xref: /netbsd/sys/arch/x86/x86/cpu.c (revision 6550d01e)
1 /*	$NetBSD: cpu.c,v 1.80 2011/02/02 12:26:42 bouyer Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1999 Stefan Grefen
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *      This product includes software developed by the NetBSD
46  *      Foundation, Inc. and its contributors.
47  * 4. Neither the name of The NetBSD Foundation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61  * SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.80 2011/02/02 12:26:42 bouyer Exp $");
66 
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h"		/* for MPDEBUG */
69 #include "opt_mtrr.h"
70 
71 #include "lapic.h"
72 #include "ioapic.h"
73 
74 #ifdef i386
75 #include "npx.h"
76 #endif
77 
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kmem.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/reboot.h>
86 
87 #include <uvm/uvm.h>
88 
89 #include <machine/cpufunc.h>
90 #include <machine/cpuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/vmparam.h>
93 #include <machine/mpbiosvar.h>
94 #include <machine/pcb.h>
95 #include <machine/specialreg.h>
96 #include <machine/segments.h>
97 #include <machine/gdt.h>
98 #include <machine/mtrr.h>
99 #include <machine/pio.h>
100 #include <machine/cpu_counter.h>
101 
102 #ifdef i386
103 #include <machine/tlog.h>
104 #endif
105 
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109 
110 #include <dev/ic/mc146818reg.h>
111 #include <i386/isa/nvram.h>
112 #include <dev/isa/isareg.h>
113 
114 #include "tsc.h"
115 
116 #if MAXCPUS > 32
117 #error cpu_info contains 32bit bitmasks
118 #endif
119 
120 int     cpu_match(device_t, cfdata_t, void *);
121 void    cpu_attach(device_t, device_t, void *);
122 
123 static bool	cpu_suspend(device_t, const pmf_qual_t *);
124 static bool	cpu_resume(device_t, const pmf_qual_t *);
125 static bool	cpu_shutdown(device_t, int);
126 
127 struct cpu_softc {
128 	device_t sc_dev;		/* device tree glue */
129 	struct cpu_info *sc_info;	/* pointer to CPU info */
130 	bool sc_wasonline;
131 };
132 
133 int mp_cpu_start(struct cpu_info *, paddr_t);
134 void mp_cpu_start_cleanup(struct cpu_info *);
135 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
136 					    mp_cpu_start_cleanup };
137 
138 
139 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
140     cpu_match, cpu_attach, NULL, NULL);
141 
142 /*
143  * Statically-allocated CPU info for the primary CPU (or the only
144  * CPU, on uniprocessors).  The CPU info list is initialized to
145  * point at it.
146  */
147 #ifdef TRAPLOG
148 struct tlog tlog_primary;
149 #endif
150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 	.ci_dev = 0,
152 	.ci_self = &cpu_info_primary,
153 	.ci_idepth = -1,
154 	.ci_curlwp = &lwp0,
155 	.ci_curldt = -1,
156 #ifdef TRAPLOG
157 	.ci_tlog_base = &tlog_primary,
158 #endif /* !TRAPLOG */
159 };
160 
161 struct cpu_info *cpu_info_list = &cpu_info_primary;
162 
163 static void	cpu_set_tss_gates(struct cpu_info *);
164 
165 #ifdef i386
166 static void	tss_init(struct i386tss *, void *, void *);
167 #endif
168 
169 static void	cpu_init_idle_lwp(struct cpu_info *);
170 
171 uint32_t cpus_attached = 0;
172 uint32_t cpus_running = 0;
173 
174 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
175 			  *	[0] basic features %edx
176 			  *	[1] basic features %ecx
177 			  *	[2] extended features %edx
178 			  *	[3] extended features %ecx
179 			  *	[4] VIA padlock features
180 			  */
181 
182 extern char x86_64_doubleflt_stack[];
183 
184 bool x86_mp_online;
185 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
186 static vaddr_t cmos_data_mapping;
187 struct cpu_info *cpu_starting;
188 
189 void    	cpu_hatch(void *);
190 static void    	cpu_boot_secondary(struct cpu_info *ci);
191 static void    	cpu_start_secondary(struct cpu_info *ci);
192 static void	cpu_copy_trampoline(void);
193 
194 /*
195  * Runs once per boot once multiprocessor goo has been detected and
196  * the local APIC on the boot processor has been mapped.
197  *
198  * Called from lapic_boot_init() (from mpbios_scan()).
199  */
200 void
201 cpu_init_first(void)
202 {
203 
204 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
205 	cpu_copy_trampoline();
206 
207 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
208 	if (cmos_data_mapping == 0)
209 		panic("No KVA for page 0");
210 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
211 	pmap_update(pmap_kernel());
212 }
213 
214 int
215 cpu_match(device_t parent, cfdata_t match, void *aux)
216 {
217 
218 	return 1;
219 }
220 
221 static void
222 cpu_vm_init(struct cpu_info *ci)
223 {
224 	int ncolors = 2, i;
225 
226 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
227 		struct x86_cache_info *cai;
228 		int tcolors;
229 
230 		cai = &ci->ci_cinfo[i];
231 
232 		tcolors = atop(cai->cai_totalsize);
233 		switch(cai->cai_associativity) {
234 		case 0xff:
235 			tcolors = 1; /* fully associative */
236 			break;
237 		case 0:
238 		case 1:
239 			break;
240 		default:
241 			tcolors /= cai->cai_associativity;
242 		}
243 		ncolors = max(ncolors, tcolors);
244 		/*
245 		 * If the desired number of colors is not a power of
246 		 * two, it won't be good.  Find the greatest power of
247 		 * two which is an even divisor of the number of colors,
248 		 * to preserve even coloring of pages.
249 		 */
250 		if (ncolors & (ncolors - 1) ) {
251 			int try, picked = 1;
252 			for (try = 1; try < ncolors; try *= 2) {
253 				if (ncolors % try == 0) picked = try;
254 			}
255 			if (picked == 1) {
256 				panic("desired number of cache colors %d is "
257 			      	" > 1, but not even!", ncolors);
258 			}
259 			ncolors = picked;
260 		}
261 	}
262 
263 	/*
264 	 * Knowing the size of the largest cache on this CPU, re-color
265 	 * our pages.
266 	 */
267 	if (ncolors <= uvmexp.ncolors)
268 		return;
269 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
270 	uvm_page_recolor(ncolors);
271 }
272 
273 
274 void
275 cpu_attach(device_t parent, device_t self, void *aux)
276 {
277 	struct cpu_softc *sc = device_private(self);
278 	struct cpu_attach_args *caa = aux;
279 	struct cpu_info *ci;
280 	uintptr_t ptr;
281 	int cpunum = caa->cpu_number;
282 	static bool again;
283 
284 	sc->sc_dev = self;
285 
286 	if (cpus_attached == ~0) {
287 		aprint_error(": increase MAXCPUS\n");
288 		return;
289 	}
290 
291 	/*
292 	 * If we're an Application Processor, allocate a cpu_info
293 	 * structure, otherwise use the primary's.
294 	 */
295 	if (caa->cpu_role == CPU_ROLE_AP) {
296 		if ((boothowto & RB_MD1) != 0) {
297 			aprint_error(": multiprocessor boot disabled\n");
298 			if (!pmf_device_register(self, NULL, NULL))
299 				aprint_error_dev(self,
300 				    "couldn't establish power handler\n");
301 			return;
302 		}
303 		aprint_naive(": Application Processor\n");
304 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
305 		    KM_SLEEP);
306 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
307 		ci->ci_curldt = -1;
308 #ifdef TRAPLOG
309 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
310 #endif
311 	} else {
312 		aprint_naive(": %s Processor\n",
313 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
314 		ci = &cpu_info_primary;
315 		if (cpunum != lapic_cpu_number()) {
316 			/* XXX should be done earlier. */
317 			uint32_t reg;
318 			aprint_verbose("\n");
319 			aprint_verbose_dev(self, "running CPU at apic %d"
320 			    " instead of at expected %d", lapic_cpu_number(),
321 			    cpunum);
322 			reg = i82489_readreg(LAPIC_ID);
323 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
324 			    (cpunum << LAPIC_ID_SHIFT));
325 		}
326 		if (cpunum != lapic_cpu_number()) {
327 			aprint_error_dev(self, "unable to reset apic id\n");
328 		}
329 	}
330 
331 	ci->ci_self = ci;
332 	sc->sc_info = ci;
333 	ci->ci_dev = self;
334 	ci->ci_acpiid = caa->cpu_id;
335 	ci->ci_cpuid = caa->cpu_number;
336 	ci->ci_func = caa->cpu_func;
337 
338 	/* Must be before mi_cpu_attach(). */
339 	cpu_vm_init(ci);
340 
341 	if (caa->cpu_role == CPU_ROLE_AP) {
342 		int error;
343 
344 		error = mi_cpu_attach(ci);
345 		if (error != 0) {
346 			aprint_normal("\n");
347 			aprint_error_dev(self,
348 			    "mi_cpu_attach failed with %d\n", error);
349 			return;
350 		}
351 		cpu_init_tss(ci);
352 	} else {
353 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
354 	}
355 
356 	ci->ci_cpumask = (1 << cpu_index(ci));
357 	pmap_reference(pmap_kernel());
358 	ci->ci_pmap = pmap_kernel();
359 	ci->ci_tlbstate = TLBSTATE_STALE;
360 
361 	/*
362 	 * Boot processor may not be attached first, but the below
363 	 * must be done to allow booting other processors.
364 	 */
365 	if (!again) {
366 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
367 		/* Basic init. */
368 		cpu_intr_init(ci);
369 		cpu_get_tsc_freq(ci);
370 		cpu_init(ci);
371 		cpu_set_tss_gates(ci);
372 		pmap_cpu_init_late(ci);
373 		if (caa->cpu_role != CPU_ROLE_SP) {
374 			/* Enable lapic. */
375 			lapic_enable();
376 			lapic_set_lvt();
377 			lapic_calibrate_timer(ci);
378 		}
379 		/* Make sure DELAY() is initialized. */
380 		DELAY(1);
381 		again = true;
382 	}
383 
384 	/* further PCB init done later. */
385 
386 	switch (caa->cpu_role) {
387 	case CPU_ROLE_SP:
388 		atomic_or_32(&ci->ci_flags, CPUF_SP);
389 		cpu_identify(ci);
390 		x86_errata();
391 		x86_cpu_idle_init();
392 		break;
393 
394 	case CPU_ROLE_BP:
395 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
396 		cpu_identify(ci);
397 		x86_errata();
398 		x86_cpu_idle_init();
399 		break;
400 
401 	case CPU_ROLE_AP:
402 		/*
403 		 * report on an AP
404 		 */
405 		cpu_intr_init(ci);
406 		gdt_alloc_cpu(ci);
407 		cpu_set_tss_gates(ci);
408 		pmap_cpu_init_early(ci);
409 		pmap_cpu_init_late(ci);
410 		cpu_start_secondary(ci);
411 		if (ci->ci_flags & CPUF_PRESENT) {
412 			struct cpu_info *tmp;
413 
414 			cpu_identify(ci);
415 			tmp = cpu_info_list;
416 			while (tmp->ci_next)
417 				tmp = tmp->ci_next;
418 
419 			tmp->ci_next = ci;
420 		}
421 		break;
422 
423 	default:
424 		aprint_normal("\n");
425 		panic("unknown processor type??\n");
426 	}
427 
428 	pat_init(ci);
429 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
430 
431 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
432 		aprint_error_dev(self, "couldn't establish power handler\n");
433 
434 	if (mp_verbose) {
435 		struct lwp *l = ci->ci_data.cpu_idlelwp;
436 		struct pcb *pcb = lwp_getpcb(l);
437 
438 		aprint_verbose_dev(self,
439 		    "idle lwp at %p, idle sp at %p\n",
440 		    l,
441 #ifdef i386
442 		    (void *)pcb->pcb_esp
443 #else
444 		    (void *)pcb->pcb_rsp
445 #endif
446 		);
447 	}
448 }
449 
450 /*
451  * Initialize the processor appropriately.
452  */
453 
454 void
455 cpu_init(struct cpu_info *ci)
456 {
457 
458 	lcr0(rcr0() | CR0_WP);
459 
460 	/*
461 	 * On a P6 or above, enable global TLB caching if the
462 	 * hardware supports it.
463 	 */
464 	if (cpu_feature[0] & CPUID_PGE)
465 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
466 
467 	/*
468 	 * If we have FXSAVE/FXRESTOR, use them.
469 	 */
470 	if (cpu_feature[0] & CPUID_FXSR) {
471 		lcr4(rcr4() | CR4_OSFXSR);
472 
473 		/*
474 		 * If we have SSE/SSE2, enable XMM exceptions.
475 		 */
476 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
477 			lcr4(rcr4() | CR4_OSXMMEXCPT);
478 	}
479 
480 #ifdef MTRR
481 	/*
482 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
483 	 */
484 	if (cpu_feature[0] & CPUID_MTRR) {
485 		if ((ci->ci_flags & CPUF_AP) == 0)
486 			i686_mtrr_init_first();
487 		mtrr_init_cpu(ci);
488 	}
489 
490 #ifdef i386
491 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
492 		/*
493 		 * Must be a K6-2 Step >= 7 or a K6-III.
494 		 */
495 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
496 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
497 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
498 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
499 				mtrr_funcs = &k6_mtrr_funcs;
500 				k6_mtrr_init_first();
501 				mtrr_init_cpu(ci);
502 			}
503 		}
504 	}
505 #endif	/* i386 */
506 #endif /* MTRR */
507 
508 	atomic_or_32(&cpus_running, ci->ci_cpumask);
509 
510 	if (ci != &cpu_info_primary) {
511 		/* Synchronize TSC again, and check for drift. */
512 		wbinvd();
513 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
514 		tsc_sync_ap(ci);
515 	} else {
516 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
517 	}
518 }
519 
520 void
521 cpu_boot_secondary_processors(void)
522 {
523 	struct cpu_info *ci;
524 	u_long i;
525 
526 	/* Now that we know the number of CPUs, patch the text segment. */
527 	x86_patch(false);
528 
529 	for (i=0; i < maxcpus; i++) {
530 		ci = cpu_lookup(i);
531 		if (ci == NULL)
532 			continue;
533 		if (ci->ci_data.cpu_idlelwp == NULL)
534 			continue;
535 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
536 			continue;
537 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
538 			continue;
539 		cpu_boot_secondary(ci);
540 	}
541 
542 	x86_mp_online = true;
543 
544 	/* Now that we know about the TSC, attach the timecounter. */
545 	tsc_tc_init();
546 
547 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
548 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
549 }
550 
551 static void
552 cpu_init_idle_lwp(struct cpu_info *ci)
553 {
554 	struct lwp *l = ci->ci_data.cpu_idlelwp;
555 	struct pcb *pcb = lwp_getpcb(l);
556 
557 	pcb->pcb_cr0 = rcr0();
558 }
559 
560 void
561 cpu_init_idle_lwps(void)
562 {
563 	struct cpu_info *ci;
564 	u_long i;
565 
566 	for (i = 0; i < maxcpus; i++) {
567 		ci = cpu_lookup(i);
568 		if (ci == NULL)
569 			continue;
570 		if (ci->ci_data.cpu_idlelwp == NULL)
571 			continue;
572 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
573 			continue;
574 		cpu_init_idle_lwp(ci);
575 	}
576 }
577 
578 void
579 cpu_start_secondary(struct cpu_info *ci)
580 {
581 	extern paddr_t mp_pdirpa;
582 	u_long psl;
583 	int i;
584 
585 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
586 	atomic_or_32(&ci->ci_flags, CPUF_AP);
587 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
588 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
589 		return;
590 	}
591 
592 	/*
593 	 * Wait for it to become ready.   Setting cpu_starting opens the
594 	 * initial gate and allows the AP to start soft initialization.
595 	 */
596 	KASSERT(cpu_starting == NULL);
597 	cpu_starting = ci;
598 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
599 #ifdef MPDEBUG
600 		extern int cpu_trace[3];
601 		static int otrace[3];
602 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
603 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
604 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
605 			memcpy(otrace, cpu_trace, sizeof(otrace));
606 		}
607 #endif
608 		i8254_delay(10);
609 	}
610 
611 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
612 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
613 #if defined(MPDEBUG) && defined(DDB)
614 		printf("dropping into debugger; continue from here to resume boot\n");
615 		Debugger();
616 #endif
617 	} else {
618 		/*
619 		 * Synchronize time stamp counters. Invalidate cache and do
620 		 * twice to try and minimize possible cache effects. Disable
621 		 * interrupts to try and rule out any external interference.
622 		 */
623 		psl = x86_read_psl();
624 		x86_disable_intr();
625 		wbinvd();
626 		tsc_sync_bp(ci);
627 		x86_write_psl(psl);
628 	}
629 
630 	CPU_START_CLEANUP(ci);
631 	cpu_starting = NULL;
632 }
633 
634 void
635 cpu_boot_secondary(struct cpu_info *ci)
636 {
637 	int64_t drift;
638 	u_long psl;
639 	int i;
640 
641 	atomic_or_32(&ci->ci_flags, CPUF_GO);
642 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
643 		i8254_delay(10);
644 	}
645 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
646 		aprint_error_dev(ci->ci_dev, "failed to start\n");
647 #if defined(MPDEBUG) && defined(DDB)
648 		printf("dropping into debugger; continue from here to resume boot\n");
649 		Debugger();
650 #endif
651 	} else {
652 		/* Synchronize TSC again, check for drift. */
653 		drift = ci->ci_data.cpu_cc_skew;
654 		psl = x86_read_psl();
655 		x86_disable_intr();
656 		wbinvd();
657 		tsc_sync_bp(ci);
658 		x86_write_psl(psl);
659 		drift -= ci->ci_data.cpu_cc_skew;
660 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
661 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
662 		tsc_sync_drift(drift);
663 	}
664 }
665 
666 /*
667  * The CPU ends up here when its ready to run
668  * This is called from code in mptramp.s; at this point, we are running
669  * in the idle pcb/idle stack of the new CPU.  When this function returns,
670  * this processor will enter the idle loop and start looking for work.
671  */
672 void
673 cpu_hatch(void *v)
674 {
675 	struct cpu_info *ci = (struct cpu_info *)v;
676 	struct pcb *pcb;
677 	int s, i;
678 
679 	cpu_init_msrs(ci, true);
680 	cpu_probe(ci);
681 
682 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
683 	/* cpu_get_tsc_freq(ci); */
684 
685 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
686 
687 	/*
688 	 * Synchronize time stamp counters.  Invalidate cache and do twice
689 	 * to try and minimize possible cache effects.  Note that interrupts
690 	 * are off at this point.
691 	 */
692 	wbinvd();
693 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
694 	tsc_sync_ap(ci);
695 
696 	/*
697 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
698 	 * in order to make the TSC drift as much as possible. so that
699 	 * we can detect it later.  If not available, try 'pause'.
700 	 * We'd like to use 'hlt', but we have interrupts off.
701 	 */
702 	while ((ci->ci_flags & CPUF_GO) == 0) {
703 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
704 			x86_monitor(&ci->ci_flags, 0, 0);
705 			if ((ci->ci_flags & CPUF_GO) != 0) {
706 				continue;
707 			}
708 			x86_mwait(0, 0);
709 		} else {
710 			for (i = 10000; i != 0; i--) {
711 				x86_pause();
712 			}
713 		}
714 	}
715 
716 	/* Because the text may have been patched in x86_patch(). */
717 	wbinvd();
718 	x86_flush();
719 
720 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
721 
722 #ifdef PAE
723 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
724 	for (i = 0 ; i < PDP_SIZE; i++) {
725 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
726 	}
727 	lcr3(ci->ci_pae_l3_pdirpa);
728 #else
729 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
730 #endif
731 
732 	pcb = lwp_getpcb(curlwp);
733 	pcb->pcb_cr3 = rcr3();
734 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
735 	lcr0(pcb->pcb_cr0);
736 
737 	cpu_init_idt();
738 	gdt_init_cpu(ci);
739 	lapic_enable();
740 	lapic_set_lvt();
741 	lapic_initclocks();
742 
743 #ifdef i386
744 #if NNPX > 0
745 	npxinit(ci);
746 #endif
747 #else
748 	fpuinit(ci);
749 #endif
750 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
751 	ltr(ci->ci_tss_sel);
752 
753 	cpu_init(ci);
754 	cpu_get_tsc_freq(ci);
755 
756 	s = splhigh();
757 #ifdef i386
758 	lapic_tpr = 0;
759 #else
760 	lcr8(0);
761 #endif
762 	x86_enable_intr();
763 	splx(s);
764 	x86_errata();
765 
766 	aprint_debug_dev(ci->ci_dev, "running\n");
767 }
768 
769 #if defined(DDB)
770 
771 #include <ddb/db_output.h>
772 #include <machine/db_machdep.h>
773 
774 /*
775  * Dump CPU information from ddb.
776  */
777 void
778 cpu_debug_dump(void)
779 {
780 	struct cpu_info *ci;
781 	CPU_INFO_ITERATOR cii;
782 
783 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
784 	for (CPU_INFO_FOREACH(cii, ci)) {
785 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
786 		    ci,
787 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
788 		    (long)ci->ci_cpuid,
789 		    ci->ci_flags, ci->ci_ipis,
790 		    ci->ci_curlwp,
791 		    ci->ci_fpcurlwp);
792 	}
793 }
794 #endif
795 
796 static void
797 cpu_copy_trampoline(void)
798 {
799 	/*
800 	 * Copy boot code.
801 	 */
802 	extern u_char cpu_spinup_trampoline[];
803 	extern u_char cpu_spinup_trampoline_end[];
804 
805 	vaddr_t mp_trampoline_vaddr;
806 
807 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
808 	    UVM_KMF_VAONLY);
809 
810 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
811 	    VM_PROT_READ | VM_PROT_WRITE, 0);
812 	pmap_update(pmap_kernel());
813 	memcpy((void *)mp_trampoline_vaddr,
814 	    cpu_spinup_trampoline,
815 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
816 
817 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
818 	pmap_update(pmap_kernel());
819 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
820 }
821 
822 #ifdef i386
823 static void
824 tss_init(struct i386tss *tss, void *stack, void *func)
825 {
826 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
827 
828 	memset(tss, 0, sizeof *tss);
829 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
830 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
831 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
832 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
833 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
834 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
835 	/* %cr3 contains the value associated to pmap_kernel */
836 	tss->tss_cr3 = rcr3();
837 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
838 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
839 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
840 	tss->__tss_eip = (int)func;
841 }
842 
843 /* XXX */
844 #define IDTVEC(name)	__CONCAT(X, name)
845 typedef void (vector)(void);
846 extern vector IDTVEC(tss_trap08);
847 #ifdef DDB
848 extern vector Xintrddbipi;
849 extern int ddb_vec;
850 #endif
851 
852 static void
853 cpu_set_tss_gates(struct cpu_info *ci)
854 {
855 	struct segment_descriptor sd;
856 
857 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
858 	    UVM_KMF_WIRED);
859 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
860 	    IDTVEC(tss_trap08));
861 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
862 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
863 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
864 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
865 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
866 
867 #if defined(DDB)
868 	/*
869 	 * Set up separate handler for the DDB IPI, so that it doesn't
870 	 * stomp on a possibly corrupted stack.
871 	 *
872 	 * XXX overwriting the gate set in db_machine_init.
873 	 * Should rearrange the code so that it's set only once.
874 	 */
875 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
876 	    UVM_KMF_WIRED);
877 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
878 
879 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
880 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
881 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
882 
883 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
884 	    GSEL(GIPITSS_SEL, SEL_KPL));
885 #endif
886 }
887 #else
888 static void
889 cpu_set_tss_gates(struct cpu_info *ci)
890 {
891 
892 }
893 #endif	/* i386 */
894 
895 int
896 mp_cpu_start(struct cpu_info *ci, paddr_t target)
897 {
898 	unsigned short dwordptr[2];
899 	int error;
900 
901 	/*
902 	 * Bootstrap code must be addressable in real mode
903 	 * and it must be page aligned.
904 	 */
905 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
906 
907 	/*
908 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
909 	 */
910 
911 	outb(IO_RTC, NVRAM_RESET);
912 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
913 
914 	/*
915 	 * "and the warm reset vector (DWORD based at 40:67) to point
916 	 * to the AP startup code ..."
917 	 */
918 
919 	dwordptr[0] = 0;
920 	dwordptr[1] = target >> 4;
921 
922 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
923 
924 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
925 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
926 		return ENODEV;
927 	}
928 
929 	/*
930 	 * ... prior to executing the following sequence:".  We'll also add in
931 	 * local cache flush, in case the BIOS has left the AP with its cache
932 	 * disabled.  It may not be able to cope with MP coherency.
933 	 */
934 	wbinvd();
935 
936 	if (ci->ci_flags & CPUF_AP) {
937 		error = x86_ipi_init(ci->ci_cpuid);
938 		if (error != 0) {
939 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
940 			    __func__);
941 			return error;
942 		}
943 		i8254_delay(10000);
944 
945 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
946 		if (error != 0) {
947 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
948 			    __func__);
949 			return error;
950 		}
951 		i8254_delay(200);
952 
953 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
954 		if (error != 0) {
955 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
956 			    __func__);
957 			return error;
958 		}
959 		i8254_delay(200);
960 	}
961 
962 	return 0;
963 }
964 
965 void
966 mp_cpu_start_cleanup(struct cpu_info *ci)
967 {
968 	/*
969 	 * Ensure the NVRAM reset byte contains something vaguely sane.
970 	 */
971 
972 	outb(IO_RTC, NVRAM_RESET);
973 	outb(IO_RTC+1, NVRAM_RESET_RST);
974 }
975 
976 #ifdef __x86_64__
977 typedef void (vector)(void);
978 extern vector Xsyscall, Xsyscall32;
979 #endif
980 
981 void
982 cpu_init_msrs(struct cpu_info *ci, bool full)
983 {
984 #ifdef __x86_64__
985 	wrmsr(MSR_STAR,
986 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
987 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
988 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
989 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
990 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
991 
992 	if (full) {
993 		wrmsr(MSR_FSBASE, 0);
994 		wrmsr(MSR_GSBASE, (uint64_t)ci);
995 		wrmsr(MSR_KERNELGSBASE, 0);
996 	}
997 #endif	/* __x86_64__ */
998 
999 	if (cpu_feature[2] & CPUID_NOX)
1000 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1001 }
1002 
1003 void
1004 cpu_offline_md(void)
1005 {
1006 	int s;
1007 
1008 	s = splhigh();
1009 #ifdef i386
1010 #if NNPX > 0
1011 	npxsave_cpu(true);
1012 #endif
1013 #else
1014 	fpusave_cpu(true);
1015 #endif
1016 	splx(s);
1017 }
1018 
1019 /* XXX joerg restructure and restart CPUs individually */
1020 static bool
1021 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1022 {
1023 	struct cpu_softc *sc = device_private(dv);
1024 	struct cpu_info *ci = sc->sc_info;
1025 	int err;
1026 
1027 	if (ci->ci_flags & CPUF_PRIMARY)
1028 		return true;
1029 	if (ci->ci_data.cpu_idlelwp == NULL)
1030 		return true;
1031 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
1032 		return true;
1033 
1034 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1035 
1036 	if (sc->sc_wasonline) {
1037 		mutex_enter(&cpu_lock);
1038 		err = cpu_setstate(ci, false);
1039 		mutex_exit(&cpu_lock);
1040 
1041 		if (err)
1042 			return false;
1043 	}
1044 
1045 	return true;
1046 }
1047 
1048 static bool
1049 cpu_resume(device_t dv, const pmf_qual_t *qual)
1050 {
1051 	struct cpu_softc *sc = device_private(dv);
1052 	struct cpu_info *ci = sc->sc_info;
1053 	int err = 0;
1054 
1055 	if (ci->ci_flags & CPUF_PRIMARY)
1056 		return true;
1057 	if (ci->ci_data.cpu_idlelwp == NULL)
1058 		return true;
1059 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
1060 		return true;
1061 
1062 	if (sc->sc_wasonline) {
1063 		mutex_enter(&cpu_lock);
1064 		err = cpu_setstate(ci, true);
1065 		mutex_exit(&cpu_lock);
1066 	}
1067 
1068 	return err == 0;
1069 }
1070 
1071 static bool
1072 cpu_shutdown(device_t dv, int how)
1073 {
1074 	return cpu_suspend(dv, NULL);
1075 }
1076 
1077 void
1078 cpu_get_tsc_freq(struct cpu_info *ci)
1079 {
1080 	uint64_t last_tsc;
1081 
1082 	if (cpu_hascounter()) {
1083 		last_tsc = cpu_counter_serializing();
1084 		i8254_delay(100000);
1085 		ci->ci_data.cpu_cc_freq =
1086 		    (cpu_counter_serializing() - last_tsc) * 10;
1087 	}
1088 }
1089 
1090 void
1091 x86_cpu_idle_mwait(void)
1092 {
1093 	struct cpu_info *ci = curcpu();
1094 
1095 	KASSERT(ci->ci_ilevel == IPL_NONE);
1096 
1097 	x86_monitor(&ci->ci_want_resched, 0, 0);
1098 	if (__predict_false(ci->ci_want_resched)) {
1099 		return;
1100 	}
1101 	x86_mwait(0, 0);
1102 }
1103 
1104 void
1105 x86_cpu_idle_halt(void)
1106 {
1107 	struct cpu_info *ci = curcpu();
1108 
1109 	KASSERT(ci->ci_ilevel == IPL_NONE);
1110 
1111 	x86_disable_intr();
1112 	if (!__predict_false(ci->ci_want_resched)) {
1113 		x86_stihlt();
1114 	} else {
1115 		x86_enable_intr();
1116 	}
1117 }
1118 
1119 /*
1120  * Loads pmap for the current CPU.
1121  */
1122 void
1123 cpu_load_pmap(struct pmap *pmap)
1124 {
1125 #ifdef PAE
1126 	int i, s;
1127 	struct cpu_info *ci;
1128 
1129 	s = splvm(); /* just to be safe */
1130 	ci = curcpu();
1131 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1132 	for (i = 0 ; i < PDP_SIZE; i++) {
1133 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1134 	}
1135 	splx(s);
1136 	tlbflush();
1137 #else /* PAE */
1138 	lcr3(pmap_pdirpa(pmap, 0));
1139 #endif /* PAE */
1140 }
1141