xref: /netbsd/sys/dev/acpi/acpi_cpu_cstate.c (revision 6550d01e)
1 /* $NetBSD: acpi_cpu_cstate.c,v 1.37 2011/01/30 08:55:52 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.37 2011/01/30 08:55:52 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/evcnt.h>
36 #include <sys/kernel.h>
37 #include <sys/once.h>
38 #include <sys/mutex.h>
39 #include <sys/timetc.h>
40 
41 #include <dev/acpi/acpireg.h>
42 #include <dev/acpi/acpivar.h>
43 #include <dev/acpi/acpi_cpu.h>
44 #include <dev/acpi/acpi_timer.h>
45 
46 #include <machine/acpi_machdep.h>
47 
48 #define _COMPONENT	 ACPI_BUS_COMPONENT
49 ACPI_MODULE_NAME	 ("acpi_cpu_cstate")
50 
51 static void		 acpicpu_cstate_attach_print(struct acpicpu_softc *);
52 static void		 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *);
53 static void		 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *);
54 static ACPI_STATUS	 acpicpu_cstate_cst(struct acpicpu_softc *);
55 static ACPI_STATUS	 acpicpu_cstate_cst_add(struct acpicpu_softc *,
56 						ACPI_OBJECT *);
57 static void		 acpicpu_cstate_cst_bios(void);
58 static void		 acpicpu_cstate_memset(struct acpicpu_softc *);
59 static void		 acpicpu_cstate_fadt(struct acpicpu_softc *);
60 static void		 acpicpu_cstate_quirks(struct acpicpu_softc *);
61 static int		 acpicpu_cstate_latency(struct acpicpu_softc *);
62 static bool		 acpicpu_cstate_bm_check(void);
63 static void		 acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
64 
65 extern struct acpicpu_softc **acpicpu_sc;
66 
67 /*
68  * XXX:	The local APIC timer (as well as TSC) is typically stopped in C3.
69  *	For now, we cannot but disable C3. But there appears to be timer-
70  *	related interrupt issues also in C2. The only entirely safe option
71  *	at the moment is to use C1.
72  */
73 #ifdef ACPICPU_ENABLE_C3
74 static int cs_state_max = ACPI_STATE_C3;
75 #else
76 static int cs_state_max = ACPI_STATE_C1;
77 #endif
78 
79 void
80 acpicpu_cstate_attach(device_t self)
81 {
82 	struct acpicpu_softc *sc = device_private(self);
83 	ACPI_STATUS rv;
84 
85 	/*
86 	 * Either use the preferred _CST or resort to FADT.
87 	 */
88 	rv = acpicpu_cstate_cst(sc);
89 
90 	switch (rv) {
91 
92 	case AE_OK:
93 		acpicpu_cstate_cst_bios();
94 		break;
95 
96 	default:
97 		sc->sc_flags |= ACPICPU_FLAG_C_FADT;
98 		acpicpu_cstate_fadt(sc);
99 		break;
100 	}
101 
102 	sc->sc_flags |= ACPICPU_FLAG_C;
103 
104 	acpicpu_cstate_quirks(sc);
105 	acpicpu_cstate_attach_evcnt(sc);
106 	acpicpu_cstate_attach_print(sc);
107 }
108 
109 void
110 acpicpu_cstate_attach_print(struct acpicpu_softc *sc)
111 {
112 	struct acpicpu_cstate *cs;
113 	static bool once = false;
114 	const char *str;
115 	int i;
116 
117 	if (once != false)
118 		return;
119 
120 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
121 
122 		cs = &sc->sc_cstate[i];
123 
124 		if (cs->cs_method == 0)
125 			continue;
126 
127 		switch (cs->cs_method) {
128 
129 		case ACPICPU_C_STATE_HALT:
130 			str = "HLT";
131 			break;
132 
133 		case ACPICPU_C_STATE_FFH:
134 			str = "FFH";
135 			break;
136 
137 		case ACPICPU_C_STATE_SYSIO:
138 			str = "I/O";
139 			break;
140 
141 		default:
142 			panic("NOTREACHED");
143 		}
144 
145 		aprint_verbose_dev(sc->sc_dev, "C%d: %3s, "
146 		    "lat %3u us, pow %5u mW, flags 0x%02x\n", i, str,
147 		    cs->cs_latency, cs->cs_power, cs->cs_flags);
148 	}
149 
150 	once = true;
151 }
152 
153 static void
154 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *sc)
155 {
156 	struct acpicpu_cstate *cs;
157 	const char *str;
158 	int i;
159 
160 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
161 
162 		cs = &sc->sc_cstate[i];
163 
164 		if (cs->cs_method == 0)
165 			continue;
166 
167 		str = "HALT";
168 
169 		if (cs->cs_method == ACPICPU_C_STATE_FFH)
170 			str = "MWAIT";
171 
172 		if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
173 			str = "I/O";
174 
175 		(void)snprintf(cs->cs_name, sizeof(cs->cs_name),
176 		    "C%d (%s)", i, str);
177 
178 		evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
179 		    NULL, device_xname(sc->sc_dev), cs->cs_name);
180 	}
181 }
182 
183 int
184 acpicpu_cstate_detach(device_t self)
185 {
186 	struct acpicpu_softc *sc = device_private(self);
187 	static ONCE_DECL(once_detach);
188 	int rv;
189 
190 	rv = RUN_ONCE(&once_detach, acpicpu_md_idle_stop);
191 
192 	if (rv != 0)
193 		return rv;
194 
195 	sc->sc_flags &= ~ACPICPU_FLAG_C;
196 	acpicpu_cstate_detach_evcnt(sc);
197 
198 	return 0;
199 }
200 
201 static void
202 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *sc)
203 {
204 	struct acpicpu_cstate *cs;
205 	int i;
206 
207 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
208 
209 		cs = &sc->sc_cstate[i];
210 
211 		if (cs->cs_method != 0)
212 			evcnt_detach(&cs->cs_evcnt);
213 	}
214 }
215 
216 void
217 acpicpu_cstate_start(device_t self)
218 {
219 	struct acpicpu_softc *sc = device_private(self);
220 
221 	(void)acpicpu_md_idle_start(sc);
222 }
223 
224 bool
225 acpicpu_cstate_suspend(device_t self)
226 {
227 	return true;
228 }
229 
230 bool
231 acpicpu_cstate_resume(device_t self)
232 {
233 	static const ACPI_OSD_EXEC_CALLBACK func = acpicpu_cstate_callback;
234 	struct acpicpu_softc *sc = device_private(self);
235 
236 	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
237 		(void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
238 
239 	return true;
240 }
241 
242 void
243 acpicpu_cstate_callback(void *aux)
244 {
245 	struct acpicpu_softc *sc;
246 	device_t self = aux;
247 
248 	sc = device_private(self);
249 
250 	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
251 		return;
252 
253 	mutex_enter(&sc->sc_mtx);
254 	(void)acpicpu_cstate_cst(sc);
255 	mutex_exit(&sc->sc_mtx);
256 }
257 
258 static ACPI_STATUS
259 acpicpu_cstate_cst(struct acpicpu_softc *sc)
260 {
261 	ACPI_OBJECT *elm, *obj;
262 	ACPI_BUFFER buf;
263 	ACPI_STATUS rv;
264 	uint32_t i, n;
265 	uint8_t count;
266 
267 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
268 
269 	if (ACPI_FAILURE(rv))
270 		return rv;
271 
272 	obj = buf.Pointer;
273 
274 	if (obj->Type != ACPI_TYPE_PACKAGE) {
275 		rv = AE_TYPE;
276 		goto out;
277 	}
278 
279 	if (obj->Package.Count < 2) {
280 		rv = AE_LIMIT;
281 		goto out;
282 	}
283 
284 	elm = obj->Package.Elements;
285 
286 	if (elm[0].Type != ACPI_TYPE_INTEGER) {
287 		rv = AE_TYPE;
288 		goto out;
289 	}
290 
291 	n = elm[0].Integer.Value;
292 
293 	if (n != obj->Package.Count - 1) {
294 		rv = AE_BAD_VALUE;
295 		goto out;
296 	}
297 
298 	if (n > ACPI_C_STATES_MAX) {
299 		rv = AE_LIMIT;
300 		goto out;
301 	}
302 
303 	acpicpu_cstate_memset(sc);
304 
305 	CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
306 	CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
307 
308 	for (count = 0, i = 1; i <= n; i++) {
309 
310 		elm = &obj->Package.Elements[i];
311 		rv = acpicpu_cstate_cst_add(sc, elm);
312 
313 		if (ACPI_SUCCESS(rv))
314 			count++;
315 	}
316 
317 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
318 
319 out:
320 	if (buf.Pointer != NULL)
321 		ACPI_FREE(buf.Pointer);
322 
323 	return rv;
324 }
325 
326 static ACPI_STATUS
327 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
328 {
329 	const struct acpicpu_object *ao = &sc->sc_object;
330 	struct acpicpu_cstate *cs = sc->sc_cstate;
331 	struct acpicpu_cstate state;
332 	struct acpicpu_reg *reg;
333 	ACPI_STATUS rv = AE_OK;
334 	ACPI_OBJECT *obj;
335 	uint32_t type;
336 
337 	(void)memset(&state, 0, sizeof(*cs));
338 
339 	state.cs_flags = ACPICPU_FLAG_C_BM_STS;
340 
341 	if (elm->Type != ACPI_TYPE_PACKAGE) {
342 		rv = AE_TYPE;
343 		goto out;
344 	}
345 
346 	if (elm->Package.Count != 4) {
347 		rv = AE_LIMIT;
348 		goto out;
349 	}
350 
351 	/*
352 	 * Type.
353 	 */
354 	obj = &elm->Package.Elements[1];
355 
356 	if (obj->Type != ACPI_TYPE_INTEGER) {
357 		rv = AE_TYPE;
358 		goto out;
359 	}
360 
361 	type = obj->Integer.Value;
362 
363 	if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
364 		rv = AE_TYPE;
365 		goto out;
366 	}
367 
368 	/*
369 	 * Latency.
370 	 */
371 	obj = &elm->Package.Elements[2];
372 
373 	if (obj->Type != ACPI_TYPE_INTEGER) {
374 		rv = AE_TYPE;
375 		goto out;
376 	}
377 
378 	state.cs_latency = obj->Integer.Value;
379 
380 	/*
381 	 * Power.
382 	 */
383 	obj = &elm->Package.Elements[3];
384 
385 	if (obj->Type != ACPI_TYPE_INTEGER) {
386 		rv = AE_TYPE;
387 		goto out;
388 	}
389 
390 	state.cs_power = obj->Integer.Value;
391 
392 	/*
393 	 * Register.
394 	 */
395 	obj = &elm->Package.Elements[0];
396 
397 	if (obj->Type != ACPI_TYPE_BUFFER) {
398 		rv = AE_TYPE;
399 		goto out;
400 	}
401 
402 	CTASSERT(sizeof(struct acpicpu_reg) == 15);
403 
404 	if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
405 		rv = AE_LIMIT;
406 		goto out;
407 	}
408 
409 	reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
410 
411 	switch (reg->reg_spaceid) {
412 
413 	case ACPI_ADR_SPACE_SYSTEM_IO:
414 		state.cs_method = ACPICPU_C_STATE_SYSIO;
415 
416 		if (reg->reg_addr == 0) {
417 			rv = AE_AML_ILLEGAL_ADDRESS;
418 			goto out;
419 		}
420 
421 		if (reg->reg_bitwidth != 8) {
422 			rv = AE_AML_BAD_RESOURCE_LENGTH;
423 			goto out;
424 		}
425 
426 		/*
427 		 * Check only that the address is in the mapped space.
428 		 * Systems are allowed to change it when operating
429 		 * with _CST (see ACPI 4.0, pp. 94-95). For instance,
430 		 * the offset of P_LVL3 may change depending on whether
431 		 * acpiacad(4) is connected or disconnected.
432 		 */
433 		if (reg->reg_addr > ao->ao_pblkaddr + ao->ao_pblklen) {
434 			rv = AE_BAD_ADDRESS;
435 			goto out;
436 		}
437 
438 		state.cs_addr = reg->reg_addr;
439 		break;
440 
441 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
442 		state.cs_method = ACPICPU_C_STATE_FFH;
443 
444 		switch (type) {
445 
446 		case ACPI_STATE_C1:
447 
448 			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
449 				state.cs_method = ACPICPU_C_STATE_HALT;
450 
451 			break;
452 
453 		default:
454 
455 			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
456 				rv = AE_SUPPORT;
457 				goto out;
458 			}
459 		}
460 
461 		if (sc->sc_cap != 0) {
462 
463 			/*
464 			 * The _CST FFH GAS encoding may contain
465 			 * additional hints on Intel processors.
466 			 * Use these to determine whether we can
467 			 * avoid the bus master activity check.
468 			 */
469 			if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
470 				state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
471 		}
472 
473 		break;
474 
475 	default:
476 		rv = AE_AML_INVALID_SPACE_ID;
477 		goto out;
478 	}
479 
480 	if (cs[type].cs_method != 0) {
481 		rv = AE_ALREADY_EXISTS;
482 		goto out;
483 	}
484 
485 	cs[type].cs_addr = state.cs_addr;
486 	cs[type].cs_power = state.cs_power;
487 	cs[type].cs_flags = state.cs_flags;
488 	cs[type].cs_method = state.cs_method;
489 	cs[type].cs_latency = state.cs_latency;
490 
491 out:
492 	if (ACPI_FAILURE(rv))
493 		aprint_error_dev(sc->sc_dev, "failed to add "
494 		    "C-state: %s\n", AcpiFormatException(rv));
495 
496 	return rv;
497 }
498 
499 static void
500 acpicpu_cstate_cst_bios(void)
501 {
502 	const uint8_t val = AcpiGbl_FADT.CstControl;
503 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
504 
505 	if (addr == 0 || val == 0)
506 		return;
507 
508 	(void)AcpiOsWritePort(addr, val, 8);
509 }
510 
511 static void
512 acpicpu_cstate_memset(struct acpicpu_softc *sc)
513 {
514 	int i = 0;
515 
516 	while (i < ACPI_C_STATE_COUNT) {
517 
518 		sc->sc_cstate[i].cs_addr = 0;
519 		sc->sc_cstate[i].cs_power = 0;
520 		sc->sc_cstate[i].cs_flags = 0;
521 		sc->sc_cstate[i].cs_method = 0;
522 		sc->sc_cstate[i].cs_latency = 0;
523 
524 		i++;
525 	}
526 }
527 
528 static void
529 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
530 {
531 	struct acpicpu_cstate *cs = sc->sc_cstate;
532 
533 	acpicpu_cstate_memset(sc);
534 
535 	/*
536 	 * All x86 processors should support C1 (a.k.a. HALT).
537 	 */
538 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) != 0)
539 		cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
540 
541 	if (sc->sc_object.ao_pblkaddr == 0)
542 		return;
543 
544 	if (acpi_md_ncpus() > 1) {
545 
546 		if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
547 			return;
548 	}
549 
550 	cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
551 	cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
552 
553 	cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
554 	cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
555 
556 	cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
557 	cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
558 
559 	/*
560 	 * The P_BLK length should always be 6. If it
561 	 * is not, reduce functionality accordingly.
562 	 */
563 	if (sc->sc_object.ao_pblklen < 5)
564 		cs[ACPI_STATE_C2].cs_method = 0;
565 
566 	if (sc->sc_object.ao_pblklen < 6)
567 		cs[ACPI_STATE_C3].cs_method = 0;
568 
569 	/*
570 	 * Sanity check the latency levels in FADT.
571 	 * Values above the thresholds are used to
572 	 * inform that C-states are not supported.
573 	 */
574 	CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
575 	CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
576 
577 	if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
578 		cs[ACPI_STATE_C2].cs_method = 0;
579 
580 	if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
581 		cs[ACPI_STATE_C3].cs_method = 0;
582 }
583 
584 static void
585 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
586 {
587 	const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
588 	const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
589 
590 	/*
591 	 * Disable C3 for PIIX4.
592 	 */
593 	if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
594 		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
595 		return;
596 	}
597 
598 	/*
599 	 * Check bus master arbitration. If ARB_DIS
600 	 * is not available, processor caches must be
601 	 * flushed before C3 (ACPI 4.0, section 8.2).
602 	 */
603 	if (reg != 0 && len != 0) {
604 		sc->sc_flags |= ACPICPU_FLAG_C_ARB;
605 		return;
606 	}
607 
608 	/*
609 	 * Disable C3 entirely if WBINVD is not present.
610 	 */
611 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
612 		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
613 	else {
614 		/*
615 		 * If WBINVD is present and functioning properly,
616 		 * flush all processor caches before entering C3.
617 		 */
618 		if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
619 			sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
620 		else
621 			sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
622 	}
623 }
624 
625 static int
626 acpicpu_cstate_latency(struct acpicpu_softc *sc)
627 {
628 	static const uint32_t cs_factor = 3;
629 	struct acpicpu_cstate *cs;
630 	int i;
631 
632 	for (i = cs_state_max; i > 0; i--) {
633 
634 		cs = &sc->sc_cstate[i];
635 
636 		if (__predict_false(cs->cs_method == 0))
637 			continue;
638 
639 		/*
640 		 * Choose a state if we have previously slept
641 		 * longer than the worst case latency of the
642 		 * state times an arbitrary multiplier.
643 		 */
644 		if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
645 			return i;
646 	}
647 
648 	return ACPI_STATE_C1;
649 }
650 
651 /*
652  * The main idle loop.
653  */
654 void
655 acpicpu_cstate_idle(void)
656 {
657 	struct cpu_info *ci = curcpu();
658 	struct acpicpu_softc *sc;
659 	int state;
660 
661 	acpi_md_OsDisableInterrupt();
662 
663 	if (__predict_false(ci->ci_want_resched != 0))
664 		goto out;
665 
666 	KASSERT(acpicpu_sc != NULL);
667 	KASSERT(ci->ci_acpiid < maxcpus);
668 
669 	sc = acpicpu_sc[ci->ci_acpiid];
670 
671 	if (__predict_false(sc == NULL))
672 		goto out;
673 
674 	KASSERT(ci->ci_ilevel == IPL_NONE);
675 	KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
676 
677 	if (__predict_false(sc->sc_cold != false))
678 		goto out;
679 
680 	if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
681 		goto out;
682 
683 	mutex_exit(&sc->sc_mtx);
684 	state = acpicpu_cstate_latency(sc);
685 
686 	/*
687 	 * Apply AMD C1E quirk.
688 	 */
689 	if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
690 		acpicpu_md_quirks_c1e();
691 
692 	/*
693 	 * Check for bus master activity. Note that particularly usb(4)
694 	 * causes high activity, which may prevent the use of C3 states.
695 	 */
696 	if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
697 
698 		if (acpicpu_cstate_bm_check() != false)
699 			state--;
700 
701 		if (__predict_false(sc->sc_cstate[state].cs_method == 0))
702 			state = ACPI_STATE_C1;
703 	}
704 
705 	KASSERT(state != ACPI_STATE_C0);
706 
707 	if (state != ACPI_STATE_C3) {
708 		acpicpu_cstate_idle_enter(sc, state);
709 		return;
710 	}
711 
712 	/*
713 	 * On all recent (Intel) CPUs caches are shared
714 	 * by CPUs and bus master control is required to
715 	 * keep these coherent while in C3. Flushing the
716 	 * CPU caches is only the last resort.
717 	 */
718 	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
719 		ACPI_FLUSH_CPU_CACHE();
720 
721 	/*
722 	 * Allow the bus master to request that any given
723 	 * CPU should return immediately to C0 from C3.
724 	 */
725 	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
726 		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
727 
728 	/*
729 	 * It may be necessary to disable bus master arbitration
730 	 * to ensure that bus master cycles do not occur while
731 	 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
732 	 */
733 	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
734 		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
735 
736 	acpicpu_cstate_idle_enter(sc, state);
737 
738 	/*
739 	 * Disable bus master wake and re-enable the arbiter.
740 	 */
741 	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
742 		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
743 
744 	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
745 		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
746 
747 	return;
748 
749 out:
750 	acpi_md_OsEnableInterrupt();
751 }
752 
753 static void
754 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
755 {
756 	struct acpicpu_cstate *cs = &sc->sc_cstate[state];
757 	uint32_t end, start, val;
758 
759 	start = acpitimer_read_fast(NULL);
760 
761 	switch (cs->cs_method) {
762 
763 	case ACPICPU_C_STATE_FFH:
764 	case ACPICPU_C_STATE_HALT:
765 		acpicpu_md_idle_enter(cs->cs_method, state);
766 		break;
767 
768 	case ACPICPU_C_STATE_SYSIO:
769 		(void)AcpiOsReadPort(cs->cs_addr, &val, 8);
770 		break;
771 	}
772 
773 	acpi_md_OsEnableInterrupt();
774 
775 	cs->cs_evcnt.ev_count++;
776 	end = acpitimer_read_fast(NULL);
777 	sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
778 }
779 
780 static bool
781 acpicpu_cstate_bm_check(void)
782 {
783 	uint32_t val = 0;
784 	ACPI_STATUS rv;
785 
786 	rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
787 
788 	if (ACPI_FAILURE(rv) || val == 0)
789 		return false;
790 
791 	(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
792 
793 	return true;
794 }
795