xref: /netbsd/sys/dev/ic/adwlib.c (revision bf9ec67e)
1 /* $NetBSD: adwlib.c,v 1.24 2001/11/15 09:48:04 lukem Exp $        */
2 
3 /*
4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5  *
6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * Author: Baldassare Dante Profeta <dante@mclink.it>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 /*
40  * Ported from:
41  */
42 /*
43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44  *
45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
46  * All Rights Reserved.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that redistributions of source
50  * code retain the above copyright notice and this comment without
51  * modification.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.24 2001/11/15 09:48:04 lukem Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
63 
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66 
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
70 
71 #include <dev/pci/pcidevs.h>
72 
73 #include <uvm/uvm_extern.h>
74 
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
78 
79 
80 /* Static Functions */
81 
82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
84 								u_int8_t));
85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 								ADW_DVC_CFG *));
88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
89 								ADW_DVC_CFG *));
90 
91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92      							ADW_EEPROM *));
93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
94 					                 ADW_EEPROM *));
95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
97 
98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
99 
100 static void AdwSleepMilliSecond __P((u_int32_t));
101 static void AdwDelayMicroSecond __P((u_int32_t));
102 
103 
104 /*
105  * EEPROM Configuration.
106  *
107  * All drivers should use this structure to set the default EEPROM
108  * configuration. The BIOS now uses this structure when it is built.
109  * Additional structure information can be found in adwlib.h where
110  * the structure is defined.
111  */
112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
113 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
114 	0x0000,			/* 01 cfg_msw */
115 	0xFFFF,			/* 02 disc_enable */
116 	0xFFFF,			/* 03 wdtr_able */
117 	{ 0xFFFF },		/* 04 sdtr_able */
118 	0xFFFF,			/* 05 start_motor */
119 	0xFFFF,			/* 06 tagqng_able */
120 	0xFFFF,			/* 07 bios_scan */
121 	0,			/* 08 scam_tolerant */
122 	7,			/* 09 adapter_scsi_id */
123 	0,			/*    bios_boot_delay */
124 	3,			/* 10 scsi_reset_delay */
125 	0,			/*    bios_id_lun */
126 	0,			/* 11 termination */
127 	0,			/*    reserved1 */
128 	0xFFE7,			/* 12 bios_ctrl */
129 	{ 0xFFFF },		/* 13 ultra_able */
130 	{ 0 },			/* 14 reserved2 */
131 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
132 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
133 	0,			/* 16 dvc_cntl */
134 	{ 0 },			/* 17 bug_fix */
135 	{ 0,0,0 },		/* 18-20 serial_number[3] */
136 	0,			/* 21 check_sum */
137 	{			/* 22-29 oem_name[16] */
138 	  0,0,0,0,0,0,0,0,
139 	  0,0,0,0,0,0,0,0
140 	},
141 	0,			/* 30 dvc_err_code */
142 	0,			/* 31 adv_err_code */
143 	0,			/* 32 adv_err_addr */
144 	0,			/* 33 saved_dvc_err_code */
145 	0,			/* 34 saved_adv_err_code */
146 	0			/* 35 saved_adv_err_addr */
147 };
148 
149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
150 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
151 	0x0000,			/* 01 cfg_msw */
152 	0xFFFF,			/* 02 disc_enable */
153 	0xFFFF,			/* 03 wdtr_able */
154 	{ 0x4444 },		/* 04 sdtr_speed1 */
155 	0xFFFF,			/* 05 start_motor */
156 	0xFFFF,			/* 06 tagqng_able */
157 	0xFFFF,			/* 07 bios_scan */
158 	0,			/* 08 scam_tolerant */
159 	7,			/* 09 adapter_scsi_id */
160 	0,			/*    bios_boot_delay */
161 	3,			/* 10 scsi_reset_delay */
162 	0,			/*    bios_id_lun */
163 	0,			/* 11 termination_se */
164 	0,			/*    termination_lvd */
165 	0xFFE7,			/* 12 bios_ctrl */
166 	{ 0x4444 },		/* 13 sdtr_speed2 */
167 	{ 0x4444 },		/* 14 sdtr_speed3 */
168 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
169 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
170 	0,			/* 16 dvc_cntl */
171 	{ 0x4444 },		/* 17 sdtr_speed4 */
172 	{ 0,0,0 },		/* 18-20 serial_number[3] */
173 	0,			/* 21 check_sum */
174 	{			/* 22-29 oem_name[16] */
175 	  0,0,0,0,0,0,0,0,
176 	  0,0,0,0,0,0,0,0
177 	},
178 	0,			/* 30 dvc_err_code */
179 	0,			/* 31 adv_err_code */
180 	0,			/* 32 adv_err_addr */
181 	0,			/* 33 saved_dvc_err_code */
182 	0,			/* 34 saved_adv_err_code */
183 	0,			/* 35 saved_adv_err_addr */
184 	{			/* 36-55 reserved1[16] */
185 	  0,0,0,0,0,0,0,0,0,0,
186 	  0,0,0,0,0,0,0,0,0,0
187 	},
188 	0,			/* 56 cisptr_lsw */
189 	0,			/* 57 cisprt_msw */
190 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
191 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
192 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
193 };
194 
195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
196 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
197 	0x0000,			/* 01 cfg_msw */
198 	0xFFFF,			/* 02 disc_enable */
199 	0xFFFF,			/* 03 wdtr_able */
200 	{ 0x5555 },		/* 04 sdtr_speed1 */
201 	0xFFFF,			/* 05 start_motor */
202 	0xFFFF,			/* 06 tagqng_able */
203 	0xFFFF,			/* 07 bios_scan */
204 	0,			/* 08 scam_tolerant */
205 	7,			/* 09 adapter_scsi_id */
206 	0,			/*    bios_boot_delay */
207 	3,			/* 10 scsi_reset_delay */
208 	0,			/*    bios_id_lun */
209 	0,			/* 11 termination_se */
210 	0,			/*    termination_lvd */
211 	0xFFE7,			/* 12 bios_ctrl */
212 	{ 0x5555 },		/* 13 sdtr_speed2 */
213 	{ 0x5555 },		/* 14 sdtr_speed3 */
214 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
215 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
216 	0,			/* 16 dvc_cntl */
217 	{ 0x5555 },		/* 17 sdtr_speed4 */
218 	{ 0,0,0 },		/* 18-20 serial_number[3] */
219 	0,			/* 21 check_sum */
220 	{			/* 22-29 oem_name[16] */
221 	  0,0,0,0,0,0,0,0,
222 	  0,0,0,0,0,0,0,0
223 	},
224 	0,			/* 30 dvc_err_code */
225 	0,			/* 31 adv_err_code */
226 	0,			/* 32 adv_err_addr */
227 	0,			/* 33 saved_dvc_err_code */
228 	0,			/* 34 saved_adv_err_code */
229 	0,			/* 35 saved_adv_err_addr */
230 	{			/* 36-55 reserved1[16] */
231 	  0,0,0,0,0,0,0,0,0,0,
232 	  0,0,0,0,0,0,0,0,0,0
233 	},
234 	0,			/* 56 cisptr_lsw */
235 	0,			/* 57 cisprt_msw */
236 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
237 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
238 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
239 };
240 
241 
242 /*
243  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
244  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
245  * all of this is done.
246  *
247  * For a non-fatal error return a warning code. If there are no warnings
248  * then 0 is returned.
249  *
250  * Note: Chip is stopped on entry.
251  */
252 int
253 AdwInitFromEEPROM(sc)
254 ADW_SOFTC      *sc;
255 {
256 	bus_space_tag_t iot = sc->sc_iot;
257 	bus_space_handle_t ioh = sc->sc_ioh;
258 	ADW_EEPROM		eep_config;
259 	u_int16_t		warn_code;
260 	u_int16_t		sdtr_speed = 0;
261 	u_int8_t		tid, termination;
262 	int			i, j;
263 
264 
265 	warn_code = 0;
266 
267 	/*
268 	 * Read the board's EEPROM configuration.
269 	 *
270 	 * Set default values if a bad checksum is found.
271 	 *
272 	 * XXX - Don't handle big-endian access to EEPROM yet.
273 	 */
274 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
275 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
276 
277 		/*
278 		 * Set EEPROM default values.
279 		 */
280 		switch(sc->chip_type) {
281 		case ADW_CHIP_ASC3550:
282 			eep_config = adw_3550_Default_EEPROM;
283 			break;
284 		case ADW_CHIP_ASC38C0800:
285 			eep_config = adw_38C0800_Default_EEPROM;
286 			break;
287 		case ADW_CHIP_ASC38C1600:
288 			eep_config = adw_38C1600_Default_EEPROM;
289 
290 #if 0
291 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
292 #endif
293 			if (sc->cfg.pci_slot_info != 0) {
294 				u_int8_t lsw_msb;
295 
296 				lsw_msb = eep_config.cfg_lsw >> 8;
297 				/*
298 				 * Set Function 1 EEPROM Word 0 MSB
299 				 *
300 				 * Clear the BIOS_ENABLE (bit 14) and
301 				 * INTAB (bit 11) EEPROM bits.
302 				 *
303 				 * Disable Bit 14 (BIOS_ENABLE) to fix
304 				 * SPARC Ultra 60 and old Mac system booting
305 				 * problem. The Expansion ROM must
306 				 * be disabled in Function 1 for these systems.
307 				 */
308 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
309 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
310 				/*
311 				 * Set the INTAB (bit 11) if the GPIO 0 input
312 				 * indicates the Function 1 interrupt line is
313 				 * wired to INTA.
314 				 *
315 				 * Set/Clear Bit 11 (INTAB) from
316 				 * the GPIO bit 0 input:
317 				 *   1 - Function 1 intr line wired to INT A.
318 				 *   0 - Function 1 intr line wired to INT B.
319 				 *
320 				 * Note: Adapter boards always have Function 0
321 				 * wired to INTA.
322 				 * Put all 5 GPIO bits in input mode and then
323 				 * read their input values.
324 				 */
325 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
326 							IOPB_GPIO_CNTL, 0);
327 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
328 						IOPB_GPIO_DATA) & 0x01) {
329 					/*
330 					 * Function 1 interrupt wired to INTA;
331 					 * Set EEPROM bit.
332 					 */
333 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
334 							 & 0xFF;
335 				 }
336 				 eep_config.cfg_lsw &= 0x00FF;
337 				 eep_config.cfg_lsw |= lsw_msb << 8;
338 			}
339 			break;
340 		}
341 
342 		/*
343 		 * Assume the 6 byte board serial number that was read
344 		 * from EEPROM is correct even if the EEPROM checksum
345 		 * failed.
346 		 */
347 		for (i=2, j=1; i>=0; i--, j++) {
348 		eep_config.serial_number[i] =
349 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
350 		}
351 
352 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
353 	}
354 	/*
355 	 * Set sc and sc->cfg variables from the EEPROM configuration
356 	 * that was read.
357 	 *
358 	 * This is the mapping of EEPROM fields to Adw Library fields.
359 	 */
360 	sc->wdtr_able = eep_config.wdtr_able;
361 	if (sc->chip_type == ADW_CHIP_ASC3550) {
362 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
363 		sc->ultra_able = eep_config.sdtr2.ultra_able;
364 	} else {
365 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
366 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
367 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
368 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
369 	}
370 	sc->ppr_able = 0;
371 	sc->tagqng_able = eep_config.tagqng_able;
372 	sc->cfg.disc_enable = eep_config.disc_enable;
373 	sc->max_host_qng = eep_config.max_host_qng;
374 	sc->max_dvc_qng = eep_config.max_dvc_qng;
375 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
376 	sc->start_motor = eep_config.start_motor;
377 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
378 	sc->bios_ctrl = eep_config.bios_ctrl;
379 	sc->no_scam = eep_config.scam_tolerant;
380 	sc->cfg.serial1 = eep_config.serial_number[0];
381 	sc->cfg.serial2 = eep_config.serial_number[1];
382 	sc->cfg.serial3 = eep_config.serial_number[2];
383 
384 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
385 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
386 		sc->sdtr_able = 0;
387 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
388 			if (tid == 0) {
389 				sdtr_speed = sc->sdtr_speed1;
390 			} else if (tid == 4) {
391 				sdtr_speed = sc->sdtr_speed2;
392 			} else if (tid == 8) {
393 				sdtr_speed = sc->sdtr_speed3;
394 			} else if (tid == 12) {
395 				sdtr_speed = sc->sdtr_speed4;
396 			}
397 			if (sdtr_speed & ADW_MAX_TID) {
398 				sc->sdtr_able |= (1 << tid);
399 			}
400 			sdtr_speed >>= 4;
401 		}
402 	}
403 
404 	/*
405 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
406 	 * maximum queuing (max. 63, min. 4).
407 	 */
408 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
409 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
410 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
411 	{
412 		/* If the value is zero, assume it is uninitialized. */
413 		if (eep_config.max_host_qng == 0) {
414 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
415 		} else {
416 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
417 		}
418 	}
419 
420 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
421 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
423 		/* If the value is zero, assume it is uninitialized. */
424 		if (eep_config.max_dvc_qng == 0) {
425 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
426 		} else {
427 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
428 		}
429 	}
430 
431 	/*
432 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
433 	 * set 'max_dvc_qng' to 'max_host_qng'.
434 	 */
435 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
436 		eep_config.max_dvc_qng = eep_config.max_host_qng;
437 	}
438 
439 	/*
440 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
441 	 * values based on possibly adjusted EEPROM values.
442 	 */
443 	sc->max_host_qng = eep_config.max_host_qng;
444 	sc->max_dvc_qng = eep_config.max_dvc_qng;
445 
446 
447 	/*
448 	 * If the EEPROM 'termination' field is set to automatic (0), then set
449 	 * the ADV_DVC_CFG 'termination' field to automatic also.
450 	 *
451 	 * If the termination is specified with a non-zero 'termination'
452 	 * value check that a legal value is set and set the ADV_DVC_CFG
453 	 * 'termination' field appropriately.
454 	 */
455 
456 	switch(sc->chip_type) {
457 	case ADW_CHIP_ASC3550:
458 		sc->cfg.termination = 0;	/* auto termination */
459 		switch(eep_config.termination_se) {
460 		case 3:
461 			/* Enable manual control with low on / high on. */
462 			sc->cfg.termination |= ADW_TERM_CTL_L;
463 		case 2:
464 			/* Enable manual control with low off / high on. */
465 			sc->cfg.termination |= ADW_TERM_CTL_H;
466 		case 1:
467 			/* Enable manual control with low off / high off. */
468 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
469 		case 0:
470 			break;
471 		default:
472 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
473 		}
474 		break;
475 
476 	case ADW_CHIP_ASC38C0800:
477 	case ADW_CHIP_ASC38C1600:
478 		switch(eep_config.termination_se) {
479 		case 0:
480 			/* auto termination for SE */
481 			termination = 0;
482 			break;
483 		case 1:
484 			/* Enable manual control with low off / high off. */
485 			termination = 0;
486 			break;
487 		case 2:
488 			/* Enable manual control with low off / high on. */
489 			termination = ADW_TERM_SE_HI;
490 			break;
491 		case 3:
492 			/* Enable manual control with low on / high on. */
493 			termination = ADW_TERM_SE;
494 			break;
495 		default:
496 			/*
497 			 * The EEPROM 'termination_se' field contains a
498 			 * bad value. Use automatic termination instead.
499 			 */
500 			termination = 0;
501 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
502 		}
503 
504 		switch(eep_config.termination_lvd) {
505 		case 0:
506 			/* auto termination for LVD */
507 			sc->cfg.termination = termination;
508 			break;
509 		case 1:
510 			/* Enable manual control with low off / high off. */
511 			sc->cfg.termination = termination;
512 			break;
513 		case 2:
514 			/* Enable manual control with low off / high on. */
515 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
516 			break;
517 		case 3:
518 			/* Enable manual control with low on / high on. */
519 			sc->cfg.termination = termination | ADW_TERM_LVD;
520 			break;
521 		default:
522 			/*
523 			 * The EEPROM 'termination_lvd' field contains a
524 			 * bad value. Use automatic termination instead.
525 			 */
526 			sc->cfg.termination = termination;
527 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
528 		}
529 		break;
530 	}
531 
532 	return warn_code;
533 }
534 
535 
536 /*
537  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
538  *
539  * On failure return the error code.
540  */
541 int
542 AdwInitDriver(sc)
543 ADW_SOFTC      *sc;
544 {
545 	bus_space_tag_t iot = sc->sc_iot;
546 	bus_space_handle_t ioh = sc->sc_ioh;
547 	u_int16_t	error_code;
548 	int		word;
549 	int		i;
550 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
551 								0x40-0x8F. */
552 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
553 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
554 	u_int8_t	tid;
555 
556 
557 	error_code = 0;
558 
559 	/*
560 	 * Save the RISC memory BIOS region before writing the microcode.
561 	 * The BIOS may already be loaded and using its RISC LRAM region
562 	 * so its region must be saved and restored.
563 	 *
564 	 * Note: This code makes the assumption, which is currently true,
565 	 * that a chip reset does not clear RISC LRAM.
566 	 */
567 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
568 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
569 	}
570 
571 	/*
572 	 * Save current per TID negotiated values.
573 	 */
574 	switch (sc->chip_type) {
575 	case ADW_CHIP_ASC3550:
576 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
577 
578 			u_int16_t  bios_version, major, minor;
579 
580 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
581 					ADW_MC_BIOSMEM) / 2];
582 			major = (bios_version  >> 12) & 0xF;
583 			minor = (bios_version  >> 8) & 0xF;
584 			if (major < 3 || (major == 3 && minor == 1)) {
585 			    /*
586 			     * BIOS 3.1 and earlier location of
587 			     * 'wdtr_able' variable.
588 			     */
589 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
590 			} else {
591 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
592 					    wdtr_able);
593 			}
594 		}
595 		break;
596 
597 	case ADW_CHIP_ASC38C1600:
598 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
599 		/* FALLTHROUGH */
600 	case ADW_CHIP_ASC38C0800:
601 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
602 		break;
603 	}
604 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
605 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
606 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
607 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
608 			max_cmd[tid]);
609 	}
610 
611 	/*
612 	 * Perform a RAM Built-In Self Test
613 	 */
614 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
615 		return error_code;
616 	}
617 
618 	/*
619 	 * Load the Microcode
620 	 */
621 	;
622 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
623 		return error_code;
624 	}
625 
626 	/*
627 	 * Read microcode version and date.
628 	 */
629 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
630 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
631 
632 	/*
633 	 * If the PCI Configuration Command Register "Parity Error Response
634 	 * Control" Bit was clear (0), then set the microcode variable
635 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
636 	 * to ignore DMA parity errors.
637 	 */
638 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
639 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
640 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
641 					word | CONTROL_FLAG_IGNORE_PERR);
642 	}
643 
644 	switch (sc->chip_type) {
645 	case ADW_CHIP_ASC3550:
646 		/*
647 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
648 		 * FIFO threshold of 128 bytes.
649 		 * This register is only accessible to the host.
650 		 */
651 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
652 				START_CTL_EMFU | READ_CMD_MRM);
653 		break;
654 
655 	case ADW_CHIP_ASC38C0800:
656 		/*
657 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
658 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
659 		 * cable detection and then we are able to read C_DET[3:0].
660 		 *
661 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
662 		 * Microcode Default Value' section below.
663 		 */
664 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
665 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
666 				| ADW_DIS_TERM_DRV);
667 
668 		/*
669 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
670 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
671 		 *
672 		 * Note: ASC-38C0800 FIFO threshold has been changed to
673 		 * 256 bytes.
674 		 *
675 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
676 		 */
677 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
678 						BC_THRESH_ENB | FIFO_THRESH_80B
679 						| START_CTL_TH | READ_CMD_MRM);
680 		break;
681 
682 	case ADW_CHIP_ASC38C1600:
683 		/*
684 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
685 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
686 		 * cable detection and then we are able to read C_DET[3:0].
687 		 *
688 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
689 		 * Microcode Default Value' section below.
690 		 */
691 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
692 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
693 				| ADW_DIS_TERM_DRV);
694 
695 		/*
696 		 * If the BIOS control flag AIPP (Asynchronous Information
697 		 * Phase Protection) disable bit is not set, then set the
698 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
699 		 * enable AIPP checking and encoding.
700 		 */
701 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
702 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
703 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
704 					word | CONTROL_FLAG_ENABLE_AIPP);
705 		}
706 
707 		/*
708 		 * For ASC-38C1600 use DMA_CFG0 default values:
709 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
710 		 */
711 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
712 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
713 		break;
714 	}
715 
716 	/*
717 	 * Microcode operating variables for WDTR, SDTR, and command tag
718 	 * queuing will be set in AdvInquiryHandling() based on what a
719 	 * device reports it is capable of in Inquiry byte 7.
720 	 *
721 	 * If SCSI Bus Resets have been disabled, then directly set
722 	 * SDTR and WDTR from the EEPROM configuration. This will allow
723 	 * the BIOS and warm boot to work without a SCSI bus hang on
724 	 * the Inquiry caused by host and target mismatched DTR values.
725 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
726 	 * be assumed to be in Asynchronous, Narrow mode.
727 	 */
728 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
729 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
730 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
731 	}
732 
733 	/*
734 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
735 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
736 	 * bitmask. These values determine the maximum SDTR speed negotiated
737 	 * with a device.
738 	 *
739 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
740 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
741 	 * without determining here whether the device supports SDTR.
742 	 */
743 	switch (sc->chip_type) {
744 	case ADW_CHIP_ASC3550:
745 		word = 0;
746 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
747 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
748 				/* Set Ultra speed for TID 'tid'. */
749 				word |= (0x3 << (4 * (tid % 4)));
750 			} else {
751 				/* Set Fast speed for TID 'tid'. */
752 				word |= (0x2 << (4 * (tid % 4)));
753 			}
754 			/* Check if done with sdtr_speed1. */
755 			if (tid == 3) {
756 				ADW_WRITE_WORD_LRAM(iot, ioh,
757 						ADW_MC_SDTR_SPEED1, word);
758 				word = 0;
759 			/* Check if done with sdtr_speed2. */
760 			} else if (tid == 7) {
761 				ADW_WRITE_WORD_LRAM(iot, ioh,
762 						ADW_MC_SDTR_SPEED2, word);
763 				word = 0;
764 			/* Check if done with sdtr_speed3. */
765 			} else if (tid == 11) {
766 				ADW_WRITE_WORD_LRAM(iot, ioh,
767 						ADW_MC_SDTR_SPEED3, word);
768 				word = 0;
769 			/* Check if done with sdtr_speed4. */
770 			} else if (tid == 15) {
771 				ADW_WRITE_WORD_LRAM(iot, ioh,
772 						ADW_MC_SDTR_SPEED4, word);
773 				/* End of loop. */
774 			}
775 		}
776 
777 		/*
778 		 * Set microcode operating variable for the
779 		 * disconnect per TID bitmask.
780 		 */
781 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
782 							sc->cfg.disc_enable);
783 		break;
784 
785 	case ADW_CHIP_ASC38C0800:
786 		/* FALLTHROUGH */
787 	case ADW_CHIP_ASC38C1600:
788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
789 							sc->cfg.disc_enable);
790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
791 							sc->sdtr_speed1);
792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
793 							sc->sdtr_speed2);
794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
795 							sc->sdtr_speed3);
796 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
797 							sc->sdtr_speed4);
798 		break;
799 	}
800 
801 
802 	/*
803 	 * Set SCSI_CFG0 Microcode Default Value.
804 	 *
805 	 * The microcode will set the SCSI_CFG0 register using this value
806 	 * after it is started below.
807 	 */
808 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
809 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
810 		ADW_OUR_ID_EN | sc->chip_scsi_id);
811 
812 
813 	switch(sc->chip_type) {
814 	case ADW_CHIP_ASC3550:
815 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
816 		break;
817 
818 	case ADW_CHIP_ASC38C0800:
819 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
820 		break;
821 
822 	case ADW_CHIP_ASC38C1600:
823 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
824 		break;
825 	}
826 	if(error_code) {
827 		return error_code;
828 	}
829 
830 	/*
831 	 * Set SEL_MASK Microcode Default Value
832 	 *
833 	 * The microcode will set the SEL_MASK register using this value
834 	 * after it is started below.
835 	 */
836 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
837 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
838 
839 	/*
840 	 * Create and Initialize Host->RISC Carrier lists
841 	 */
842 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
843 						sc->sc_control->carriers);
844 
845 	/*
846 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
847 	 */
848 
849 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
850 		return ADW_IERR_NO_CARRIER;
851 	}
852 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
853 			ASC_GET_CARRP(sc->icq_sp->next_ba));
854 
855 	/*
856 	 * The first command issued will be placed in the stopper carrier.
857 	 */
858 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
859 
860 	/*
861 	 * Set RISC ICQ physical address start value.
862 	 */
863 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
864 
865 	/*
866 	 * Initialize the COMMA register to the same value otherwise
867 	 * the RISC will prematurely detect a command is available.
868 	 */
869 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
870 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
871 						le32toh(sc->icq_sp->carr_ba));
872 	}
873 
874 	/*
875 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
876 	 */
877 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
878 		return ADW_IERR_NO_CARRIER;
879 	}
880 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
881 			ASC_GET_CARRP(sc->irq_sp->next_ba));
882 
883 	/*
884 	 * The first command completed by the RISC will be placed in
885 	 * the stopper.
886 	 *
887 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
888 	 * completed the RISC will set the ASC_RQ_DONE bit.
889 	 */
890 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
891 
892 	/*
893 	 * Set RISC IRQ physical address start value.
894 	 */
895 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
896 	sc->carr_pending_cnt = 0;
897 
898 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
899 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
900 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
901 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
902 
903 	/* finally, finally, gentlemen, start your engine */
904 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
905 
906 	/*
907 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
908 	 * Resets should be performed. The RISC has to be running
909 	 * to issue a SCSI Bus Reset.
910 	 */
911 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
912 	{
913 		/*
914 		 * If the BIOS Signature is present in memory, restore the
915 		 * BIOS Handshake Configuration Table and do not perform
916 		 * a SCSI Bus Reset.
917 		 */
918 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
919 				0x55AA) {
920 			/*
921 			 * Restore per TID negotiated values.
922 			 */
923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
924 					wdtr_able);
925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
926 					sdtr_able);
927 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
928 					tagqng_able);
929 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
930 				ADW_WRITE_BYTE_LRAM(iot, ioh,
931 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
932 						max_cmd[tid]);
933 			}
934 		} else {
935 			if (AdwResetCCB(sc) != ADW_TRUE) {
936 				error_code = ADW_WARN_BUSRESET_ERROR;
937 			}
938 		}
939 	}
940 
941 	return error_code;
942 }
943 
944 
945 int
946 AdwRamSelfTest(iot, ioh, chip_type)
947 	bus_space_tag_t iot;
948 	bus_space_handle_t ioh;
949 	u_int8_t chip_type;
950 {
951 	int		i;
952 	u_int8_t	byte;
953 
954 
955 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
956 	    (chip_type == ADW_CHIP_ASC38C1600)) {
957 		/*
958 		 * RAM BIST (RAM Built-In Self Test)
959 		 *
960 		 * Address : I/O base + offset 0x38h register (byte).
961 		 * Function: Bit 7-6(RW) : RAM mode
962 		 *			    Normal Mode   : 0x00
963 		 *			    Pre-test Mode : 0x40
964 		 *			    RAM Test Mode : 0x80
965 		 *	     Bit 5	 : unused
966 		 *	     Bit 4(RO)   : Done bit
967 		 *	     Bit 3-0(RO) : Status
968 		 *			    Host Error    : 0x08
969 		 *			    Int_RAM Error : 0x04
970 		 *			    RISC Error    : 0x02
971 		 *			    SCSI Error    : 0x01
972 		 *			    No Error	  : 0x00
973 		 *
974 		 * Note: RAM BIST code should be put right here, before loading
975 		 * the microcode and after saving the RISC memory BIOS region.
976 		 */
977 
978 		/*
979 		 * LRAM Pre-test
980 		 *
981 		 * Write PRE_TEST_MODE (0x40) to register and wait for
982 		 * 10 milliseconds.
983 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
984 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
985 		 * If cannot reset to NORMAL_MODE, return an error too.
986 		 */
987 		for (i = 0; i < 2; i++) {
988 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
989 					PRE_TEST_MODE);
990 			 /* Wait for 10ms before reading back. */
991 			AdwSleepMilliSecond(10);
992 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
993 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
994 					PRE_TEST_VALUE) {
995 				return ADW_IERR_BIST_PRE_TEST;
996 			}
997 
998 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
999 								NORMAL_MODE);
1000 			/* Wait for 10ms before reading back. */
1001 			AdwSleepMilliSecond(10);
1002 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1003 			    != NORMAL_VALUE) {
1004 				return ADW_IERR_BIST_PRE_TEST;
1005 			}
1006 		}
1007 
1008 		/*
1009 		 * LRAM Test - It takes about 1.5 ms to run through the test.
1010 		 *
1011 		 * Write RAM_TEST_MODE (0x80) to register and wait for
1012 		 * 10 milliseconds.
1013 		 * If Done bit not set or Status not 0, save register byte,
1014 		 * set the err_code, and return an error.
1015 		 */
1016 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1017 		/* Wait for 10ms before checking status. */
1018 		AdwSleepMilliSecond(10);
1019 
1020 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1021 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1022 			/* Get here if Done bit not set or Status not 0. */
1023 			return ADW_IERR_BIST_RAM_TEST;
1024 		}
1025 
1026 		/* We need to reset back to normal mode after LRAM test passes*/
1027 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 
1034 int
1035 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1036 	bus_space_tag_t iot;
1037 	bus_space_handle_t ioh;
1038 	u_int16_t *bios_mem;
1039 	u_int8_t chip_type;
1040 {
1041 	u_int8_t	*mcode_data;
1042 	u_int32_t	 mcode_chksum;
1043 	u_int16_t	 mcode_size;
1044 	u_int32_t	sum;
1045 	u_int16_t	code_sum;
1046 	int		begin_addr;
1047 	int		end_addr;
1048 	int		word;
1049 	int		adw_memsize;
1050 	int		adw_mcode_expanded_size;
1051 	int		i, j;
1052 
1053 
1054 	switch(chip_type) {
1055 	case ADW_CHIP_ASC3550:
1056 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1057 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1058 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1059 		adw_memsize = ADW_3550_MEMSIZE;
1060 		break;
1061 
1062 	case ADW_CHIP_ASC38C0800:
1063 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1064 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1065 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1066 		adw_memsize = ADW_38C0800_MEMSIZE;
1067 		break;
1068 
1069 	case ADW_CHIP_ASC38C1600:
1070 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1071 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1072 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1073 		adw_memsize = ADW_38C1600_MEMSIZE;
1074 		break;
1075 	}
1076 
1077 	/*
1078 	 * Write the microcode image to RISC memory starting at address 0.
1079 	 */
1080 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1081 
1082 	/* Assume the following compressed format of the microcode buffer:
1083 	 *
1084 	 *  254 word (508 byte) table indexed by byte code followed
1085 	 *  by the following byte codes:
1086 	 *
1087 	 *    1-Byte Code:
1088 	 *	00: Emit word 0 in table.
1089 	 *	01: Emit word 1 in table.
1090 	 *	.
1091 	 *	FD: Emit word 253 in table.
1092 	 *
1093 	 *    Multi-Byte Code:
1094 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1095 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1096 	 */
1097 	word = 0;
1098 	for (i = 253 * 2; i < mcode_size; i++) {
1099 		if (mcode_data[i] == 0xff) {
1100 			for (j = 0; j < mcode_data[i + 1]; j++) {
1101 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1102 				  (((u_int16_t)mcode_data[i + 3] << 8) |
1103 				  mcode_data[i + 2]));
1104 				word++;
1105 			}
1106 			i += 3;
1107 		} else if (mcode_data[i] == 0xfe) {
1108 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1109 			    (((u_int16_t)mcode_data[i + 2] << 8) |
1110 			    mcode_data[i + 1]));
1111 			i += 2;
1112 			word++;
1113 		} else {
1114 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1115 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1116 			 mcode_data[mcode_data[i] * 2]));
1117 			word++;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Set 'word' for later use to clear the rest of memory and save
1123 	 * the expanded mcode size.
1124 	 */
1125 	word *= 2;
1126 	adw_mcode_expanded_size = word;
1127 
1128 	/*
1129 	 * Clear the rest of the Internal RAM.
1130 	 */
1131 	for (; word < adw_memsize; word += 2) {
1132 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1133 	}
1134 
1135 	/*
1136 	 * Verify the microcode checksum.
1137 	 */
1138 	sum = 0;
1139 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1140 
1141 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1142 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1143 	}
1144 
1145 	if (sum != mcode_chksum) {
1146 		return ADW_IERR_MCODE_CHKSUM;
1147 	}
1148 
1149 	/*
1150 	 * Restore the RISC memory BIOS region.
1151 	 */
1152 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1153 		if(chip_type == ADW_CHIP_ASC3550) {
1154 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1155 								bios_mem[i]);
1156 		} else {
1157 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1158 								bios_mem[i]);
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * Calculate and write the microcode code checksum to the microcode
1164 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1165 	 */
1166 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1167 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1168 	code_sum = 0;
1169 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1170 	for (word = begin_addr; word < end_addr; word += 2) {
1171 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1172 	}
1173 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1174 
1175 	/*
1176 	 * Set the chip type.
1177 	 */
1178 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 int
1185 AdwASC3550Cabling(iot, ioh, cfg)
1186 	bus_space_tag_t iot;
1187 	bus_space_handle_t ioh;
1188 	ADW_DVC_CFG *cfg;
1189 {
1190 	u_int16_t	scsi_cfg1;
1191 
1192 
1193 	/*
1194 	 * Determine SCSI_CFG1 Microcode Default Value.
1195 	 *
1196 	 * The microcode will set the SCSI_CFG1 register using this value
1197 	 * after it is started below.
1198 	 */
1199 
1200 	/* Read current SCSI_CFG1 Register value. */
1201 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1202 
1203 	/*
1204 	 * If all three connectors are in use in ASC3550, return an error.
1205 	 */
1206 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1207 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1208 		return ADW_IERR_ILLEGAL_CONNECTION;
1209 	}
1210 
1211 	/*
1212 	 * If the cable is reversed all of the SCSI_CTRL register signals
1213 	 * will be set. Check for and return an error if this condition is
1214 	 * found.
1215 	 */
1216 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1217 		return ADW_IERR_REVERSED_CABLE;
1218 	}
1219 
1220 	/*
1221 	 * If this is a differential board and a single-ended device
1222 	 * is attached to one of the connectors, return an error.
1223 	 */
1224 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1225 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1226 		return ADW_IERR_SINGLE_END_DEVICE;
1227 	}
1228 
1229 	/*
1230 	 * If automatic termination control is enabled, then set the
1231 	 * termination value based on a table listed in a_condor.h.
1232 	 *
1233 	 * If manual termination was specified with an EEPROM setting
1234 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
1235 	 * is ready to be 'ored' into SCSI_CFG1.
1236 	 */
1237 	if (cfg->termination == 0) {
1238 		/*
1239 		 * The software always controls termination by setting
1240 		 * TERM_CTL_SEL.
1241 		 * If TERM_CTL_SEL were set to 0, the hardware would set
1242 		 * termination.
1243 		 */
1244 		cfg->termination |= ADW_TERM_CTL_SEL;
1245 
1246 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1247 			/* TERM_CTL_H: on, TERM_CTL_L: on */
1248 			case 0x3: case 0x7: case 0xB:
1249 			case 0xD: case 0xE: case 0xF:
1250 				cfg->termination |=
1251 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1252 				break;
1253 
1254 			/* TERM_CTL_H: on, TERM_CTL_L: off */
1255 			case 0x1: case 0x5: case 0x9:
1256 			case 0xA: case 0xC:
1257 				cfg->termination |= ADW_TERM_CTL_H;
1258 				break;
1259 
1260 			/* TERM_CTL_H: off, TERM_CTL_L: off */
1261 			case 0x2: case 0x6:
1262 				break;
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1268 	 */
1269 	scsi_cfg1 &= ~ADW_TERM_CTL;
1270 
1271 	/*
1272 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1273 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1274 	 * referenced, because the hardware internally inverts
1275 	 * the Termination High and Low bits if TERM_POL is set.
1276 	 */
1277 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1278 
1279 	/*
1280 	 * Set SCSI_CFG1 Microcode Default Value
1281 	 *
1282 	 * Set filter value and possibly modified termination control
1283 	 * bits in the Microcode SCSI_CFG1 Register Value.
1284 	 *
1285 	 * The microcode will set the SCSI_CFG1 register using this value
1286 	 * after it is started below.
1287 	 */
1288 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1289 						ADW_FLTR_DISABLE | scsi_cfg1);
1290 
1291 	/*
1292 	 * Set MEM_CFG Microcode Default Value
1293 	 *
1294 	 * The microcode will set the MEM_CFG register using this value
1295 	 * after it is started below.
1296 	 *
1297 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1298 	 * are defined.
1299 	 *
1300 	 * ASC-3550 has 8KB internal memory.
1301 	 */
1302 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1303 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1304 
1305 	return 0;
1306 }
1307 
1308 
1309 int
1310 AdwASC38C0800Cabling(iot, ioh, cfg)
1311 	bus_space_tag_t iot;
1312 	bus_space_handle_t ioh;
1313 	ADW_DVC_CFG *cfg;
1314 {
1315 	u_int16_t	scsi_cfg1;
1316 
1317 
1318 	/*
1319 	 * Determine SCSI_CFG1 Microcode Default Value.
1320 	 *
1321 	 * The microcode will set the SCSI_CFG1 register using this value
1322 	 * after it is started below.
1323 	 */
1324 
1325 	/* Read current SCSI_CFG1 Register value. */
1326 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1327 
1328 	/*
1329 	 * If the cable is reversed all of the SCSI_CTRL register signals
1330 	 * will be set. Check for and return an error if this condition is
1331 	 * found.
1332 	 */
1333 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1334 		return ADW_IERR_REVERSED_CABLE;
1335 	}
1336 
1337 	/*
1338 	 * All kind of combinations of devices attached to one of four
1339 	 * connectors are acceptable except HVD device attached.
1340 	 * For example, LVD device can be attached to SE connector while
1341 	 * SE device attached to LVD connector.
1342 	 * If LVD device attached to SE connector, it only runs up to
1343 	 * Ultra speed.
1344 	 *
1345 	 * If an HVD device is attached to one of LVD connectors, return
1346 	 * an error.
1347 	 * However, there is no way to detect HVD device attached to
1348 	 * SE connectors.
1349 	 */
1350 	if (scsi_cfg1 & ADW_HVD) {
1351 		return ADW_IERR_HVD_DEVICE;
1352 	}
1353 
1354 	/*
1355 	 * If either SE or LVD automatic termination control is enabled, then
1356 	 * set the termination value based on a table listed in a_condor.h.
1357 	 *
1358 	 * If manual termination was specified with an EEPROM setting then
1359 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1360 	 * to be 'ored' into SCSI_CFG1.
1361 	 */
1362 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1363 		/* SE automatic termination control is enabled. */
1364 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1365 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1366 			case 0x1: case 0x2: case 0x3:
1367 				cfg->termination |= ADW_TERM_SE;
1368 				break;
1369 
1370 			/* TERM_SE_HI: on, TERM_SE_LO: off */
1371 			case 0x0:
1372 				cfg->termination |= ADW_TERM_SE_HI;
1373 				break;
1374 		}
1375 	}
1376 
1377 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
1378 		/* LVD automatic termination control is enabled. */
1379 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
1380 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
1381 			case 0x4: case 0x8: case 0xC:
1382 				cfg->termination |= ADW_TERM_LVD;
1383 				break;
1384 
1385 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
1386 			case 0x0:
1387 				break;
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Clear any set TERM_SE and TERM_LVD bits.
1393 	 */
1394 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1395 
1396 	/*
1397 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1398 	 */
1399 	scsi_cfg1 |= (~cfg->termination & 0xF0);
1400 
1401 	/*
1402 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1403 	 * HVD/LVD/SE bits and set possibly modified termination control bits
1404 	 * in the Microcode SCSI_CFG1 Register Value.
1405 	 */
1406 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1407 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1408 
1409 	/*
1410 	 * Set SCSI_CFG1 Microcode Default Value
1411 	 *
1412 	 * Set possibly modified termination control and reset DIS_TERM_DRV
1413 	 * bits in the Microcode SCSI_CFG1 Register Value.
1414 	 *
1415 	 * The microcode will set the SCSI_CFG1 register using this value
1416 	 * after it is started below.
1417 	 */
1418 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1419 
1420 	/*
1421 	 * Set MEM_CFG Microcode Default Value
1422 	 *
1423 	 * The microcode will set the MEM_CFG register using this value
1424 	 * after it is started below.
1425 	 *
1426 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1427 	 * are defined.
1428 	 *
1429 	 * ASC-38C0800 has 16KB internal memory.
1430 	 */
1431 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1432 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1433 
1434 	return 0;
1435 }
1436 
1437 
1438 int
1439 AdwASC38C1600Cabling(iot, ioh, cfg)
1440 	bus_space_tag_t iot;
1441 	bus_space_handle_t ioh;
1442 	ADW_DVC_CFG *cfg;
1443 {
1444 	u_int16_t	scsi_cfg1;
1445 
1446 
1447 	/*
1448 	 * Determine SCSI_CFG1 Microcode Default Value.
1449 	 *
1450 	 * The microcode will set the SCSI_CFG1 register using this value
1451 	 * after it is started below.
1452 	 * Each ASC-38C1600 function has only two cable detect bits.
1453 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1454 	 */
1455 
1456 	/* Read current SCSI_CFG1 Register value. */
1457 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1458 
1459 	/*
1460 	 * If the cable is reversed all of the SCSI_CTRL register signals
1461 	 * will be set. Check for and return an error if this condition is
1462 	 * found.
1463 	 */
1464 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1465 		return ADW_IERR_REVERSED_CABLE;
1466 	}
1467 
1468 	/*
1469 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
1470 	 * can not be connected to either connector. An LVD device or SE device
1471 	 * may be connected to either connecor. If an SE device is connected,
1472 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
1473 	 *
1474 	 * If an HVD device is attached, return an error.
1475 	 */
1476 	if (scsi_cfg1 & ADW_HVD) {
1477 		return ADW_IERR_HVD_DEVICE;
1478 	}
1479 
1480 	/*
1481 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
1482 	 * termination because there are two connectors for each function.
1483 	 * Each function may use either LVD or SE mode.
1484 	 * Corresponding the SE automatic termination control EEPROM bits are
1485 	 * used for each function.
1486 	 * Each function has its own EEPROM. If SE automatic control is enabled
1487 	 * for the function, then set the termination value based on a table
1488 	 * listed in adwlib.h.
1489 	 *
1490 	 * If manual termination is specified in the EEPROM for the function,
1491 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1492 	 * ready to be 'ored' into SCSI_CFG1.
1493 	 */
1494 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1495 		/* SE automatic termination control is enabled. */
1496 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1497 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1498 			case 0x1: case 0x2: case 0x3:
1499 				cfg->termination |= ADW_TERM_SE;
1500 				break;
1501 
1502 			case 0x0:
1503 #if 0
1504 	/* !!!!TODO!!!! */
1505 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1506 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1507 				}
1508 				else
1509 #endif
1510 				{
1511 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1512 					cfg->termination |= ADW_TERM_SE_HI;
1513 				}
1514 				break;
1515 			}
1516 	}
1517 
1518 	/*
1519 	 * Clear any set TERM_SE bits.
1520 	 */
1521 	scsi_cfg1 &= ~ADW_TERM_SE;
1522 
1523 	/*
1524 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1525 	 */
1526 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1527 
1528 	/*
1529 	 * Clear Big Endian and Terminator Polarity bits and set possibly
1530 	 * modified termination control bits in the Microcode SCSI_CFG1
1531 	 * Register Value.
1532 	 */
1533 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1534 
1535 	/*
1536 	 * Set SCSI_CFG1 Microcode Default Value
1537 	 *
1538 	 * Set possibly modified termination control bits in the Microcode
1539 	 * SCSI_CFG1 Register Value.
1540 	 *
1541 	 * The microcode will set the SCSI_CFG1 register using this value
1542 	 * after it is started below.
1543 	 */
1544 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1545 
1546 	/*
1547 	 * Set MEM_CFG Microcode Default Value
1548 	 *
1549 	 * The microcode will set the MEM_CFG register using this value
1550 	 * after it is started below.
1551 	 *
1552 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1553 	 * are defined.
1554 	 *
1555 	 * ASC-38C1600 has 32KB internal memory.
1556 	 */
1557 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1558 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1559 
1560 	return 0;
1561 }
1562 
1563 
1564 /*
1565  * Read EEPROM configuration into the specified buffer.
1566  *
1567  * Return a checksum based on the EEPROM configuration read.
1568  */
1569 static u_int16_t
1570 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1571 	bus_space_tag_t		iot;
1572 	bus_space_handle_t	ioh;
1573 	ADW_EEPROM		*cfg_buf;
1574 {
1575 	u_int16_t	       wval, chksum;
1576 	u_int16_t	       *wbuf;
1577 	int		    eep_addr;
1578 
1579 
1580 	wbuf = (u_int16_t *) cfg_buf;
1581 	chksum = 0;
1582 
1583 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1584 		eep_addr < ASC_EEP_DVC_CFG_END;
1585 		eep_addr++, wbuf++) {
1586 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
1587 		chksum += wval;
1588 		*wbuf = wval;
1589 	}
1590 
1591 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1592 	wbuf++;
1593 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1594 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
1595 			eep_addr++, wbuf++) {
1596 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1597 	}
1598 
1599 	return chksum;
1600 }
1601 
1602 
1603 /*
1604  * Read the EEPROM from specified location
1605  */
1606 static u_int16_t
1607 AdwReadEEPWord(iot, ioh, eep_word_addr)
1608 	bus_space_tag_t		iot;
1609 	bus_space_handle_t	ioh;
1610 	int			eep_word_addr;
1611 {
1612 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1613 		ASC_EEP_CMD_READ | eep_word_addr);
1614 	AdwWaitEEPCmd(iot, ioh);
1615 
1616 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1617 }
1618 
1619 
1620 /*
1621  * Wait for EEPROM command to complete
1622  */
1623 static void
1624 AdwWaitEEPCmd(iot, ioh)
1625 	bus_space_tag_t		iot;
1626 	bus_space_handle_t	ioh;
1627 {
1628 	int eep_delay_ms;
1629 
1630 
1631 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1632 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1633 				ASC_EEP_CMD_DONE) {
1634 			break;
1635 		}
1636 		AdwSleepMilliSecond(1);
1637 	}
1638 
1639 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1640 }
1641 
1642 
1643 /*
1644  * Write the EEPROM from 'cfg_buf'.
1645  */
1646 static void
1647 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1648 	bus_space_tag_t		iot;
1649 	bus_space_handle_t	ioh;
1650 	ADW_EEPROM		*cfg_buf;
1651 {
1652 	u_int16_t *wbuf;
1653 	u_int16_t addr, chksum;
1654 
1655 
1656 	wbuf = (u_int16_t *) cfg_buf;
1657 	chksum = 0;
1658 
1659 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1660 	AdwWaitEEPCmd(iot, ioh);
1661 
1662 	/*
1663 	 * Write EEPROM from word 0 to word 20
1664 	 */
1665 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
1666 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1667 		chksum += *wbuf;
1668 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1669 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1670 				ASC_EEP_CMD_WRITE | addr);
1671 		AdwWaitEEPCmd(iot, ioh);
1672 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1673 	}
1674 
1675 	/*
1676 	 * Write EEPROM checksum at word 21
1677 	 */
1678 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1679 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1680 			ASC_EEP_CMD_WRITE | addr);
1681 	AdwWaitEEPCmd(iot, ioh);
1682 	wbuf++;        /* skip over check_sum */
1683 
1684 	/*
1685 	 * Write EEPROM OEM name at words 22 to 29
1686 	 */
1687 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
1688 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1689 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1690 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1691 				ASC_EEP_CMD_WRITE | addr);
1692 		AdwWaitEEPCmd(iot, ioh);
1693 	}
1694 
1695 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1696 			ASC_EEP_CMD_WRITE_DISABLE);
1697 	AdwWaitEEPCmd(iot, ioh);
1698 
1699 	return;
1700 }
1701 
1702 
1703 /*
1704  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1705  *
1706  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1707  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
1708  *   RISC to notify it a new command is ready to be executed.
1709  *
1710  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1711  * set to SCSI_MAX_RETRY.
1712  *
1713  * Return:
1714  *      ADW_SUCCESS(1) - The request was successfully queued.
1715  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
1716  *                       request completes.
1717  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
1718  *                       host IC error.
1719  */
1720 int
1721 AdwExeScsiQueue(sc, scsiq)
1722 ADW_SOFTC	*sc;
1723 ADW_SCSI_REQ_Q	*scsiq;
1724 {
1725 	bus_space_tag_t iot = sc->sc_iot;
1726 	bus_space_handle_t ioh = sc->sc_ioh;
1727 	ADW_CCB		*ccb;
1728 	long		req_size;
1729 	u_int32_t	req_paddr;
1730 	ADW_CARRIER	*new_carrp;
1731 
1732 	/*
1733 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1734 	 */
1735 	if (scsiq->target_id > ADW_MAX_TID) {
1736 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1737 		scsiq->done_status = QD_WITH_ERROR;
1738 		return ADW_ERROR;
1739 	}
1740 
1741 	/*
1742 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1743 	 */
1744 
1745 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1746 
1747 	/*
1748 	 * Allocate a carrier and initialize fields.
1749 	 */
1750 	if ((new_carrp = sc->carr_freelist) == NULL) {
1751 		return ADW_BUSY;
1752 	}
1753 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1754 			ASC_GET_CARRP(new_carrp->next_ba));
1755 	sc->carr_pending_cnt++;
1756 
1757 	/*
1758 	 * Set the carrier to be a stopper by setting 'next_ba'
1759 	 * to the stopper value. The current stopper will be changed
1760 	 * below to point to the new stopper.
1761 	 */
1762 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1763 
1764 	req_size = sizeof(ADW_SCSI_REQ_Q);
1765 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1766 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1767 
1768 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1769 	scsiq->scsiq_rptr = htole32(req_paddr);
1770 
1771 	/*
1772 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1773 	 * order during initialization.
1774 	 */
1775 	scsiq->carr_ba = sc->icq_sp->carr_ba;
1776 	scsiq->carr_va = sc->icq_sp->carr_ba;
1777 
1778 	/*
1779 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1780 	 * the microcode. The newly allocated stopper will become the new
1781 	 * stopper.
1782 	 */
1783 	sc->icq_sp->areq_ba = htole32(req_paddr);
1784 
1785 	/*
1786 	 * Set the 'next_ba' pointer for the old stopper to be the
1787 	 * physical address of the new stopper. The RISC can only
1788 	 * follow physical addresses.
1789 	 */
1790 	sc->icq_sp->next_ba = new_carrp->carr_ba;
1791 
1792 #if ADW_DEBUG
1793 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1794 			sc->icq_sp->carr_id,
1795 			sc->icq_sp->carr_ba,
1796 			sc->icq_sp->areq_ba,
1797 			sc->icq_sp->next_ba);
1798 #endif
1799 	/*
1800 	 * Set the host adapter stopper pointer to point to the new carrier.
1801 	 */
1802 	sc->icq_sp = new_carrp;
1803 
1804 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
1805 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
1806 		/*
1807 		 * Tickle the RISC to tell it to read its Command Queue Head
1808 		 * pointer.
1809 		 */
1810 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1811 		if (sc->chip_type == ADW_CHIP_ASC3550) {
1812 			/*
1813 			 * Clear the tickle value. In the ASC-3550 the RISC flag
1814 			 * command 'clr_tickle_a' does not work unless the host
1815 			 * value is cleared.
1816 			 */
1817 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1818 					ADW_TICKLE_NOP);
1819 		}
1820 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1821 		/*
1822 		 * Notify the RISC a carrier is ready by writing the physical
1823 		 * address of the new carrier stopper to the COMMA register.
1824 		 */
1825 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1826 				le32toh(new_carrp->carr_ba));
1827 	}
1828 
1829 	/*
1830 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1831 	 */
1832 
1833 	return ADW_SUCCESS;
1834 }
1835 
1836 
1837 void
1838 AdwResetChip(iot, ioh)
1839 	bus_space_tag_t iot;
1840 	bus_space_handle_t ioh;
1841 {
1842 
1843 	/*
1844 	 * Reset Chip.
1845 	 */
1846 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1847 			ADW_CTRL_REG_CMD_RESET);
1848 	AdwSleepMilliSecond(100);
1849 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1850 			ADW_CTRL_REG_CMD_WR_IO_REG);
1851 }
1852 
1853 
1854 /*
1855  * Reset SCSI Bus and purge all outstanding requests.
1856  *
1857  * Return Value:
1858  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
1859  *      ADW_FALSE(0) -  Microcode command failed.
1860  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1861  *                      may be hung which requires driver recovery.
1862  */
1863 int
1864 AdwResetCCB(sc)
1865 ADW_SOFTC	*sc;
1866 {
1867 	int	    status;
1868 
1869 	/*
1870 	 * Send the SCSI Bus Reset idle start idle command which asserts
1871 	 * the SCSI Bus Reset signal.
1872 	 */
1873 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1874 	if (status != ADW_TRUE) {
1875 		return status;
1876 	}
1877 
1878 	/*
1879 	 * Delay for the specified SCSI Bus Reset hold time.
1880 	 *
1881 	 * The hold time delay is done on the host because the RISC has no
1882 	 * microsecond accurate timer.
1883 	 */
1884 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1885 
1886 	/*
1887 	 * Send the SCSI Bus Reset end idle command which de-asserts
1888 	 * the SCSI Bus Reset signal and purges any pending requests.
1889 	 */
1890 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1891 	if (status != ADW_TRUE) {
1892 		return status;
1893 	}
1894 
1895 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1896 
1897 	return status;
1898 }
1899 
1900 
1901 /*
1902  * Reset chip and SCSI Bus.
1903  *
1904  * Return Value:
1905  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
1906  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
1907  */
1908 int
1909 AdwResetSCSIBus(sc)
1910 ADW_SOFTC	*sc;
1911 {
1912 	bus_space_tag_t iot = sc->sc_iot;
1913 	bus_space_handle_t ioh = sc->sc_ioh;
1914 	int		status;
1915 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
1916 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
1917 	u_int16_t	bios_sig;
1918 
1919 
1920 	/*
1921 	 * Save current per TID negotiated values.
1922 	 */
1923 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1924 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1925 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1926 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1927 	}
1928 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1929 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1930 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1931 			max_cmd[tid]);
1932 	}
1933 
1934 	/*
1935 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1936 	 * by clearing the BIOS signature word.
1937 	 * The initialization functions assumes a SCSI Bus Reset is not
1938 	 * needed if the BIOS signature word is present.
1939 	 */
1940 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1941 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1942 
1943 	/*
1944 	 * Stop chip and reset it.
1945 	 */
1946 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1947 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1948 			ADW_CTRL_REG_CMD_RESET);
1949 	AdwSleepMilliSecond(100);
1950 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1951 			ADW_CTRL_REG_CMD_WR_IO_REG);
1952 
1953 	/*
1954 	 * Reset Adv Library error code, if any, and try
1955 	 * re-initializing the chip.
1956 	 * Then translate initialization return value to status value.
1957 	 */
1958 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1959 
1960 	/*
1961 	 * Restore the BIOS signature word.
1962 	 */
1963 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1964 
1965 	/*
1966 	 * Restore per TID negotiated values.
1967 	 */
1968 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1969 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1970 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1971 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1972 	}
1973 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1974 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1975 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1976 			max_cmd[tid]);
1977 	}
1978 
1979 	return status;
1980 }
1981 
1982 
1983 /*
1984  * Adv Library Interrupt Service Routine
1985  *
1986  *  This function is called by a driver's interrupt service routine.
1987  *  The function disables and re-enables interrupts.
1988  *
1989  *  When a microcode idle command is completed, the ADV_DVC_VAR
1990  *  'idle_cmd_done' field is set to ADW_TRUE.
1991  *
1992  *  Note: AdwISR() can be called when interrupts are disabled or even
1993  *  when there is no hardware interrupt condition present. It will
1994  *  always check for completed idle commands and microcode requests.
1995  *  This is an important feature that shouldn't be changed because it
1996  *  allows commands to be completed from polling mode loops.
1997  *
1998  * Return:
1999  *   ADW_TRUE(1) - interrupt was pending
2000  *   ADW_FALSE(0) - no interrupt was pending
2001  */
2002 int
2003 AdwISR(sc)
2004 ADW_SOFTC	*sc;
2005 {
2006 	bus_space_tag_t iot = sc->sc_iot;
2007 	bus_space_handle_t ioh = sc->sc_ioh;
2008 	u_int8_t	int_stat;
2009 	u_int16_t	target_bit;
2010 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
2011 	u_int32_t	irq_next_pa;
2012 	ADW_SCSI_REQ_Q	*scsiq;
2013 	ADW_CCB		*ccb;
2014 	int		s;
2015 
2016 
2017 	s = splbio();
2018 
2019 	/* Reading the register clears the interrupt. */
2020 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2021 
2022 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2023 	     ADW_INTR_STATUS_INTRC)) == 0) {
2024 		splx(s);
2025 		return ADW_FALSE;
2026 	}
2027 
2028 	/*
2029 	 * Notify the driver of an asynchronous microcode condition by
2030 	 * calling the ADV_DVC_VAR.async_callback function. The function
2031 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2032 	 */
2033 	if (int_stat & ADW_INTR_STATUS_INTRB) {
2034 		u_int8_t intrb_code;
2035 
2036 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2037 
2038 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
2039 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
2040 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2041 				sc->carr_pending_cnt != 0) {
2042 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
2043 					IOPB_TICKLE, ADW_TICKLE_A);
2044 				if (sc->chip_type == ADW_CHIP_ASC3550) {
2045 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
2046 						IOPB_TICKLE, ADW_TICKLE_NOP);
2047 				}
2048 			}
2049 		}
2050 
2051 		if (sc->async_callback != 0) {
2052 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * Check if the IRQ stopper carrier contains a completed request.
2058 	 */
2059 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2060 	{
2061 #if ADW_DEBUG
2062 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2063 				sc->irq_sp->carr_id,
2064 				sc->irq_sp->carr_ba,
2065 				sc->irq_sp->areq_ba,
2066 				sc->irq_sp->next_ba);
2067 #endif
2068 		/*
2069 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2070 		 * structure.
2071 		 * The RISC will have set 'areq_ba' to a virtual address.
2072 		 *
2073 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2074 		 * field to the carrier ADV_CARR_T.areq_ba field.
2075 		 * The conversion below complements the conversion of
2076 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2077 		 */
2078 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2079 		scsiq = &ccb->scsiq;
2080 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2081 
2082 		/*
2083 		 * Request finished with good status and the queue was not
2084 		 * DMAed to host memory by the firmware. Set all status fields
2085 		 * to indicate good status.
2086 		 */
2087 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2088 			scsiq->done_status = QD_NO_ERROR;
2089 			scsiq->host_status = scsiq->scsi_status = 0;
2090 			scsiq->data_cnt = 0L;
2091 		}
2092 
2093 		/*
2094 		 * Advance the stopper pointer to the next carrier
2095 		 * ignoring the lower four bits. Free the previous
2096 		 * stopper carrier.
2097 		 */
2098 		free_carrp = sc->irq_sp;
2099 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2100 
2101 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2102 					: sc->carr_freelist->carr_ba;
2103 		sc->carr_freelist = free_carrp;
2104 		sc->carr_pending_cnt--;
2105 
2106 
2107 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2108 
2109 		/*
2110 		 * Clear request microcode control flag.
2111 		 */
2112 		scsiq->cntl = 0;
2113 
2114 		/*
2115 		 * Check Condition handling
2116 		 */
2117 		/*
2118 		 * If the command that completed was a SCSI INQUIRY and
2119 		 * LUN 0 was sent the command, then process the INQUIRY
2120 		 * command information for the device.
2121 		 */
2122 		if (scsiq->done_status == QD_NO_ERROR &&
2123 		    scsiq->cdb[0] == INQUIRY &&
2124 		    scsiq->target_lun == 0) {
2125 			AdwInquiryHandling(sc, scsiq);
2126 		}
2127 
2128 		/*
2129 		 * Notify the driver of the completed request by passing
2130 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
2131 		 */
2132 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2133 		/*
2134 		 * Note: After the driver callback function is called, 'scsiq'
2135 		 * can no longer be referenced.
2136 		 *
2137 		 * Fall through and continue processing other completed
2138 		 * requests...
2139 		 */
2140 	}
2141 
2142 	splx(s);
2143 
2144 	return ADW_TRUE;
2145 }
2146 
2147 
2148 /*
2149  * Send an idle command to the chip and wait for completion.
2150  *
2151  * Command completion is polled for once per microsecond.
2152  *
2153  * The function can be called from anywhere including an interrupt handler.
2154  * But the function is not re-entrant, so it uses the splbio/splx()
2155  * functions to prevent reentrancy.
2156  *
2157  * Return Values:
2158  *   ADW_TRUE - command completed successfully
2159  *   ADW_FALSE - command failed
2160  *   ADW_ERROR - command timed out
2161  */
2162 int
2163 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2164 ADW_SOFTC      *sc;
2165 u_int16_t       idle_cmd;
2166 u_int32_t       idle_cmd_parameter;
2167 {
2168 	bus_space_tag_t iot = sc->sc_iot;
2169 	bus_space_handle_t ioh = sc->sc_ioh;
2170 	u_int16_t	result;
2171 	u_int32_t	i, j, s;
2172 
2173 	s = splbio();
2174 
2175 	/*
2176 	 * Clear the idle command status which is set by the microcode
2177 	 * to a non-zero value to indicate when the command is completed.
2178 	 */
2179 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2180 
2181 	/*
2182 	 * Write the idle command value after the idle command parameter
2183 	 * has been written to avoid a race condition. If the order is not
2184 	 * followed, the microcode may process the idle command before the
2185 	 * parameters have been written to LRAM.
2186 	 */
2187 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2188 			idle_cmd_parameter);
2189 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2190 
2191 	/*
2192 	 * Tickle the RISC to tell it to process the idle command.
2193 	 */
2194 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2195 	if (sc->chip_type == ADW_CHIP_ASC3550) {
2196 		/*
2197 		 * Clear the tickle value. In the ASC-3550 the RISC flag
2198 		 * command 'clr_tickle_b' does not work unless the host
2199 		 * value is cleared.
2200 		 */
2201 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2202 	}
2203 
2204 	/* Wait for up to 100 millisecond for the idle command to timeout. */
2205 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2206 		/* Poll once each microsecond for command completion. */
2207 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2208 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2209 									result);
2210 			if (result != 0) {
2211 				splx(s);
2212 				return result;
2213 			}
2214 			AdwDelayMicroSecond(1);
2215 		}
2216 	}
2217 
2218 	splx(s);
2219 	return ADW_ERROR;
2220 }
2221 
2222 
2223 /*
2224  * Inquiry Information Byte 7 Handling
2225  *
2226  * Handle SCSI Inquiry Command information for a device by setting
2227  * microcode operating variables that affect WDTR, SDTR, and Tag
2228  * Queuing.
2229  */
2230 static void
2231 AdwInquiryHandling(sc, scsiq)
2232 ADW_SOFTC	*sc;
2233 ADW_SCSI_REQ_Q *scsiq;
2234 {
2235 #ifndef FAILSAFE
2236 	bus_space_tag_t iot = sc->sc_iot;
2237 	bus_space_handle_t ioh = sc->sc_ioh;
2238 	u_int8_t		tid;
2239 	struct scsipi_inquiry_data *inq;
2240 	u_int16_t		tidmask;
2241 	u_int16_t		cfg_word;
2242 
2243 
2244 	/*
2245 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2246 	 * to be available.
2247 	 *
2248 	 * If less than 8 bytes of INQUIRY information were requested or less
2249 	 * than 8 bytes were transferred, then return. cdb[4] is the request
2250 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2251 	 * microcode to the transfer residual count.
2252 	 */
2253 
2254 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2255 		return;
2256 	}
2257 
2258 	tid = scsiq->target_id;
2259 
2260 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2261 
2262 	/*
2263 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2264 	 */
2265 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2266 	    ((inq->version & SID_ANSII) < 2)) {
2267 		return;
2268 	} else {
2269 		/*
2270 		 * INQUIRY Byte 7 Handling
2271 		 *
2272 		 * Use a device's INQUIRY byte 7 to determine whether it
2273 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
2274 		 * is enabled in the EEPROM and the device supports the
2275 		 * feature, then enable it in the microcode.
2276 		 */
2277 
2278 		tidmask = ADW_TID_TO_TIDMASK(tid);
2279 
2280 		/*
2281 		 * Wide Transfers
2282 		 *
2283 		 * If the EEPROM enabled WDTR for the device and the device
2284 		 * supports wide bus (16 bit) transfers, then turn on the
2285 		 * device's 'wdtr_able' bit and write the new value to the
2286 		 * microcode.
2287 		 */
2288 #ifdef SCSI_ADW_WDTR_DISABLE
2289 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2290 #endif /* SCSI_ADW_WDTR_DISABLE */
2291 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2292 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2293 					cfg_word);
2294 			if ((cfg_word & tidmask) == 0) {
2295 				cfg_word |= tidmask;
2296 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2297 						cfg_word);
2298 
2299 				/*
2300 				 * Clear the microcode "SDTR negotiation" and
2301 				 * "WDTR negotiation" done indicators for the
2302 				 * target to cause it to negotiate with the new
2303 				 * setting set above.
2304 				 * WDTR when accepted causes the target to enter
2305 				 * asynchronous mode, so SDTR must be negotiated
2306 				 */
2307 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2308 						cfg_word);
2309 				cfg_word &= ~tidmask;
2310 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2311 						cfg_word);
2312 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2313 						cfg_word);
2314 				cfg_word &= ~tidmask;
2315 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2316 						cfg_word);
2317 			}
2318 		}
2319 
2320 		/*
2321 		 * Synchronous Transfers
2322 		 *
2323 		 * If the EEPROM enabled SDTR for the device and the device
2324 		 * supports synchronous transfers, then turn on the device's
2325 		 * 'sdtr_able' bit. Write the new value to the microcode.
2326 		 */
2327 #ifdef SCSI_ADW_SDTR_DISABLE
2328 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2329 #endif /* SCSI_ADW_SDTR_DISABLE */
2330 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2331 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2332 			if ((cfg_word & tidmask) == 0) {
2333 				cfg_word |= tidmask;
2334 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2335 						cfg_word);
2336 
2337 				/*
2338 				 * Clear the microcode "SDTR negotiation"
2339 				 * done indicator for the target to cause it
2340 				 * to negotiate with the new setting set above.
2341 				 */
2342 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2343 						cfg_word);
2344 				cfg_word &= ~tidmask;
2345 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2346 						cfg_word);
2347 			}
2348 		}
2349 		/*
2350 		 * If the Inquiry data included enough space for the SPI-3
2351 		 * Clocking field, then check if DT mode is supported.
2352 		 */
2353 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2354 		   (scsiq->cdb[4] >= 57 ||
2355 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2356 			/*
2357 			 * PPR (Parallel Protocol Request) Capable
2358 			 *
2359 			 * If the device supports DT mode, then it must be
2360 			 * PPR capable.
2361 			 * The PPR message will be used in place of the SDTR
2362 			 * and WDTR messages to negotiate synchronous speed
2363 			 * and offset, transfer width, and protocol options.
2364 			 */
2365 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2366 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2367 						sc->ppr_able);
2368 				sc->ppr_able |= tidmask;
2369 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2370 						sc->ppr_able);
2371 			}
2372 		}
2373 
2374 		/*
2375 		 * If the EEPROM enabled Tag Queuing for the device and the
2376 		 * device supports Tag Queueing, then turn on the device's
2377 		 * 'tagqng_enable' bit in the microcode and set the microcode
2378 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2379 		 * value.
2380 		 *
2381 		 * Tag Queuing is disabled for the BIOS which runs in polled
2382 		 * mode and would see no benefit from Tag Queuing. Also by
2383 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2384 		 * bugs will at least work with the BIOS.
2385 		 */
2386 #ifdef SCSI_ADW_TAGQ_DISABLE
2387 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2388 #endif /* SCSI_ADW_TAGQ_DISABLE */
2389 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2390 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2391 					cfg_word);
2392 			cfg_word |= tidmask;
2393 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2394 					cfg_word);
2395 
2396 			ADW_WRITE_BYTE_LRAM(iot, ioh,
2397 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
2398 					sc->max_dvc_qng);
2399 		}
2400 	}
2401 #endif /* FAILSAFE */
2402 }
2403 
2404 
2405 static void
2406 AdwSleepMilliSecond(n)
2407 u_int32_t	n;
2408 {
2409 
2410 	DELAY(n * 1000);
2411 }
2412 
2413 
2414 static void
2415 AdwDelayMicroSecond(n)
2416 u_int32_t	n;
2417 {
2418 
2419 	DELAY(n);
2420 }
2421 
2422