xref: /netbsd/sys/compat/linux/common/linux_sched.c (revision 6550d01e)
1 /*	$NetBSD: linux_sched.c,v 1.63 2010/07/07 01:30:35 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center; by Matthias Scheler.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Linux compatibility module. Try to deal with scheduler related syscalls.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.63 2010/07/07 01:30:35 chs Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
46 #include <sys/syscallargs.h>
47 #include <sys/wait.h>
48 #include <sys/kauth.h>
49 #include <sys/ptrace.h>
50 #include <sys/atomic.h>
51 
52 #include <sys/cpu.h>
53 
54 #include <compat/linux/common/linux_types.h>
55 #include <compat/linux/common/linux_signal.h>
56 #include <compat/linux/common/linux_emuldata.h>
57 #include <compat/linux/common/linux_ipc.h>
58 #include <compat/linux/common/linux_sem.h>
59 #include <compat/linux/common/linux_exec.h>
60 #include <compat/linux/common/linux_machdep.h>
61 
62 #include <compat/linux/linux_syscallargs.h>
63 
64 #include <compat/linux/common/linux_sched.h>
65 
66 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *, register_t *);
67 
68 static void
69 linux_child_return(void *arg)
70 {
71 	struct lwp *l = arg;
72 	struct proc *p = l->l_proc;
73 	struct linux_emuldata *led = l->l_emuldata;
74 	void *ctp = led->led_child_tidptr;
75 
76 	if (ctp) {
77 		if (copyout(&p->p_pid, ctp, sizeof(p->p_pid)) != 0)
78 			printf("%s: LINUX_CLONE_CHILD_SETTID "
79 			    "failed (child_tidptr = %p, tid = %d)\n",
80 			    __func__, ctp, p->p_pid);
81 	}
82 	child_return(arg);
83 }
84 
85 int
86 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
87 {
88 	/* {
89 		syscallarg(int) flags;
90 		syscallarg(void *) stack;
91 		syscallarg(void *) parent_tidptr;
92 		syscallarg(void *) tls;
93 		syscallarg(void *) child_tidptr;
94 	} */
95 	struct proc *p;
96 	struct linux_emuldata *led;
97 	int flags, sig, error;
98 
99 	/*
100 	 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
101 	 */
102 	if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
103 		return (EINVAL);
104 
105 	/*
106 	 * Thread group implies shared signals. Shared signals
107 	 * imply shared VM. This matches what Linux kernel does.
108 	 */
109 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD
110 	    && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
111 		return (EINVAL);
112 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
113 	    && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
114 		return (EINVAL);
115 
116 	/*
117 	 * The thread group flavor is implemented totally differently.
118 	 */
119 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD) {
120 		return linux_clone_nptl(l, uap, retval);
121 	}
122 
123 	flags = 0;
124 	if (SCARG(uap, flags) & LINUX_CLONE_VM)
125 		flags |= FORK_SHAREVM;
126 	if (SCARG(uap, flags) & LINUX_CLONE_FS)
127 		flags |= FORK_SHARECWD;
128 	if (SCARG(uap, flags) & LINUX_CLONE_FILES)
129 		flags |= FORK_SHAREFILES;
130 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
131 		flags |= FORK_SHARESIGS;
132 	if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
133 		flags |= FORK_PPWAIT;
134 
135 	sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
136 	if (sig < 0 || sig >= LINUX__NSIG)
137 		return (EINVAL);
138 	sig = linux_to_native_signo[sig];
139 
140 	if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
141 		led = l->l_emuldata;
142 		led->led_child_tidptr = SCARG(uap, child_tidptr);
143 	}
144 
145 	/*
146 	 * Note that Linux does not provide a portable way of specifying
147 	 * the stack area; the caller must know if the stack grows up
148 	 * or down.  So, we pass a stack size of 0, so that the code
149 	 * that makes this adjustment is a noop.
150 	 */
151 	if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
152 	    linux_child_return, NULL, retval, &p)) != 0)
153 		return error;
154 
155 	return 0;
156 }
157 
158 static int
159 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
160 {
161 	/* {
162 		syscallarg(int) flags;
163 		syscallarg(void *) stack;
164 		syscallarg(void *) parent_tidptr;
165 		syscallarg(void *) tls;
166 		syscallarg(void *) child_tidptr;
167 	} */
168 	struct proc *p;
169 	struct lwp *l2;
170 	struct linux_emuldata *led;
171 	void *parent_tidptr, *tls, *child_tidptr;
172 	struct schedstate_percpu *spc;
173 	vaddr_t uaddr;
174 	lwpid_t lid;
175 	int flags, tnprocs, error;
176 
177 	p = l->l_proc;
178 	flags = SCARG(uap, flags);
179 	parent_tidptr = SCARG(uap, parent_tidptr);
180 	tls = SCARG(uap, tls);
181 	child_tidptr = SCARG(uap, child_tidptr);
182 
183 	tnprocs = atomic_inc_uint_nv(&nprocs);
184 	if (__predict_false(tnprocs >= maxproc) ||
185 	    kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p,
186 				    KAUTH_ARG(tnprocs), NULL, NULL) != 0) {
187 		atomic_dec_uint(&nprocs);
188 		return EAGAIN;
189 	}
190 
191 	uaddr = uvm_uarea_alloc();
192 	if (__predict_false(uaddr == 0)) {
193 		atomic_dec_uint(&nprocs);
194 		return ENOMEM;
195 	}
196 
197 	error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID,
198 			   SCARG(uap, stack), 0, child_return, NULL, &l2,
199 			   l->l_class);
200 	if (__predict_false(error)) {
201 		atomic_dec_uint(&nprocs);
202 		uvm_uarea_free(uaddr);
203 		return error;
204 	}
205 	lid = l2->l_lid;
206 
207 	/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
208 	if (flags & LINUX_CLONE_CHILD_CLEARTID) {
209 		led = l2->l_emuldata;
210 		led->led_clear_tid = child_tidptr;
211 	}
212 
213 	/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
214 	if (flags & LINUX_CLONE_PARENT_SETTID) {
215 		if (copyout(&lid, parent_tidptr, sizeof(lid)) != 0)
216 			printf("%s: LINUX_CLONE_PARENT_SETTID "
217 			    "failed (parent_tidptr = %p tid = %d)\n",
218 			    __func__, parent_tidptr, lid);
219 	}
220 
221 	/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory  */
222 	if (flags & LINUX_CLONE_CHILD_SETTID) {
223 		if (copyout(&lid, child_tidptr, sizeof(lid)) != 0)
224 			printf("%s: LINUX_CLONE_CHILD_SETTID "
225 			    "failed (child_tidptr = %p, tid = %d)\n",
226 			    __func__, child_tidptr, lid);
227 	}
228 
229 	if (flags & LINUX_CLONE_SETTLS) {
230 		error = LINUX_LWP_SETPRIVATE(l2, tls);
231 		if (error) {
232 			lwp_exit(l2);
233 			return error;
234 		}
235 	}
236 
237 	/*
238 	 * Set the new LWP running, unless the process is stopping,
239 	 * then the LWP is created stopped.
240 	 */
241 	mutex_enter(p->p_lock);
242 	lwp_lock(l2);
243 	spc = &l2->l_cpu->ci_schedstate;
244 	if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
245 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
246 			KASSERT(l2->l_wchan == NULL);
247 	    		l2->l_stat = LSSTOP;
248 			p->p_nrlwps--;
249 			lwp_unlock_to(l2, spc->spc_lwplock);
250 		} else {
251 			KASSERT(lwp_locked(l2, spc->spc_mutex));
252 			l2->l_stat = LSRUN;
253 			sched_enqueue(l2, false);
254 			lwp_unlock(l2);
255 		}
256 	} else {
257 		l2->l_stat = LSSUSPENDED;
258 		p->p_nrlwps--;
259 		lwp_unlock_to(l2, spc->spc_lwplock);
260 	}
261 	mutex_exit(p->p_lock);
262 
263 	retval[0] = lid;
264 	retval[1] = 0;
265 	return 0;
266 }
267 
268 /*
269  * linux realtime priority
270  *
271  * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
272  *
273  * - SCHED_OTHER tasks don't have realtime priorities.
274  *   in particular, sched_param::sched_priority is always 0.
275  */
276 
277 #define	LINUX_SCHED_RTPRIO_MIN	1
278 #define	LINUX_SCHED_RTPRIO_MAX	99
279 
280 static int
281 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
282     int *native_policy, struct sched_param *native_params)
283 {
284 
285 	switch (linux_policy) {
286 	case LINUX_SCHED_OTHER:
287 		if (native_policy != NULL) {
288 			*native_policy = SCHED_OTHER;
289 		}
290 		break;
291 
292 	case LINUX_SCHED_FIFO:
293 		if (native_policy != NULL) {
294 			*native_policy = SCHED_FIFO;
295 		}
296 		break;
297 
298 	case LINUX_SCHED_RR:
299 		if (native_policy != NULL) {
300 			*native_policy = SCHED_RR;
301 		}
302 		break;
303 
304 	default:
305 		return EINVAL;
306 	}
307 
308 	if (linux_params != NULL) {
309 		int prio = linux_params->sched_priority;
310 
311 		KASSERT(native_params != NULL);
312 
313 		if (linux_policy == LINUX_SCHED_OTHER) {
314 			if (prio != 0) {
315 				return EINVAL;
316 			}
317 			native_params->sched_priority = PRI_NONE; /* XXX */
318 		} else {
319 			if (prio < LINUX_SCHED_RTPRIO_MIN ||
320 			    prio > LINUX_SCHED_RTPRIO_MAX) {
321 				return EINVAL;
322 			}
323 			native_params->sched_priority =
324 			    (prio - LINUX_SCHED_RTPRIO_MIN)
325 			    * (SCHED_PRI_MAX - SCHED_PRI_MIN)
326 			    / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
327 			    + SCHED_PRI_MIN;
328 		}
329 	}
330 
331 	return 0;
332 }
333 
334 static int
335 sched_native2linux(int native_policy, struct sched_param *native_params,
336     int *linux_policy, struct linux_sched_param *linux_params)
337 {
338 
339 	switch (native_policy) {
340 	case SCHED_OTHER:
341 		if (linux_policy != NULL) {
342 			*linux_policy = LINUX_SCHED_OTHER;
343 		}
344 		break;
345 
346 	case SCHED_FIFO:
347 		if (linux_policy != NULL) {
348 			*linux_policy = LINUX_SCHED_FIFO;
349 		}
350 		break;
351 
352 	case SCHED_RR:
353 		if (linux_policy != NULL) {
354 			*linux_policy = LINUX_SCHED_RR;
355 		}
356 		break;
357 
358 	default:
359 		panic("%s: unknown policy %d\n", __func__, native_policy);
360 	}
361 
362 	if (native_params != NULL) {
363 		int prio = native_params->sched_priority;
364 
365 		KASSERT(prio >= SCHED_PRI_MIN);
366 		KASSERT(prio <= SCHED_PRI_MAX);
367 		KASSERT(linux_params != NULL);
368 
369 #ifdef DEBUG_LINUX
370 		printf("native2linux: native: policy %d, priority %d\n",
371 		    native_policy, prio);
372 #endif
373 
374 		if (native_policy == SCHED_OTHER) {
375 			linux_params->sched_priority = 0;
376 		} else {
377 			linux_params->sched_priority =
378 			    (prio - SCHED_PRI_MIN)
379 			    * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
380 			    / (SCHED_PRI_MAX - SCHED_PRI_MIN)
381 			    + LINUX_SCHED_RTPRIO_MIN;
382 		}
383 #ifdef DEBUG_LINUX
384 		printf("native2linux: linux: policy %d, priority %d\n",
385 		    -1, linux_params->sched_priority);
386 #endif
387 	}
388 
389 	return 0;
390 }
391 
392 int
393 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
394 {
395 	/* {
396 		syscallarg(linux_pid_t) pid;
397 		syscallarg(const struct linux_sched_param *) sp;
398 	} */
399 	int error, policy;
400 	struct linux_sched_param lp;
401 	struct sched_param sp;
402 
403 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
404 		error = EINVAL;
405 		goto out;
406 	}
407 
408 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
409 	if (error)
410 		goto out;
411 
412 	/* We need the current policy in Linux terms. */
413 	error = do_sched_getparam(0, SCARG(uap, pid), &policy, NULL);
414 	if (error)
415 		goto out;
416 	error = sched_native2linux(policy, NULL, &policy, NULL);
417 	if (error)
418 		goto out;
419 
420 	error = sched_linux2native(policy, &lp, &policy, &sp);
421 	if (error)
422 		goto out;
423 
424 	error = do_sched_setparam(0, SCARG(uap, pid), policy, &sp);
425 	if (error)
426 		goto out;
427 
428  out:
429 	return error;
430 }
431 
432 int
433 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
434 {
435 	/* {
436 		syscallarg(linux_pid_t) pid;
437 		syscallarg(struct linux_sched_param *) sp;
438 	} */
439 	struct linux_sched_param lp;
440 	struct sched_param sp;
441 	int error, policy;
442 
443 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
444 		error = EINVAL;
445 		goto out;
446 	}
447 
448 	error = do_sched_getparam(0, SCARG(uap, pid), &policy, &sp);
449 	if (error)
450 		goto out;
451 #ifdef DEBUG_LINUX
452 	printf("getparam: native: policy %d, priority %d\n",
453 	    policy, sp.sched_priority);
454 #endif
455 
456 	error = sched_native2linux(policy, &sp, NULL, &lp);
457 	if (error)
458 		goto out;
459 #ifdef DEBUG_LINUX
460 	printf("getparam: linux: policy %d, priority %d\n",
461 	    policy, lp.sched_priority);
462 #endif
463 
464 	error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
465 	if (error)
466 		goto out;
467 
468  out:
469 	return error;
470 }
471 
472 int
473 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
474 {
475 	/* {
476 		syscallarg(linux_pid_t) pid;
477 		syscallarg(int) policy;
478 		syscallarg(cont struct linux_sched_param *) sp;
479 	} */
480 	int error, policy;
481 	struct linux_sched_param lp;
482 	struct sched_param sp;
483 
484 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
485 		error = EINVAL;
486 		goto out;
487 	}
488 
489 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
490 	if (error)
491 		goto out;
492 #ifdef DEBUG_LINUX
493 	printf("setscheduler: linux: policy %d, priority %d\n",
494 	    SCARG(uap, policy), lp.sched_priority);
495 #endif
496 
497 	error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
498 	if (error)
499 		goto out;
500 #ifdef DEBUG_LINUX
501 	printf("setscheduler: native: policy %d, priority %d\n",
502 	    policy, sp.sched_priority);
503 #endif
504 
505 	error = do_sched_setparam(0, SCARG(uap, pid), policy, &sp);
506 	if (error)
507 		goto out;
508 
509  out:
510 	return error;
511 }
512 
513 int
514 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
515 {
516 	/* {
517 		syscallarg(linux_pid_t) pid;
518 	} */
519 	int error, policy;
520 
521 	*retval = -1;
522 
523 	error = do_sched_getparam(0, SCARG(uap, pid), &policy, NULL);
524 	if (error)
525 		goto out;
526 
527 	error = sched_native2linux(policy, NULL, &policy, NULL);
528 	if (error)
529 		goto out;
530 
531 	*retval = policy;
532 
533  out:
534 	return error;
535 }
536 
537 int
538 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
539 {
540 
541 	yield();
542 	return 0;
543 }
544 
545 int
546 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
547 {
548 	/* {
549 		syscallarg(int) policy;
550 	} */
551 
552 	switch (SCARG(uap, policy)) {
553 	case LINUX_SCHED_OTHER:
554 		*retval = 0;
555 		break;
556 	case LINUX_SCHED_FIFO:
557 	case LINUX_SCHED_RR:
558 		*retval = LINUX_SCHED_RTPRIO_MAX;
559 		break;
560 	default:
561 		return EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 int
568 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
569 {
570 	/* {
571 		syscallarg(int) policy;
572 	} */
573 
574 	switch (SCARG(uap, policy)) {
575 	case LINUX_SCHED_OTHER:
576 		*retval = 0;
577 		break;
578 	case LINUX_SCHED_FIFO:
579 	case LINUX_SCHED_RR:
580 		*retval = LINUX_SCHED_RTPRIO_MIN;
581 		break;
582 	default:
583 		return EINVAL;
584 	}
585 
586 	return 0;
587 }
588 
589 int
590 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
591 {
592 
593 	lwp_exit(l);
594 	return 0;
595 }
596 
597 #ifndef __m68k__
598 /* Present on everything but m68k */
599 int
600 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
601 {
602 
603 	return sys_exit(l, (const void *)uap, retval);
604 }
605 #endif /* !__m68k__ */
606 
607 int
608 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
609 {
610 	/* {
611 		syscallarg(int *) tidptr;
612 	} */
613 	struct linux_emuldata *led;
614 
615 	led = (struct linux_emuldata *)l->l_emuldata;
616 	led->led_clear_tid = SCARG(uap, tid);
617 	*retval = l->l_lid;
618 
619 	return 0;
620 }
621 
622 /* ARGUSED1 */
623 int
624 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
625 {
626 
627 	*retval = l->l_lid;
628 	return 0;
629 }
630 
631 int
632 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
633 {
634 	/* {
635 		syscallarg(linux_pid_t) pid;
636 		syscallarg(unsigned int) len;
637 		syscallarg(unsigned long *) mask;
638 	} */
639 	proc_t *p;
640 	unsigned long *lp, *data;
641 	int error, size, nb = ncpu;
642 
643 	/* Unlike Linux, dynamically calculate cpu mask size */
644 	size = sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT);
645 	if (SCARG(uap, len) < size)
646 		return EINVAL;
647 
648 	/* XXX: Pointless check.  TODO: Actually implement this. */
649 	mutex_enter(proc_lock);
650 	p = proc_find(SCARG(uap, pid));
651 	mutex_exit(proc_lock);
652 	if (p == NULL) {
653 		return ESRCH;
654 	}
655 
656 	/*
657 	 * return the actual number of CPU, tag all of them as available
658 	 * The result is a mask, the first CPU being in the least significant
659 	 * bit.
660 	 */
661 	data = kmem_zalloc(size, KM_SLEEP);
662 	lp = data;
663 	while (nb > LONG_BIT) {
664 		*lp++ = ~0UL;
665 		nb -= LONG_BIT;
666 	}
667 	if (nb)
668 		*lp = (1 << ncpu) - 1;
669 
670 	error = copyout(data, SCARG(uap, mask), size);
671 	kmem_free(data, size);
672 	*retval = size;
673 	return error;
674 }
675 
676 int
677 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
678 {
679 	/* {
680 		syscallarg(linux_pid_t) pid;
681 		syscallarg(unsigned int) len;
682 		syscallarg(unsigned long *) mask;
683 	} */
684 	proc_t *p;
685 
686 	/* XXX: Pointless check.  TODO: Actually implement this. */
687 	mutex_enter(proc_lock);
688 	p = proc_find(SCARG(uap, pid));
689 	mutex_exit(proc_lock);
690 	if (p == NULL) {
691 		return ESRCH;
692 	}
693 
694 	/* Let's ignore it */
695 #ifdef DEBUG_LINUX
696 	printf("linux_sys_sched_setaffinity\n");
697 #endif
698 	return 0;
699 };
700