_want_resched != 0))
377 			return;
378 
379 		x86_mwait((state - 1) << 4, 0);
380 		break;
381 
382 	case ACPICPU_C_STATE_HALT:
383 
384 		if (__predict_false(ci->ci_want_resched != 0))
385 			return;
386 
387 		x86_stihlt();
388 		break;
389 	}
390 }
391 
392 int
393 acpicpu_md_pstate_start(void)
394 {
395 	const uint64_t est = __BIT(16);
396 	uint64_t val;
397 
398 	switch (cpu_vendor) {
399 
400 	case CPUVENDOR_IDT:
401 	case CPUVENDOR_INTEL:
402 
403 		val = rdmsr(MSR_MISC_ENABLE);
404 
405 		if ((val & est) == 0) {
406 
407 			val |= est;
408 
409 			wrmsr(MSR_MISC_ENABLE, val);
410 			val = rdmsr(MSR_MISC_ENABLE);
411 
412 			if ((val & est) == 0)
413 				return ENOTTY;
414 		}
415 	}
416 
417 	return acpicpu_md_pstate_sysctl_init();
418 }
419 
420 int
421 acpicpu_md_pstate_stop(void)
422 {
423 
424 	if (acpicpu_log != NULL)
425 		sysctl_teardown(&acpicpu_log);
426 
427 	return 0;
428 }
429 
430 int
431 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
432 {
433 	struct acpicpu_pstate *ps, msr;
434 	struct cpu_info *ci = curcpu();
435 	uint32_t family, i = 0;
436 
437 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
438 
439 	switch (cpu_vendor) {
440 
441 	case CPUVENDOR_IDT:
442 	case CPUVENDOR_INTEL:
443 
444 		/*
445 		 * If the so-called Turbo Boost is present,
446 		 * the P0-state is always the "turbo state".
447 		 *
448 		 * For discussion, see:
449 		 *
450 		 *	Intel Corporation: Intel Turbo Boost Technology
451 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
452 		 *	Based Processors. White Paper, November 2008.
453 		 */
454 		if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
455 			sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
456 
457 		msr.ps_control_addr = MSR_PERF_CTL;
458 		msr.ps_control_mask = __BITS(0, 15);
459 
460 		msr.ps_status_addr  = MSR_PERF_STATUS;
461 		msr.ps_status_mask  = __BITS(0, 15);
462 		break;
463 
464 	case CPUVENDOR_AMD:
465 
466 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
467 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
468 
469 		family = CPUID2FAMILY(ci->ci_signature);
470 
471 		if (family == 0xf)
472 			family += CPUID2EXTFAMILY(ci->ci_signature);
473 
474 		switch (family) {
475 
476 		case 0x0f:
477 			msr.ps_control_addr = MSR_0FH_CONTROL;
478 			msr.ps_status_addr  = MSR_0FH_STATUS;
479 			break;
480 
481 		case 0x10:
482 		case 0x11:
483 			msr.ps_control_addr = MSR_10H_CONTROL;
484 			msr.ps_control_mask = __BITS(0, 2);
485 
486 			msr.ps_status_addr  = MSR_10H_STATUS;
487 			msr.ps_status_mask  = __BITS(0, 2);
488 			break;
489 
490 		default:
491 
492 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
493 				return EOPNOTSUPP;
494 		}
495 
496 		break;
497 
498 	default:
499 		return ENODEV;
500 	}
501 
502 	/*
503 	 * Fill the P-state structures with MSR addresses that are
504 	 * known to be correct. If we do not know the addresses,
505 	 * leave the values intact. If a vendor uses XPSS, we do
506 	 * not necessary need to do anything to support new CPUs.
507 	 */
508 	while (i < sc->sc_pstate_count) {
509 
510 		ps = &sc->sc_pstate[i];
511 
512 		if (msr.ps_flags != 0)
513 			ps->ps_flags |= msr.ps_flags;
514 
515 		if (msr.ps_status_addr != 0)
516 			ps->ps_status_addr = msr.ps_status_addr;
517 
518 		if (msr.ps_status_mask != 0)
519 			ps->ps_status_mask = msr.ps_status_mask;
520 
521 		if (msr.ps_control_addr != 0)
522 			ps->ps_control_addr = msr.ps_control_addr;
523 
524 		if (msr.ps_control_mask != 0)
525 			ps->ps_control_mask = msr.ps_control_mask;
526 
527 		i++;
528 	}
529 
530 	return 0;
531 }
532 
533 int
534 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
535 {
536 	struct acpicpu_pstate *ps = NULL;
537 	uint64_t val;
538 	uint32_t i;
539 
540 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
541 		return acpicpu_md_pstate_fidvid_get(sc, freq);
542 
543 	for (i = 0; i < sc->sc_pstate_count; i++) {
544 
545 		ps = &sc->sc_pstate[i];
546 
547 		if (__predict_true(ps->ps_freq != 0))
548 			break;
549 	}
550 
551 	if (__predict_false(ps == NULL))
552 		return ENODEV;
553 
554 	if (__predict_false(ps->ps_status_addr == 0))
555 		return EINVAL;
556 
557 	val = rdmsr(ps->ps_status_addr);
558 
559 	if (__predict_true(ps->ps_status_mask != 0))
560 		val = val & ps->ps_status_mask;
561 
562 	for (i = 0; i < sc->sc_pstate_count; i++) {
563 
564 		ps = &sc->sc_pstate[i];
565 
566 		if (__predict_false(ps->ps_freq == 0))
567 			continue;
568 
569 		if (val == ps->ps_status) {
570 			*freq = ps->ps_freq;
571 			return 0;
572 		}
573 	}
574 
575 	return EIO;
576 }
577 
578 int
579 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
580 {
581 	struct msr_rw_info msr;
582 	uint64_t xc;
583 	int rv = 0;
584 
585 	if (__predict_false(ps->ps_control_addr == 0))
586 		return EINVAL;
587 
588 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
589 		return acpicpu_md_pstate_fidvid_set(ps);
590 
591 	msr.msr_read  = false;
592 	msr.msr_type  = ps->ps_control_addr;
593 	msr.msr_value = ps->ps_control;
594 
595 	if (__predict_true(ps->ps_control_mask != 0)) {
596 		msr.msr_mask = ps->ps_control_mask;
597 		msr.msr_read = true;
598 	}
599 
600 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
601 	xc_wait(xc);
602 
603 	/*
604 	 * Due several problems, we bypass the
605 	 * relatively expensive status check.
606 	 */
607 	if (acpicpu_pstate_status != true) {
608 		DELAY(ps->ps_latency);
609 		return 0;
610 	}
611 
612 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
613 	xc_wait(xc);
614 
615 	return rv;
616 }
617 
618 static void
619 acpicpu_md_pstate_status(void *arg1, void *arg2)
620 {
621 	struct acpicpu_pstate *ps = arg1;
622 	uint64_t val;
623 	int i;
624 
625 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
626 
627 		val = rdmsr(ps->ps_status_addr);
628 
629 		if (__predict_true(ps->ps_status_mask != 0))
630 			val = val & ps->ps_status_mask;
631 
632 		if (val == ps->ps_status)
633 			return;
634 
635 		DELAY(ps->ps_latency);
636 	}
637 
638 	*(uintptr_t *)arg2 = EAGAIN;
639 }
640 
641 static int
642 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
643 {
644 	struct acpicpu_pstate *ps;
645 	uint32_t fid, i, vid;
646 	uint32_t cfid, cvid;
647 	int rv;
648 
649 	/*
650 	 * AMD family 0Fh needs special treatment.
651 	 * While it wants to use ACPI, it does not
652 	 * comply with the ACPI specifications.
653 	 */
654 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
655 
656 	if (rv != 0)
657 		return rv;
658 
659 	for (i = 0; i < sc->sc_pstate_count; i++) {
660 
661 		ps = &sc->sc_pstate[i];
662 
663 		if (__predict_false(ps->ps_freq == 0))
664 			continue;
665 
666 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
667 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
668 
669 		if (cfid == fid && cvid == vid) {
670 			*freq = ps->ps_freq;
671 			return 0;
672 		}
673 	}
674 
675 	return EIO;
676 }
677 
678 static int
679 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
680 {
681 	const uint64_t ctrl = ps->ps_control;
682 	uint32_t cfid, cvid, fid, i, irt;
683 	uint32_t pll, vco_cfid, vco_fid;
684 	uint32_t val, vid, vst;
685 	int rv;
686 
687 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
688 
689 	if (rv != 0)
690 		return rv;
691 
692 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
693 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
694 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
695 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
696 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
697 
698 	vst = vst * 20;
699 	pll = pll * 1000 / 5;
700 	irt = 10 * __BIT(irt);
701 
702 	/*
703 	 * Phase 1.
704 	 */
705 	while (cvid > vid) {
706 
707 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
708 		val = (val > cvid) ? 0 : cvid - val;
709 
710 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
711 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
712 
713 		if (rv != 0)
714 			return rv;
715 	}
716 
717 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
718 
719 	for (; i > 0 && cvid > 0; --i) {
720 
721 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
722 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
723 
724 		if (rv != 0)
725 			return rv;
726 	}
727 
728 	/*
729 	 * Phase 2.
730 	 */
731 	if (cfid != fid) {
732 
733 		vco_fid  = FID_TO_VCO_FID(fid);
734 		vco_cfid = FID_TO_VCO_FID(cfid);
735 
736 		while (abs(vco_fid - vco_cfid) > 2) {
737 
738 			if (fid <= cfid)
739 				val = cfid - 2;
740 			else {
741 				val = (cfid > 6) ? cfid + 2 :
742 				    FID_TO_VCO_FID(cfid) + 2;
743 			}
744 
745 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
746 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
747 
748 			if (rv != 0)
749 				return rv;
750 
751 			vco_cfid = FID_TO_VCO_FID(cfid);
752 		}
753 
754 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
755 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
756 
757 		if (rv != 0)
758 			return rv;
759 	}
760 
761 	/*
762 	 * Phase 3.
763 	 */
764 	if (cvid != vid) {
765 
766 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
767 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
768 
769 		if (rv != 0)
770 			return rv;
771 	}
772 
773 	if (cfid != fid || cvid != vid)
774 		return EIO;
775 
776 	return 0;
777 }
778 
779 static int
780 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
781 {
782 	int i = ACPICPU_P_STATE_RETRY * 100;
783 	uint64_t val;
784 
785 	do {
786 		val = rdmsr(MSR_0FH_STATUS);
787 
788 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
789 
790 	if (i == 0)
791 		return EAGAIN;
792 
793 	if (cfid != NULL)
794 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
795 
796 	if (cvid != NULL)
797 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
798 
799 	return 0;
800 }
801 
802 static void
803 acpicpu_md_pstate_fidvid_write(uint32_t fid,
804     uint32_t vid, uint32_t cnt, uint32_t tmo)
805 {
806 	struct msr_rw_info msr;
807 	uint64_t xc;
808 
809 	msr.msr_read  = false;
810 	msr.msr_type  = MSR_0FH_CONTROL;
811 	msr.msr_value = 0;
812 
813 	msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
814 	msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
815 	msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
816 	msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
817 
818 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
819 	xc_wait(xc);
820 
821 	DELAY(tmo);
822 }
823 
824 int
825 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
826 {
827 	struct acpicpu_tstate *ts;
828 	uint64_t val;
829 	uint32_t i;
830 
831 	val = rdmsr(MSR_THERM_CONTROL);
832 
833 	for (i = 0; i < sc->sc_tstate_count; i++) {
834 
835 		ts = &sc->sc_tstate[i];
836 
837 		if (ts->ts_percent == 0)
838 			continue;
839 
840 		if (val == ts->ts_status) {
841 			*percent = ts->ts_percent;
842 			return 0;
843 		}
844 	}
845 
846 	return EIO;
847 }
848 
849 int
850 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
851 {
852 	struct msr_rw_info msr;
853 	uint64_t xc;
854 	int rv = 0;
855 
856 	msr.msr_read  = true;
857 	msr.msr_type  = MSR_THERM_CONTROL;
858 	msr.msr_value = ts->ts_control;
859 	msr.msr_mask = __BITS(1, 4);
860 
861 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
862 	xc_wait(xc);
863 
864 	if (ts->ts_status == 0) {
865 		DELAY(ts->ts_latency);
866 		return 0;
867 	}
868 
869 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
870 	xc_wait(xc);
871 
872 	return rv;
873 }
874 
875 static void
876 acpicpu_md_tstate_status(void *arg1, void *arg2)
877 {
878 	struct acpicpu_tstate *ts = arg1;
879 	uint64_t val;
880 	int i;
881 
882 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
883 
884 		val = rdmsr(MSR_THERM_CONTROL);
885 
886 		if (val == ts->ts_status)
887 			return;
888 
889 		DELAY(ts->ts_latency);
890 	}
891 
892 	*(uintptr_t *)arg2 = EAGAIN;
893 }
894 
895 /*
896  * A kludge for backwards compatibility.
897  */
898 static int
899 acpicpu_md_pstate_sysctl_init(void)
900 {
901 	const struct sysctlnode	*fnode, *mnode, *rnode;
902 	const char *str;
903 	int rv;
904 
905 	switch (cpu_vendor) {
906 
907 	case CPUVENDOR_IDT:
908 	case CPUVENDOR_INTEL:
909 		str = "est";
910 		break;
911 
912 	case CPUVENDOR_AMD:
913 		str = "powernow";
914 		break;
915 
916 	default:
917 		return ENODEV;
918 	}
919 
920 
921 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
922 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
923 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
924 
925 	if (rv != 0)
926 		goto fail;
927 
928 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
929 	    0, CTLTYPE_NODE, str, NULL,
930 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
931 
932 	if (rv != 0)
933 		goto fail;
934 
935 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
936 	    0, CTLTYPE_NODE, "frequency", NULL,
937 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
938 
939 	if (rv != 0)
940 		goto fail;
941 
942 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
943 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
944 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
945 
946 	if (rv != 0)
947 		goto fail;
948 
949 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
950 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
951 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
952 
953 	if (rv != 0)
954 		goto fail;
955 
956 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
957 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
958 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
959 
960 	if (rv != 0)
961 		goto fail;
962 
963 	return 0;
964 
965 fail:
966 	if (acpicpu_log != NULL) {
967 		sysctl_teardown(&acpicpu_log);
968 		acpicpu_log = NULL;
969 	}
970 
971 	return rv;
972 }
973 
974 static int
975 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
976 {
977 	struct cpu_info *ci = curcpu();
978 	struct acpicpu_softc *sc;
979 	struct sysctlnode node;
980 	uint32_t freq;
981 	int err;
982 
983 	sc = acpicpu_sc[ci->ci_acpiid];
984 
985 	if (sc == NULL)
986 		return ENXIO;
987 
988 	err = acpicpu_pstate_get(sc, &freq);
989 
990 	if (err != 0)
991 		return err;
992 
993 	node = *rnode;
994 	node.sysctl_data = &freq;
995 
996 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
997 
998 	if (err != 0 || newp == NULL)
999 		return err;
1000 
1001 	return 0;
1002 }
1003 
1004 static int
1005 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1006 {
1007 	struct cpu_info *ci = curcpu();
1008 	struct acpicpu_softc *sc;
1009 	struct sysctlnode node;
1010 	uint32_t freq;
1011 	int err;
1012 
1013 	sc = acpicpu_sc[ci->ci_acpiid];
1014 
1015 	if (sc == NULL)
1016 		return ENXIO;
1017 
1018 	err = acpicpu_pstate_get(sc, &freq);
1019 
1020 	if (err != 0)
1021 		return err;
1022 
1023 	node = *rnode;
1024 	node.sysctl_data = &freq;
1025 
1026 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
1027 
1028 	if (err != 0 || newp == NULL)
1029 		return err;
1030 
1031 	err = acpicpu_pstate_set(sc, freq);
1032 
1033 	if (err != 0)
1034 		return err;
1035 
1036 	return 0;
1037 }
1038 
1039 static int
1040 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1041 {
1042 	struct cpu_info *ci = curcpu();
1043 	struct acpicpu_softc *sc;
1044 	struct sysctlnode node;
1045 	char buf[1024];
1046 	size_t len;
1047 	uint32_t i;
1048 	int err;
1049 
1050 	sc = acpicpu_sc[ci->ci_acpiid];
1051 
1052 	if (sc == NULL)
1053 		return ENXIO;
1054 
1055 	(void)memset(&buf, 0, sizeof(buf));
1056 
1057 	mutex_enter(&sc->sc_mtx);
1058 
1059 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1060 
1061 		if (sc->sc_pstate[i].ps_freq == 0)
1062 			continue;
1063 
1064 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1065 		    sc->sc_pstate[i].ps_freq,
1066 		    i < (sc->sc_pstate_count - 1) ? " " : "");
1067 	}
1068 
1069 	mutex_exit(&sc->sc_mtx);
1070 
1071 	node = *rnode;
1072 	node.sysctl_data = buf;
1073 
1074 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
1075 
1076 	if (err != 0 || newp == NULL)
1077 		return err;
1078 
1079 	return 0;
1080 }
1081 
1082