xref: /netbsd/sys/dev/ic/aic6915.c (revision bf9ec67e)
1 /*	$NetBSD: aic6915.c,v 1.6 2002/05/03 00:04:07 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Adaptec AIC-6915 (``Starfire'')
41  * 10/100 Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.6 2002/05/03 00:04:07 thorpej Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <machine/bus.h>
72 #include <machine/intr.h>
73 
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/ic/aic6915reg.h>
77 #include <dev/ic/aic6915var.h>
78 
79 void	sf_start(struct ifnet *);
80 void	sf_watchdog(struct ifnet *);
81 int	sf_ioctl(struct ifnet *, u_long, caddr_t);
82 int	sf_init(struct ifnet *);
83 void	sf_stop(struct ifnet *, int);
84 
85 void	sf_shutdown(void *);
86 
87 void	sf_txintr(struct sf_softc *);
88 void	sf_rxintr(struct sf_softc *);
89 void	sf_stats_update(struct sf_softc *);
90 
91 void	sf_reset(struct sf_softc *);
92 void	sf_macreset(struct sf_softc *);
93 void	sf_rxdrain(struct sf_softc *);
94 int	sf_add_rxbuf(struct sf_softc *, int);
95 uint8_t	sf_read_eeprom(struct sf_softc *, int);
96 void	sf_set_filter(struct sf_softc *);
97 
98 int	sf_mii_read(struct device *, int, int);
99 void	sf_mii_write(struct device *, int, int, int);
100 void	sf_mii_statchg(struct device *);
101 
102 void	sf_tick(void *);
103 
104 int	sf_mediachange(struct ifnet *);
105 void	sf_mediastatus(struct ifnet *, struct ifmediareq *);
106 
107 int	sf_copy_small = 0;
108 
109 #define	sf_funcreg_read(sc, reg)					\
110 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
111 #define	sf_funcreg_write(sc, reg, val)					\
112 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
113 
114 static __inline uint32_t
115 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
116 {
117 
118 	if (__predict_false(sc->sc_iomapped)) {
119 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
120 		    reg);
121 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
122 		    SF_IndirectIoDataPort));
123 	}
124 
125 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
126 }
127 
128 static __inline void
129 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
130 {
131 
132 	if (__predict_false(sc->sc_iomapped)) {
133 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
134 		    reg);
135 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
136 		    val);
137 		return;
138 	}
139 
140 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
141 }
142 
143 #define	sf_genreg_read(sc, reg)						\
144 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
145 #define	sf_genreg_write(sc, reg, val)					\
146 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
147 
148 /*
149  * sf_attach:
150  *
151  *	Attach a Starfire interface to the system.
152  */
153 void
154 sf_attach(struct sf_softc *sc)
155 {
156 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
157 	int i, rseg, error;
158 	bus_dma_segment_t seg;
159 	u_int8_t enaddr[ETHER_ADDR_LEN];
160 
161 	callout_init(&sc->sc_tick_callout);
162 
163 	/*
164 	 * If we're I/O mapped, the functional register handle is
165 	 * the same as the base handle.  If we're memory mapped,
166 	 * carve off a chunk of the register space for the functional
167 	 * registers, to save on arithmetic later.
168 	 */
169 	if (sc->sc_iomapped)
170 		sc->sc_sh_func = sc->sc_sh;
171 	else {
172 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
173 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
174 			printf("%s: unable to sub-region functional "
175 			    "registers, error = %d\n", sc->sc_dev.dv_xname,
176 			    error);
177 			return;
178 		}
179 	}
180 
181 	/*
182 	 * Initialize the transmit threshold for this interface.  The
183 	 * manual describes the default as 4 * 16 bytes.  We start out
184 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
185 	 * several platforms.
186 	 */
187 	sc->sc_txthresh = 10;
188 
189 	/*
190 	 * Allocate the control data structures, and create and load the
191 	 * DMA map for it.
192 	 */
193 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
194 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
195 	    BUS_DMA_NOWAIT)) != 0) {
196 		printf("%s: unable to allocate control data, error = %d\n",
197 		    sc->sc_dev.dv_xname, error);
198 		goto fail_0;
199 	}
200 
201 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
202 	    sizeof(struct sf_control_data), (caddr_t *)&sc->sc_control_data,
203 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
204 		printf("%s: unable to map control data, error = %d\n",
205 		    sc->sc_dev.dv_xname, error);
206 		goto fail_1;
207 	}
208 
209 	if ((error = bus_dmamap_create(sc->sc_dmat,
210 	    sizeof(struct sf_control_data), 1,
211 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
212 	    &sc->sc_cddmamap)) != 0) {
213 		printf("%s: unable to create control data DMA map, "
214 		    "error = %d\n", sc->sc_dev.dv_xname, error);
215 		goto fail_2;
216 	}
217 
218 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
219 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
220 	    BUS_DMA_NOWAIT)) != 0) {
221 		printf("%s: unable to load control data DMA map, error = %d\n",
222 		    sc->sc_dev.dv_xname, error);
223 		goto fail_3;
224 	}
225 
226 	/*
227 	 * Create the transmit buffer DMA maps.
228 	 */
229 	for (i = 0; i < SF_NTXDESC; i++) {
230 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
231 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
232 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
233 			printf("%s: unable to create tx DMA map %d, "
234 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
235 			goto fail_4;
236 		}
237 	}
238 
239 	/*
240 	 * Create the receive buffer DMA maps.
241 	 */
242 	for (i = 0; i < SF_NRXDESC; i++) {
243 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
244 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
245 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
246 			printf("%s: unable to create rx DMA map %d, "
247 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
248 			goto fail_5;
249 		}
250 	}
251 
252 	/*
253 	 * Reset the chip to a known state.
254 	 */
255 	sf_reset(sc);
256 
257 	/*
258 	 * Read the Ethernet address from the EEPROM.
259 	 */
260 	for (i = 0; i < ETHER_ADDR_LEN; i++)
261 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
262 
263 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
264 	    ether_sprintf(enaddr));
265 
266 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
267 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
268 
269 	/*
270 	 * Initialize our media structures and probe the MII.
271 	 */
272 	sc->sc_mii.mii_ifp = ifp;
273 	sc->sc_mii.mii_readreg = sf_mii_read;
274 	sc->sc_mii.mii_writereg = sf_mii_write;
275 	sc->sc_mii.mii_statchg = sf_mii_statchg;
276 	ifmedia_init(&sc->sc_mii.mii_media, 0, sf_mediachange,
277 	    sf_mediastatus);
278 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
279 	    MII_OFFSET_ANY, 0);
280 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
281 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
282 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
283 	} else
284 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
285 
286 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
287 	ifp->if_softc = sc;
288 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
289 	ifp->if_ioctl = sf_ioctl;
290 	ifp->if_start = sf_start;
291 	ifp->if_watchdog = sf_watchdog;
292 	ifp->if_init = sf_init;
293 	ifp->if_stop = sf_stop;
294 	IFQ_SET_READY(&ifp->if_snd);
295 
296 	/*
297 	 * Attach the interface.
298 	 */
299 	if_attach(ifp);
300 	ether_ifattach(ifp, enaddr);
301 
302 	/*
303 	 * Make sure the interface is shutdown during reboot.
304 	 */
305 	sc->sc_sdhook = shutdownhook_establish(sf_shutdown, sc);
306 	if (sc->sc_sdhook == NULL)
307 		printf("%s: WARNING: unable to establish shutdown hook\n",
308 		    sc->sc_dev.dv_xname);
309 	return;
310 
311 	/*
312 	 * Free any resources we've allocated during the failed attach
313 	 * attempt.  Do this in reverse order an fall through.
314 	 */
315  fail_5:
316 	for (i = 0; i < SF_NRXDESC; i++) {
317 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
318 			bus_dmamap_destroy(sc->sc_dmat,
319 			    sc->sc_rxsoft[i].ds_dmamap);
320 	}
321  fail_4:
322 	for (i = 0; i < SF_NTXDESC; i++) {
323 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
324 			bus_dmamap_destroy(sc->sc_dmat,
325 			    sc->sc_txsoft[i].ds_dmamap);
326 	}
327 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
328  fail_3:
329 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
330  fail_2:
331 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t) sc->sc_control_data,
332 	    sizeof(struct sf_control_data));
333  fail_1:
334 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
335  fail_0:
336 	return;
337 }
338 
339 /*
340  * sf_shutdown:
341  *
342  *	Shutdown hook -- make sure the interface is stopped at reboot.
343  */
344 void
345 sf_shutdown(void *arg)
346 {
347 	struct sf_softc *sc = arg;
348 
349 	sf_stop(&sc->sc_ethercom.ec_if, 1);
350 }
351 
352 /*
353  * sf_start:		[ifnet interface function]
354  *
355  *	Start packet transmission on the interface.
356  */
357 void
358 sf_start(struct ifnet *ifp)
359 {
360 	struct sf_softc *sc = ifp->if_softc;
361 	struct mbuf *m0, *m;
362 	struct sf_txdesc0 *txd;
363 	struct sf_descsoft *ds;
364 	bus_dmamap_t dmamap;
365 	int error, producer, last, opending, seg;
366 
367 	/*
368 	 * Remember the previous number of pending transmits.
369 	 */
370 	opending = sc->sc_txpending;
371 
372 	/*
373 	 * Find out where we're sitting.
374 	 */
375 	producer = SF_TXDINDEX_TO_HOST(
376 	    TDQPI_HiPrTxProducerIndex_get(
377 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
378 
379 	/*
380 	 * Loop through the send queue, setting up transmit descriptors
381 	 * until we drain the queue, or use up all available transmit
382 	 * descriptors.  Leave a blank one at the end for sanity's sake.
383 	 */
384 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
385 		/*
386 		 * Grab a packet off the queue.
387 		 */
388 		IFQ_POLL(&ifp->if_snd, m0);
389 		if (m0 == NULL)
390 			break;
391 		m = NULL;
392 
393 		/*
394 		 * Get the transmit descriptor.
395 		 */
396 		txd = &sc->sc_txdescs[producer];
397 		ds = &sc->sc_txsoft[producer];
398 		dmamap = ds->ds_dmamap;
399 
400 		/*
401 		 * Load the DMA map.  If this fails, the packet either
402 		 * didn't fit in the allotted number of frags, or we were
403 		 * short on resources.  In this case, we'll copy and try
404 		 * again.
405 		 */
406 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
407 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
408 			MGETHDR(m, M_DONTWAIT, MT_DATA);
409 			if (m == NULL) {
410 				printf("%s: unable to allocate Tx mbuf\n",
411 				    sc->sc_dev.dv_xname);
412 				break;
413 			}
414 			if (m0->m_pkthdr.len > MHLEN) {
415 				MCLGET(m, M_DONTWAIT);
416 				if ((m->m_flags & M_EXT) == 0) {
417 					printf("%s: unable to allocate Tx "
418 					    "cluster\n", sc->sc_dev.dv_xname);
419 					m_freem(m);
420 					break;
421 				}
422 			}
423 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
424 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
425 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
426 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
427 			if (error) {
428 				printf("%s: unable to load Tx buffer, "
429 				    "error = %d\n", sc->sc_dev.dv_xname, error);
430 				break;
431 			}
432 		}
433 
434 		/*
435 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
436 		 */
437 		IFQ_DEQUEUE(&ifp->if_snd, m0);
438 		if (m != NULL) {
439 			m_freem(m0);
440 			m0 = m;
441 		}
442 
443 		/* Initialize the descriptor. */
444 		txd->td_word0 =
445 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
446 		if (producer == (SF_NTXDESC - 1))
447 			txd->td_word0 |= TD_W0_END;
448 		txd->td_word1 = htole32(dmamap->dm_nsegs);
449 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
450 			txd->td_frags[seg].fr_addr =
451 			    htole32(dmamap->dm_segs[seg].ds_addr);
452 			txd->td_frags[seg].fr_len =
453 			    htole32(dmamap->dm_segs[seg].ds_len);
454 		}
455 
456 		/* Sync the descriptor and the DMA map. */
457 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
458 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
459 		    BUS_DMASYNC_PREWRITE);
460 
461 		/*
462 		 * Store a pointer to the packet so we can free it later.
463 		 */
464 		ds->ds_mbuf = m0;
465 
466 		/* Advance the Tx pointer. */
467 		sc->sc_txpending++;
468 		last = producer;
469 		producer = SF_NEXTTX(producer);
470 
471 #if NBPFILTER > 0
472 		/*
473 		 * Pass the packet to any BPF listeners.
474 		 */
475 		if (ifp->if_bpf)
476 			bpf_mtap(ifp->if_bpf, m0);
477 #endif
478 	}
479 
480 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
481 		/* No more slots left; notify upper layer. */
482 		ifp->if_flags |= IFF_OACTIVE;
483 	}
484 
485 	if (sc->sc_txpending != opending) {
486 		/*
487 		 * We enqueued packets.  Cause a transmit interrupt to
488 		 * happen on the last packet we enqueued, and give the
489 		 * new descriptors to the chip by writing the new
490 		 * producer index.
491 		 */
492 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
493 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
494 
495 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
496 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
497 
498 		/* Set a watchdog timer in case the chip flakes out. */
499 		ifp->if_timer = 5;
500 	}
501 }
502 
503 /*
504  * sf_watchdog:		[ifnet interface function]
505  *
506  *	Watchdog timer handler.
507  */
508 void
509 sf_watchdog(struct ifnet *ifp)
510 {
511 	struct sf_softc *sc = ifp->if_softc;
512 
513 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
514 	ifp->if_oerrors++;
515 
516 	(void) sf_init(ifp);
517 
518 	/* Try to get more packets going. */
519 	sf_start(ifp);
520 }
521 
522 /*
523  * sf_ioctl:		[ifnet interface function]
524  *
525  *	Handle control requests from the operator.
526  */
527 int
528 sf_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
529 {
530 	struct sf_softc *sc = ifp->if_softc;
531 	struct ifreq *ifr = (struct ifreq *) data;
532 	int s, error;
533 
534 	s = splnet();
535 
536 	switch (cmd) {
537 	case SIOCSIFMEDIA:
538 	case SIOCGIFMEDIA:
539 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
540 		break;
541 
542 	default:
543 		error = ether_ioctl(ifp, cmd, data);
544 		if (error == ENETRESET) {
545 			/*
546 			 * Multicast list has changed; set the hardware filter
547 			 * accordingly.
548 			 */
549 			sf_set_filter(sc);
550 			error = 0;
551 		}
552 		break;
553 	}
554 
555 	/* Try to get more packets going. */
556 	sf_start(ifp);
557 
558 	splx(s);
559 	return (error);
560 }
561 
562 /*
563  * sf_intr:
564  *
565  *	Interrupt service routine.
566  */
567 int
568 sf_intr(void *arg)
569 {
570 	struct sf_softc *sc = arg;
571 	uint32_t isr;
572 	int handled = 0, wantinit = 0;
573 
574 	for (;;) {
575 		/* Reading clears all interrupts we're interested in. */
576 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
577 		if ((isr & IS_PCIPadInt) == 0)
578 			break;
579 
580 		handled = 1;
581 
582 		/* Handle receive interrupts. */
583 		if (isr & IS_RxQ1DoneInt)
584 			sf_rxintr(sc);
585 
586 		/* Handle transmit completion interrupts. */
587 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
588 			sf_txintr(sc);
589 
590 		/* Handle abnormal interrupts. */
591 		if (isr & IS_AbnormalInterrupt) {
592 			/* Statistics. */
593 			if (isr & IS_StatisticWrapInt)
594 				sf_stats_update(sc);
595 
596 			/* DMA errors. */
597 			if (isr & IS_DmaErrInt) {
598 				wantinit = 1;
599 				printf("%s: WARNING: DMA error\n",
600 				    sc->sc_dev.dv_xname);
601 			}
602 
603 			/* Transmit FIFO underruns. */
604 			if (isr & IS_TxDataLowInt) {
605 				if (sc->sc_txthresh < 0xff)
606 					sc->sc_txthresh++;
607 				printf("%s: transmit FIFO underrun, new "
608 				    "threshold: %d bytes\n",
609 				    sc->sc_dev.dv_xname,
610 				    sc->sc_txthresh * 16);
611 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
612 				    sc->sc_TransmitFrameCSR |
613 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
614 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
615 				    sc->sc_TxDescQueueCtrl |
616 				    TDQC_TxHighPriorityFifoThreshold(
617 							sc->sc_txthresh));
618 			}
619 		}
620 	}
621 
622 	if (handled) {
623 		/* Reset the interface, if necessary. */
624 		if (wantinit)
625 			sf_init(&sc->sc_ethercom.ec_if);
626 
627 		/* Try and get more packets going. */
628 		sf_start(&sc->sc_ethercom.ec_if);
629 	}
630 
631 	return (handled);
632 }
633 
634 /*
635  * sf_txintr:
636  *
637  *	Helper -- handle transmit completion interrupts.
638  */
639 void
640 sf_txintr(struct sf_softc *sc)
641 {
642 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
643 	struct sf_descsoft *ds;
644 	uint32_t cqci, tcd;
645 	int consumer, producer, txidx;
646 
647  try_again:
648 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
649 
650 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
651 	producer = CQPI_TxCompletionProducerIndex_get(
652 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
653 
654 	if (consumer == producer)
655 		return;
656 
657 	ifp->if_flags &= ~IFF_OACTIVE;
658 
659 	while (consumer != producer) {
660 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
661 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
662 
663 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
664 #ifdef DIAGNOSTIC
665 		if ((tcd & TCD_PR) == 0)
666 			printf("%s: Tx queue mismatch, index %d\n",
667 			    sc->sc_dev.dv_xname, txidx);
668 #endif
669 		/*
670 		 * NOTE: stats are updated later.  We're just
671 		 * releasing packets that have been DMA'd to
672 		 * the chip.
673 		 */
674 		ds = &sc->sc_txsoft[txidx];
675 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
676 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
677 		    0, ds->ds_dmamap->dm_mapsize,
678 		    BUS_DMASYNC_POSTWRITE);
679 		m_freem(ds->ds_mbuf);
680 		ds->ds_mbuf = NULL;
681 
682 		consumer = SF_NEXTTCD(consumer);
683 		sc->sc_txpending--;
684 	}
685 
686 	/* XXXJRT -- should be KDASSERT() */
687 	KASSERT(sc->sc_txpending >= 0);
688 
689 	/* If all packets are done, cancel the watchdog timer. */
690 	if (sc->sc_txpending == 0)
691 		ifp->if_timer = 0;
692 
693 	/* Update the consumer index. */
694 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
695 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
696 	     CQCI_TxCompletionConsumerIndex(consumer));
697 
698 	/* Double check for new completions. */
699 	goto try_again;
700 }
701 
702 /*
703  * sf_rxintr:
704  *
705  *	Helper -- handle receive interrupts.
706  */
707 void
708 sf_rxintr(struct sf_softc *sc)
709 {
710 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
711 	struct sf_descsoft *ds;
712 	struct sf_rcd_full *rcd;
713 	struct mbuf *m;
714 	uint32_t cqci, word0;
715 	int consumer, producer, bufproducer, rxidx, len;
716 
717  try_again:
718 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
719 
720 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
721 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
722 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
723 	bufproducer = RXQ1P_RxDescQ1Producer_get(
724 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
725 
726 	if (consumer == producer)
727 		return;
728 
729 	while (consumer != producer) {
730 		rcd = &sc->sc_rxcomp[consumer];
731 		SF_CDRXCSYNC(sc, consumer,
732 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
733 		SF_CDRXCSYNC(sc, consumer,
734 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
735 
736 		word0 = le32toh(rcd->rcd_word0);
737 		rxidx = RCD_W0_EndIndex(word0);
738 
739 		ds = &sc->sc_rxsoft[rxidx];
740 
741 		consumer = SF_NEXTRCD(consumer);
742 		bufproducer = SF_NEXTRX(bufproducer);
743 
744 		if ((word0 & RCD_W0_OK) == 0) {
745 			SF_INIT_RXDESC(sc, rxidx);
746 			continue;
747 		}
748 
749 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
750 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
751 
752 		/*
753 		 * No errors; receive the packet.  Note that we have
754 		 * configured the Starfire to NOT transfer the CRC
755 		 * with the packet.
756 		 */
757 		len = RCD_W0_Length(word0);
758 
759 #ifdef __NO_STRICT_ALIGNMENT
760 		/*
761 		 * Allocate a new mbuf cluster.  If that fails, we are
762 		 * out of memory, and must drop the packet and recycle
763 		 * the buffer that's already attached to this descriptor.
764 		 */
765 		m = ds->ds_mbuf;
766 		if (sf_add_rxbuf(sc, rxidx) != 0) {
767 			ifp->if_ierrors++;
768 			SF_INIT_RXDESC(sc, rxidx);
769 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
770 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
771 			continue;
772 		}
773 #else
774 		/*
775 		 * The Starfire's receive buffer must be 4-byte aligned.
776 		 * But this means that the data after the Ethernet header
777 		 * is misaligned.  We must allocate a new buffer and
778 		 * copy the data, shifted forward 2 bytes.
779 		 */
780 		MGETHDR(m, M_DONTWAIT, MT_DATA);
781 		if (m == NULL) {
782  dropit:
783 			ifp->if_ierrors++;
784 			SF_INIT_RXDESC(sc, rxidx);
785 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
786 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
787 			continue;
788 		}
789 		if (len > (MHLEN - 2)) {
790 			MCLGET(m, M_DONTWAIT);
791 			if ((m->m_flags & M_EXT) == 0) {
792 				m_freem(m);
793 				goto dropit;
794 			}
795 		}
796 		m->m_data += 2;
797 
798 		/*
799 		 * Note that we use cluster for incoming frames, so the
800 		 * buffer is virtually contiguous.
801 		 */
802 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t), len);
803 
804 		/* Allow the receive descriptor to continue using its mbuf. */
805 		SF_INIT_RXDESC(sc, rxidx);
806 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
807 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
808 #endif /* __NO_STRICT_ALIGNMENT */
809 
810 		m->m_pkthdr.rcvif = ifp;
811 		m->m_pkthdr.len = m->m_len = len;
812 
813 #if NBPFILTER > 0
814 		/*
815 		 * Pass this up to any BPF listeners.
816 		 */
817 		if (ifp->if_bpf)
818 			bpf_mtap(ifp->if_bpf, m);
819 #endif /* NBPFILTER > 0 */
820 
821 		/* Pass it on. */
822 		(*ifp->if_input)(ifp, m);
823 	}
824 
825 	/* Update the chip's pointers. */
826 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
827 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
828 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
829 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
830 	    RXQ1P_RxDescQ1Producer(bufproducer));
831 
832 	/* Double-check for any new completions. */
833 	goto try_again;
834 }
835 
836 /*
837  * sf_tick:
838  *
839  *	One second timer, used to tick the MII and update stats.
840  */
841 void
842 sf_tick(void *arg)
843 {
844 	struct sf_softc *sc = arg;
845 	int s;
846 
847 	s = splnet();
848 	mii_tick(&sc->sc_mii);
849 	sf_stats_update(sc);
850 	splx(s);
851 
852 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
853 }
854 
855 /*
856  * sf_stats_update:
857  *
858  *	Read the statitistics counters.
859  */
860 void
861 sf_stats_update(struct sf_softc *sc)
862 {
863 	struct sf_stats stats;
864 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
865 	uint32_t *p;
866 	int i;
867 
868 	p = &stats.TransmitOKFrames;
869 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
870 		*p++ = sf_genreg_read(sc,
871 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
872 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
873 	}
874 
875 	ifp->if_opackets += stats.TransmitOKFrames;
876 
877 	ifp->if_collisions += stats.SingleCollisionFrames +
878 	    stats.MultipleCollisionFrames;
879 
880 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
881 	    stats.TransmitAbortDueToExcessingDeferral +
882 	    stats.FramesLostDueToInternalTransmitErrors;
883 
884 	ifp->if_ipackets += stats.ReceiveOKFrames;
885 
886 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
887 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
888 	    stats.ReceiveFramesJabbersError +
889 	    stats.FramesLostDueToInternalReceiveErrors;
890 }
891 
892 /*
893  * sf_reset:
894  *
895  *	Perform a soft reset on the Starfire.
896  */
897 void
898 sf_reset(struct sf_softc *sc)
899 {
900 	int i;
901 
902 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
903 
904 	sf_macreset(sc);
905 
906 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
907 	for (i = 0; i < 1000; i++) {
908 		delay(10);
909 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
910 		     PDC_SoftReset) == 0)
911 			break;
912 	}
913 
914 	if (i == 1000) {
915 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
916 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
917 	}
918 
919 	delay(1000);
920 }
921 
922 /*
923  * sf_macreset:
924  *
925  *	Reset the MAC portion of the Starfire.
926  */
927 void
928 sf_macreset(struct sf_softc *sc)
929 {
930 
931 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
932 	delay(1000);
933 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
934 }
935 
936 /*
937  * sf_init:		[ifnet interface function]
938  *
939  *	Initialize the interface.  Must be called at splnet().
940  */
941 int
942 sf_init(struct ifnet *ifp)
943 {
944 	struct sf_softc *sc = ifp->if_softc;
945 	struct sf_descsoft *ds;
946 	int i, error = 0;
947 
948 	/*
949 	 * Cancel any pending I/O.
950 	 */
951 	sf_stop(ifp, 0);
952 
953 	/*
954 	 * Reset the Starfire to a known state.
955 	 */
956 	sf_reset(sc);
957 
958 	/* Clear the stat counters. */
959 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
960 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
961 
962 	/*
963 	 * Initialize the transmit descriptor ring.
964 	 */
965 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
966 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
967 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
968 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
969 
970 	/*
971 	 * Initialize the transmit completion ring.
972 	 */
973 	for (i = 0; i < SF_NTCD; i++) {
974 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
975 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
976 	}
977 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
978 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
979 
980 	/*
981 	 * Initialize the receive descriptor ring.
982 	 */
983 	for (i = 0; i < SF_NRXDESC; i++) {
984 		ds = &sc->sc_rxsoft[i];
985 		if (ds->ds_mbuf == NULL) {
986 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
987 				printf("%s: unable to allocate or map rx "
988 				    "buffer %d, error = %d\n",
989 				    sc->sc_dev.dv_xname, i, error);
990 				/*
991 				 * XXX Should attempt to run with fewer receive
992 				 * XXX buffers instead of just failing.
993 				 */
994 				sf_rxdrain(sc);
995 				goto out;
996 			}
997 		} else
998 			SF_INIT_RXDESC(sc, i);
999 	}
1000 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
1001 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
1002 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
1003 
1004 	/*
1005 	 * Initialize the receive completion ring.
1006 	 */
1007 	for (i = 0; i < SF_NRCD; i++) {
1008 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
1009 		sc->sc_rxcomp[i].rcd_word1 = 0;
1010 		sc->sc_rxcomp[i].rcd_word2 = 0;
1011 		sc->sc_rxcomp[i].rcd_timestamp = 0;
1012 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1013 	}
1014 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
1015 	    RCQ1C_RxCompletionQ1Type(3));
1016 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
1017 
1018 	/*
1019 	 * Initialize the Tx CSR.
1020 	 */
1021 	sc->sc_TransmitFrameCSR = 0;
1022 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
1023 	    sc->sc_TransmitFrameCSR |
1024 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
1025 
1026 	/*
1027 	 * Initialize the Tx descriptor control register.
1028 	 */
1029 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1030 	    TDQC_TxDmaBurstSize(4) |	/* default */
1031 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1032 	    TDQC_TxDescType(0);
1033 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1034 	    sc->sc_TxDescQueueCtrl |
1035 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1036 
1037 	/*
1038 	 * Initialize the Rx descriptor control registers.
1039 	 */
1040 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1041 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1042 	    RDQ1C_RxDescSpacing(0));
1043 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1044 
1045 	/*
1046 	 * Initialize the Tx descriptor producer indices.
1047 	 */
1048 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1049 	    TDQPI_HiPrTxProducerIndex(0) |
1050 	    TDQPI_LoPrTxProducerIndex(0));
1051 
1052 	/*
1053 	 * Initialize the Rx descriptor producer indices.
1054 	 */
1055 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1056 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1057 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1058 	    RXQ2P_RxDescQ2Producer(0));
1059 
1060 	/*
1061 	 * Initialize the Tx and Rx completion queue consumer indices.
1062 	 */
1063 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1064 	    CQCI_TxCompletionConsumerIndex(0) |
1065 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1066 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1067 
1068 	/*
1069 	 * Initialize the Rx DMA control register.
1070 	 */
1071 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1072 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1073 	    RDC_RxBurstSize(4));		/* default */
1074 
1075 	/*
1076 	 * Set the receive filter.
1077 	 */
1078 	sc->sc_RxAddressFilteringCtl = 0;
1079 	sf_set_filter(sc);
1080 
1081 	/*
1082 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1083 	 * actually be written and the MAC part reset.
1084 	 */
1085 	sc->sc_MacConfig1 = MC1_PadEn;
1086 
1087 	/*
1088 	 * Set the media.
1089 	 */
1090 	mii_mediachg(&sc->sc_mii);
1091 
1092 	/*
1093 	 * Initialize the interrupt register.
1094 	 */
1095 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1096 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1097 	    IS_StatisticWrapInt;
1098 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1099 
1100 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1101 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1102 
1103 	/*
1104 	 * Start the transmit and receive processes.
1105 	 */
1106 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1107 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1108 
1109 	/* Start the on second clock. */
1110 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1111 
1112 	/*
1113 	 * Note that the interface is now running.
1114 	 */
1115 	ifp->if_flags |= IFF_RUNNING;
1116 	ifp->if_flags &= ~IFF_OACTIVE;
1117 
1118  out:
1119 	if (error) {
1120 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1121 		ifp->if_timer = 0;
1122 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1123 	}
1124 	return (error);
1125 }
1126 
1127 /*
1128  * sf_rxdrain:
1129  *
1130  *	Drain the receive queue.
1131  */
1132 void
1133 sf_rxdrain(struct sf_softc *sc)
1134 {
1135 	struct sf_descsoft *ds;
1136 	int i;
1137 
1138 	for (i = 0; i < SF_NRXDESC; i++) {
1139 		ds = &sc->sc_rxsoft[i];
1140 		if (ds->ds_mbuf != NULL) {
1141 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1142 			m_freem(ds->ds_mbuf);
1143 			ds->ds_mbuf = NULL;
1144 		}
1145 	}
1146 }
1147 
1148 /*
1149  * sf_stop:		[ifnet interface function]
1150  *
1151  *	Stop transmission on the interface.
1152  */
1153 void
1154 sf_stop(struct ifnet *ifp, int disable)
1155 {
1156 	struct sf_softc *sc = ifp->if_softc;
1157 	struct sf_descsoft *ds;
1158 	int i;
1159 
1160 	/* Stop the one second clock. */
1161 	callout_stop(&sc->sc_tick_callout);
1162 
1163 	/* Down the MII. */
1164 	mii_down(&sc->sc_mii);
1165 
1166 	/* Disable interrupts. */
1167 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1168 
1169 	/* Stop the transmit and receive processes. */
1170 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1171 
1172 	/*
1173 	 * Release any queued transmit buffers.
1174 	 */
1175 	for (i = 0; i < SF_NTXDESC; i++) {
1176 		ds = &sc->sc_txsoft[i];
1177 		if (ds->ds_mbuf != NULL) {
1178 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1179 			m_freem(ds->ds_mbuf);
1180 			ds->ds_mbuf = NULL;
1181 		}
1182 	}
1183 
1184 	if (disable)
1185 		sf_rxdrain(sc);
1186 
1187 	/*
1188 	 * Mark the interface down and cancel the watchdog timer.
1189 	 */
1190 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1191 	ifp->if_timer = 0;
1192 }
1193 
1194 /*
1195  * sf_read_eeprom:
1196  *
1197  *	Read from the Starfire EEPROM.
1198  */
1199 uint8_t
1200 sf_read_eeprom(struct sf_softc *sc, int offset)
1201 {
1202 	uint32_t reg;
1203 
1204 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1205 
1206 	return ((reg >> (8 * (offset & 3))) & 0xff);
1207 }
1208 
1209 /*
1210  * sf_add_rxbuf:
1211  *
1212  *	Add a receive buffer to the indicated descriptor.
1213  */
1214 int
1215 sf_add_rxbuf(struct sf_softc *sc, int idx)
1216 {
1217 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1218 	struct mbuf *m;
1219 	int error;
1220 
1221 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1222 	if (m == NULL)
1223 		return (ENOBUFS);
1224 
1225 	MCLGET(m, M_DONTWAIT);
1226 	if ((m->m_flags & M_EXT) == 0) {
1227 		m_freem(m);
1228 		return (ENOBUFS);
1229 	}
1230 
1231 	if (ds->ds_mbuf != NULL)
1232 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1233 
1234 	ds->ds_mbuf = m;
1235 
1236 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1237 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1238 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1239 	if (error) {
1240 		printf("%s: can't load rx DMA map %d, error = %d\n",
1241 		    sc->sc_dev.dv_xname, idx, error);
1242 		panic("sf_add_rxbuf"); /* XXX */
1243 	}
1244 
1245 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1246 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1247 
1248 	SF_INIT_RXDESC(sc, idx);
1249 
1250 	return (0);
1251 }
1252 
1253 static void
1254 sf_set_filter_perfect(struct sf_softc *sc, int slot, uint8_t *enaddr)
1255 {
1256 	uint32_t reg0, reg1, reg2;
1257 
1258 	reg0 = enaddr[5] | (enaddr[4] << 8);
1259 	reg1 = enaddr[3] | (enaddr[2] << 8);
1260 	reg2 = enaddr[1] | (enaddr[0] << 8);
1261 
1262 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1263 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1264 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1265 }
1266 
1267 static void
1268 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1269 {
1270 	uint32_t hash, slot, reg;
1271 
1272 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1273 	slot = hash >> 4;
1274 
1275 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1276 	reg |= 1 << (hash & 0xf);
1277 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1278 }
1279 
1280 /*
1281  * sf_set_filter:
1282  *
1283  *	Set the Starfire receive filter.
1284  */
1285 void
1286 sf_set_filter(struct sf_softc *sc)
1287 {
1288 	struct ethercom *ec = &sc->sc_ethercom;
1289 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290 	struct ether_multi *enm;
1291 	struct ether_multistep step;
1292 	int i;
1293 
1294 	/* Start by clearing the perfect and hash tables. */
1295 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1296 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1297 
1298 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1299 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1300 
1301 	/*
1302 	 * Clear the perfect and hash mode bits.
1303 	 */
1304 	sc->sc_RxAddressFilteringCtl &=
1305 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1306 
1307 	if (ifp->if_flags & IFF_BROADCAST)
1308 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1309 	else
1310 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1311 
1312 	if (ifp->if_flags & IFF_PROMISC) {
1313 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1314 		goto allmulti;
1315 	} else
1316 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1317 
1318 	/*
1319 	 * Set normal perfect filtering mode.
1320 	 */
1321 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1322 
1323 	/*
1324 	 * First, write the station address to the perfect filter
1325 	 * table.
1326 	 */
1327 	sf_set_filter_perfect(sc, 0, LLADDR(ifp->if_sadl));
1328 
1329 	/*
1330 	 * Now set the hash bits for each multicast address in our
1331 	 * list.
1332 	 */
1333 	ETHER_FIRST_MULTI(step, ec, enm);
1334 	if (enm == NULL)
1335 		goto done;
1336 	while (enm != NULL) {
1337 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1338 			/*
1339 			 * We must listen to a range of multicast addresses.
1340 			 * For now, just accept all multicasts, rather than
1341 			 * trying to set only those filter bits needed to match
1342 			 * the range.  (At this time, the only use of address
1343 			 * ranges is for IP multicast routing, for which the
1344 			 * range is big enough to require all bits set.)
1345 			 */
1346 			goto allmulti;
1347 		}
1348 		sf_set_filter_hash(sc, enm->enm_addrlo);
1349 		ETHER_NEXT_MULTI(step, enm);
1350 	}
1351 
1352 	/*
1353 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1354 	 */
1355 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1356 	goto done;
1357 
1358  allmulti:
1359 	/*
1360 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1361 	 */
1362 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1363 	ifp->if_flags |= IFF_ALLMULTI;
1364 
1365  done:
1366 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1367 	    sc->sc_RxAddressFilteringCtl);
1368 }
1369 
1370 /*
1371  * sf_mii_read:		[mii interface function]
1372  *
1373  *	Read from the MII.
1374  */
1375 int
1376 sf_mii_read(struct device *self, int phy, int reg)
1377 {
1378 	struct sf_softc *sc = (void *) self;
1379 	uint32_t v;
1380 	int i;
1381 
1382 	for (i = 0; i < 1000; i++) {
1383 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1384 		if (v & MiiDataValid)
1385 			break;
1386 		delay(1);
1387 	}
1388 
1389 	if ((v & MiiDataValid) == 0)
1390 		return (0);
1391 
1392 	if (MiiRegDataPort(v) == 0xffff)
1393 		return (0);
1394 
1395 	return (MiiRegDataPort(v));
1396 }
1397 
1398 /*
1399  * sf_mii_write:	[mii interface function]
1400  *
1401  *	Write to the MII.
1402  */
1403 void
1404 sf_mii_write(struct device *self, int phy, int reg, int val)
1405 {
1406 	struct sf_softc *sc = (void *) self;
1407 	int i;
1408 
1409 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1410 
1411 	for (i = 0; i < 1000; i++) {
1412 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1413 		     MiiBusy) == 0)
1414 			return;
1415 		delay(1);
1416 	}
1417 
1418 	printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
1419 }
1420 
1421 /*
1422  * sf_mii_statchg:	[mii interface function]
1423  *
1424  *	Callback from the PHY when the media changes.
1425  */
1426 void
1427 sf_mii_statchg(struct device *self)
1428 {
1429 	struct sf_softc *sc = (void *) self;
1430 	uint32_t ipg;
1431 
1432 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1433 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1434 		ipg = 0x15;
1435 	} else {
1436 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1437 		ipg = 0x11;
1438 	}
1439 
1440 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1441 	sf_macreset(sc);
1442 
1443 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1444 }
1445 
1446 /*
1447  * sf_mediastatus:	[ifmedia interface function]
1448  *
1449  *	Callback from ifmedia to request current media status.
1450  */
1451 void
1452 sf_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1453 {
1454 	struct sf_softc *sc = ifp->if_softc;
1455 
1456 	mii_pollstat(&sc->sc_mii);
1457 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1458 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1459 }
1460 
1461 /*
1462  * sf_mediachange:	[ifmedia interface function]
1463  *
1464  *	Callback from ifmedia to request new media setting.
1465  */
1466 int
1467 sf_mediachange(struct ifnet *ifp)
1468 {
1469 	struct sf_softc *sc = ifp->if_softc;
1470 
1471 	if (ifp->if_flags & IFF_UP)
1472 		mii_mediachg(&sc->sc_mii);
1473 	return (0);
1474 }
1475