xref: /netbsd/sys/dev/ic/atw.c (revision 6550d01e)
1 /*	$NetBSD: atw.c,v 1.152 2010/11/13 08:54:23 uebayasi Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.152 2010/11/13 08:54:23 uebayasi Exp $");
38 
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <lib/libkern/libkern.h>
54 
55 #include <machine/endian.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <net/bpf.h>
67 
68 #include <sys/bus.h>
69 #include <sys/intr.h>
70 
71 #include <dev/ic/atwreg.h>
72 #include <dev/ic/rf3000reg.h>
73 #include <dev/ic/si4136reg.h>
74 #include <dev/ic/atwvar.h>
75 #include <dev/ic/smc93cx6var.h>
76 
77 /* XXX TBD open questions
78  *
79  *
80  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
81  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
82  * handle this for me?
83  *
84  */
85 /* device attachment
86  *
87  *    print TOFS[012]
88  *
89  * device initialization
90  *
91  *    clear ATW_FRCTL_MAXPSP to disable max power saving
92  *    set ATW_TXBR_ALCUPDATE to enable ALC
93  *    set TOFS[012]? (hope not)
94  *    disable rx/tx
95  *    set ATW_PAR_SWR (software reset)
96  *    wait for ATW_PAR_SWR clear
97  *    disable interrupts
98  *    ack status register
99  *    enable interrupts
100  *
101  * rx/tx initialization
102  *
103  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
104  *    allocate and init descriptor rings
105  *    write ATW_PAR_DSL (descriptor skip length)
106  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
107  *    write ATW_NAR_SQ for one/both transmit descriptor rings
108  *    write ATW_NAR_SQ for one/both transmit descriptor rings
109  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
110  *
111  * rx/tx end
112  *
113  *    stop DMA
114  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
115  *    flush tx w/ ATW_NAR_HF
116  *
117  * scan
118  *
119  *    initialize rx/tx
120  *
121  * BSS join: (re)association response
122  *
123  *    set ATW_FRCTL_AID
124  *
125  * optimizations ???
126  *
127  */
128 
129 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
130 
131 int atw_pseudo_milli = 1;
132 int atw_magic_delay1 = 100 * 1000;
133 int atw_magic_delay2 = 100 * 1000;
134 /* more magic multi-millisecond delays (units: microseconds) */
135 int atw_nar_delay = 20 * 1000;
136 int atw_magic_delay4 = 10 * 1000;
137 int atw_rf_delay1 = 10 * 1000;
138 int atw_rf_delay2 = 5 * 1000;
139 int atw_plcphd_delay = 2 * 1000;
140 int atw_bbp_io_enable_delay = 20 * 1000;
141 int atw_bbp_io_disable_delay = 2 * 1000;
142 int atw_writewep_delay = 1000;
143 int atw_beacon_len_adjust = 4;
144 int atw_dwelltime = 200;
145 int atw_xindiv2 = 0;
146 
147 #ifdef ATW_DEBUG
148 int atw_debug = 0;
149 
150 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
151 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
152 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
153 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
154 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
155 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
156 
157 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
158 static void	atw_print_regs(struct atw_softc *, const char *);
159 
160 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
161 #	ifdef ATW_BBPDEBUG
162 static void	atw_rf3000_print(struct atw_softc *);
163 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164 #	endif /* ATW_BBPDEBUG */
165 
166 #	ifdef ATW_SYNDEBUG
167 static void	atw_si4126_print(struct atw_softc *);
168 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
169 #	endif /* ATW_SYNDEBUG */
170 
171 #else
172 #define ATW_DPRINTF(x)
173 #define ATW_DPRINTF2(x)
174 #define ATW_DPRINTF3(x)
175 #define	DPRINTF(sc, x)	/* nothing */
176 #define	DPRINTF2(sc, x)	/* nothing */
177 #define	DPRINTF3(sc, x)	/* nothing */
178 #endif
179 
180 /* ifnet methods */
181 int	atw_init(struct ifnet *);
182 int	atw_ioctl(struct ifnet *, u_long, void *);
183 void	atw_start(struct ifnet *);
184 void	atw_stop(struct ifnet *, int);
185 void	atw_watchdog(struct ifnet *);
186 
187 /* Device attachment */
188 void	atw_attach(struct atw_softc *);
189 int	atw_detach(struct atw_softc *);
190 static void atw_evcnt_attach(struct atw_softc *);
191 static void atw_evcnt_detach(struct atw_softc *);
192 
193 /* Rx/Tx process */
194 int	atw_add_rxbuf(struct atw_softc *, int);
195 void	atw_idle(struct atw_softc *, u_int32_t);
196 void	atw_rxdrain(struct atw_softc *);
197 void	atw_txdrain(struct atw_softc *);
198 
199 /* Device (de)activation and power state */
200 void	atw_reset(struct atw_softc *);
201 
202 /* Interrupt handlers */
203 void	atw_linkintr(struct atw_softc *, u_int32_t);
204 void	atw_rxintr(struct atw_softc *);
205 void	atw_txintr(struct atw_softc *, uint32_t);
206 
207 /* 802.11 state machine */
208 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
209 static void	atw_next_scan(void *);
210 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
211 		              struct ieee80211_node *, int, int, u_int32_t);
212 static int	atw_tune(struct atw_softc *);
213 
214 /* Device initialization */
215 static void	atw_bbp_io_init(struct atw_softc *);
216 static void	atw_cfp_init(struct atw_softc *);
217 static void	atw_cmdr_init(struct atw_softc *);
218 static void	atw_ifs_init(struct atw_softc *);
219 static void	atw_nar_init(struct atw_softc *);
220 static void	atw_response_times_init(struct atw_softc *);
221 static void	atw_rf_reset(struct atw_softc *);
222 static void	atw_test1_init(struct atw_softc *);
223 static void	atw_tofs0_init(struct atw_softc *);
224 static void	atw_tofs2_init(struct atw_softc *);
225 static void	atw_txlmt_init(struct atw_softc *);
226 static void	atw_wcsr_init(struct atw_softc *);
227 
228 /* Key management */
229 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
230 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
231 	const u_int8_t[IEEE80211_ADDR_LEN]);
232 static void atw_key_update_begin(struct ieee80211com *);
233 static void atw_key_update_end(struct ieee80211com *);
234 
235 /* RAM/ROM utilities */
236 static void	atw_clear_sram(struct atw_softc *);
237 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
238 static int	atw_read_srom(struct atw_softc *);
239 
240 /* BSS setup */
241 static void	atw_predict_beacon(struct atw_softc *);
242 static void	atw_start_beacon(struct atw_softc *, int);
243 static void	atw_write_bssid(struct atw_softc *);
244 static void	atw_write_ssid(struct atw_softc *);
245 static void	atw_write_sup_rates(struct atw_softc *);
246 static void	atw_write_wep(struct atw_softc *);
247 
248 /* Media */
249 static int	atw_media_change(struct ifnet *);
250 
251 static void	atw_filter_setup(struct atw_softc *);
252 
253 /* 802.11 utilities */
254 static uint64_t			atw_get_tsft(struct atw_softc *);
255 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
256 				                   uint32_t);
257 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
258 static void			atw_node_free(struct ieee80211_node *);
259 
260 /*
261  * Tuner/transceiver/modem
262  */
263 static void	atw_bbp_io_enable(struct atw_softc *, int);
264 
265 /* RFMD RF3000 Baseband Processor */
266 static int	atw_rf3000_init(struct atw_softc *);
267 static int	atw_rf3000_tune(struct atw_softc *, u_int);
268 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
269 
270 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
271 static void	atw_si4126_tune(struct atw_softc *, u_int);
272 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
273 
274 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
275 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
276 
277 const char *atw_tx_state[] = {
278 	"STOPPED",
279 	"RUNNING - read descriptor",
280 	"RUNNING - transmitting",
281 	"RUNNING - filling fifo",	/* XXX */
282 	"SUSPENDED",
283 	"RUNNING -- write descriptor",
284 	"RUNNING -- write last descriptor",
285 	"RUNNING - fifo full"
286 };
287 
288 const char *atw_rx_state[] = {
289 	"STOPPED",
290 	"RUNNING - read descriptor",
291 	"RUNNING - check this packet, pre-fetch next",
292 	"RUNNING - wait for reception",
293 	"SUSPENDED",
294 	"RUNNING - write descriptor",
295 	"RUNNING - flush fifo",
296 	"RUNNING - fifo drain"
297 };
298 
299 static inline int
300 is_running(struct ifnet *ifp)
301 {
302 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
303 }
304 
305 int
306 atw_activate(device_t self, enum devact act)
307 {
308 	struct atw_softc *sc = device_private(self);
309 
310 	switch (act) {
311 	case DVACT_DEACTIVATE:
312 		if_deactivate(&sc->sc_if);
313 		return 0;
314 	default:
315 		return EOPNOTSUPP;
316 	}
317 }
318 
319 bool
320 atw_suspend(device_t self, const pmf_qual_t *qual)
321 {
322 	struct atw_softc *sc = device_private(self);
323 
324 	atw_rxdrain(sc);
325 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
326 
327 	return true;
328 }
329 
330 /* Returns -1 on failure. */
331 static int
332 atw_read_srom(struct atw_softc *sc)
333 {
334 	struct seeprom_descriptor sd;
335 	uint32_t test0, fail_bits;
336 
337 	(void)memset(&sd, 0, sizeof(sd));
338 
339 	test0 = ATW_READ(sc, ATW_TEST0);
340 
341 	switch (sc->sc_rev) {
342 	case ATW_REVISION_BA:
343 	case ATW_REVISION_CA:
344 		fail_bits = ATW_TEST0_EPNE;
345 		break;
346 	default:
347 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
348 		break;
349 	}
350 	if ((test0 & fail_bits) != 0) {
351 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
352 		return -1;
353 	}
354 
355 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
356 	case ATW_TEST0_EPTYP_93c66:
357 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
358 		sc->sc_sromsz = 512;
359 		sd.sd_chip = C56_66;
360 		break;
361 	case ATW_TEST0_EPTYP_93c46:
362 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
363 		sc->sc_sromsz = 128;
364 		sd.sd_chip = C46;
365 		break;
366 	default:
367 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
368 		    device_xname(sc->sc_dev),
369 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
370 		return -1;
371 	}
372 
373 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
374 
375 	if (sc->sc_srom == NULL) {
376 		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
377 		return -1;
378 	}
379 
380 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
381 
382 	/* ADM8211 has a single 32-bit register for controlling the
383 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
384 	 * "ready" bit. The ADM8211 input/output sense is the reverse
385 	 * of read_seeprom's.
386 	 */
387 	sd.sd_tag = sc->sc_st;
388 	sd.sd_bsh = sc->sc_sh;
389 	sd.sd_regsize = 4;
390 	sd.sd_control_offset = ATW_SPR;
391 	sd.sd_status_offset = ATW_SPR;
392 	sd.sd_dataout_offset = ATW_SPR;
393 	sd.sd_CK = ATW_SPR_SCLK;
394 	sd.sd_CS = ATW_SPR_SCS;
395 	sd.sd_DI = ATW_SPR_SDO;
396 	sd.sd_DO = ATW_SPR_SDI;
397 	sd.sd_MS = ATW_SPR_SRS;
398 	sd.sd_RDY = 0;
399 
400 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
401 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
402 		free(sc->sc_srom, M_DEVBUF);
403 		return -1;
404 	}
405 #ifdef ATW_DEBUG
406 	{
407 		int i;
408 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
409 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
410 			if (((i % 8) == 0) && (i != 0)) {
411 				ATW_DPRINTF(("\n\t"));
412 			}
413 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
414 		}
415 		ATW_DPRINTF(("\n"));
416 	}
417 #endif /* ATW_DEBUG */
418 	return 0;
419 }
420 
421 #ifdef ATW_DEBUG
422 static void
423 atw_print_regs(struct atw_softc *sc, const char *where)
424 {
425 #define PRINTREG(sc, reg) \
426 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
427 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
428 
429 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
430 
431 	PRINTREG(sc, ATW_PAR);
432 	PRINTREG(sc, ATW_FRCTL);
433 	PRINTREG(sc, ATW_TDR);
434 	PRINTREG(sc, ATW_WTDP);
435 	PRINTREG(sc, ATW_RDR);
436 	PRINTREG(sc, ATW_WRDP);
437 	PRINTREG(sc, ATW_RDB);
438 	PRINTREG(sc, ATW_CSR3A);
439 	PRINTREG(sc, ATW_TDBD);
440 	PRINTREG(sc, ATW_TDBP);
441 	PRINTREG(sc, ATW_STSR);
442 	PRINTREG(sc, ATW_CSR5A);
443 	PRINTREG(sc, ATW_NAR);
444 	PRINTREG(sc, ATW_CSR6A);
445 	PRINTREG(sc, ATW_IER);
446 	PRINTREG(sc, ATW_CSR7A);
447 	PRINTREG(sc, ATW_LPC);
448 	PRINTREG(sc, ATW_TEST1);
449 	PRINTREG(sc, ATW_SPR);
450 	PRINTREG(sc, ATW_TEST0);
451 	PRINTREG(sc, ATW_WCSR);
452 	PRINTREG(sc, ATW_WPDR);
453 	PRINTREG(sc, ATW_GPTMR);
454 	PRINTREG(sc, ATW_GPIO);
455 	PRINTREG(sc, ATW_BBPCTL);
456 	PRINTREG(sc, ATW_SYNCTL);
457 	PRINTREG(sc, ATW_PLCPHD);
458 	PRINTREG(sc, ATW_MMIWADDR);
459 	PRINTREG(sc, ATW_MMIRADDR1);
460 	PRINTREG(sc, ATW_MMIRADDR2);
461 	PRINTREG(sc, ATW_TXBR);
462 	PRINTREG(sc, ATW_CSR15A);
463 	PRINTREG(sc, ATW_ALCSTAT);
464 	PRINTREG(sc, ATW_TOFS2);
465 	PRINTREG(sc, ATW_CMDR);
466 	PRINTREG(sc, ATW_PCIC);
467 	PRINTREG(sc, ATW_PMCSR);
468 	PRINTREG(sc, ATW_PAR0);
469 	PRINTREG(sc, ATW_PAR1);
470 	PRINTREG(sc, ATW_MAR0);
471 	PRINTREG(sc, ATW_MAR1);
472 	PRINTREG(sc, ATW_ATIMDA0);
473 	PRINTREG(sc, ATW_ABDA1);
474 	PRINTREG(sc, ATW_BSSID0);
475 	PRINTREG(sc, ATW_TXLMT);
476 	PRINTREG(sc, ATW_MIBCNT);
477 	PRINTREG(sc, ATW_BCNT);
478 	PRINTREG(sc, ATW_TSFTH);
479 	PRINTREG(sc, ATW_TSC);
480 	PRINTREG(sc, ATW_SYNRF);
481 	PRINTREG(sc, ATW_BPLI);
482 	PRINTREG(sc, ATW_CAP0);
483 	PRINTREG(sc, ATW_CAP1);
484 	PRINTREG(sc, ATW_RMD);
485 	PRINTREG(sc, ATW_CFPP);
486 	PRINTREG(sc, ATW_TOFS0);
487 	PRINTREG(sc, ATW_TOFS1);
488 	PRINTREG(sc, ATW_IFST);
489 	PRINTREG(sc, ATW_RSPT);
490 	PRINTREG(sc, ATW_TSFTL);
491 	PRINTREG(sc, ATW_WEPCTL);
492 	PRINTREG(sc, ATW_WESK);
493 	PRINTREG(sc, ATW_WEPCNT);
494 	PRINTREG(sc, ATW_MACTEST);
495 	PRINTREG(sc, ATW_FER);
496 	PRINTREG(sc, ATW_FEMR);
497 	PRINTREG(sc, ATW_FPSR);
498 	PRINTREG(sc, ATW_FFER);
499 #undef PRINTREG
500 }
501 #endif /* ATW_DEBUG */
502 
503 /*
504  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
505  */
506 void
507 atw_attach(struct atw_softc *sc)
508 {
509 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
510 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
511 	};
512 	struct ieee80211com *ic = &sc->sc_ic;
513 	struct ifnet *ifp = &sc->sc_if;
514 	int country_code, error, i, nrate, srom_major;
515 	u_int32_t reg;
516 	static const char *type_strings[] = {"Intersil (not supported)",
517 	    "RFMD", "Marvel (not supported)"};
518 
519 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
520 
521 	sc->sc_txth = atw_txthresh_tab_lo;
522 
523 	SIMPLEQ_INIT(&sc->sc_txfreeq);
524 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
525 
526 #ifdef ATW_DEBUG
527 	atw_print_regs(sc, "atw_attach");
528 #endif /* ATW_DEBUG */
529 
530 	/*
531 	 * Allocate the control data structures, and create and load the
532 	 * DMA map for it.
533 	 */
534 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
535 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
536 	    1, &sc->sc_cdnseg, 0)) != 0) {
537 		aprint_error_dev(sc->sc_dev,
538 		    "unable to allocate control data, error = %d\n",
539 		    error);
540 		goto fail_0;
541 	}
542 
543 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
544 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
545 	    BUS_DMA_COHERENT)) != 0) {
546 		aprint_error_dev(sc->sc_dev,
547 		    "unable to map control data, error = %d\n",
548 		    error);
549 		goto fail_1;
550 	}
551 
552 	if ((error = bus_dmamap_create(sc->sc_dmat,
553 	    sizeof(struct atw_control_data), 1,
554 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
555 		aprint_error_dev(sc->sc_dev,
556 		    "unable to create control data DMA map, error = %d\n",
557 		    error);
558 		goto fail_2;
559 	}
560 
561 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
562 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
563 	    0)) != 0) {
564 		aprint_error_dev(sc->sc_dev,
565 		    "unable to load control data DMA map, error = %d\n", error);
566 		goto fail_3;
567 	}
568 
569 	/*
570 	 * Create the transmit buffer DMA maps.
571 	 */
572 	sc->sc_ntxsegs = ATW_NTXSEGS;
573 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
574 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
575 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
576 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
577 			aprint_error_dev(sc->sc_dev,
578 			    "unable to create tx DMA map %d, error = %d\n", i,
579 			    error);
580 			goto fail_4;
581 		}
582 	}
583 
584 	/*
585 	 * Create the receive buffer DMA maps.
586 	 */
587 	for (i = 0; i < ATW_NRXDESC; i++) {
588 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
589 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
590 			aprint_error_dev(sc->sc_dev,
591 			    "unable to create rx DMA map %d, error = %d\n", i,
592 			    error);
593 			goto fail_5;
594 		}
595 	}
596 	for (i = 0; i < ATW_NRXDESC; i++) {
597 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
598 	}
599 
600 	switch (sc->sc_rev) {
601 	case ATW_REVISION_AB:
602 	case ATW_REVISION_AF:
603 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
604 		break;
605 	case ATW_REVISION_BA:
606 	case ATW_REVISION_CA:
607 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
608 		break;
609 	}
610 
611 	/* Reset the chip to a known state. */
612 	atw_reset(sc);
613 
614 	if (atw_read_srom(sc) == -1)
615 		return;
616 
617 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
618 	    ATW_SR_RFTYPE_MASK);
619 
620 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
621 	    ATW_SR_BBPTYPE_MASK);
622 
623 	if (sc->sc_rftype >= __arraycount(type_strings)) {
624 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
625 		return;
626 	}
627 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
628 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
629 		return;
630 	}
631 
632 	printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
633 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
634 
635 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
636 	 * MARVEL. My bug, or theirs?
637 	 */
638 
639 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
640 
641 	switch (sc->sc_rftype) {
642 	case ATW_RFTYPE_INTERSIL:
643 		reg |= ATW_SYNCTL_CS1;
644 		break;
645 	case ATW_RFTYPE_RFMD:
646 		reg |= ATW_SYNCTL_CS0;
647 		break;
648 	case ATW_RFTYPE_MARVEL:
649 		break;
650 	}
651 
652 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
653 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
654 
655 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
656 
657 	switch (sc->sc_bbptype) {
658 	case ATW_BBPTYPE_INTERSIL:
659 		reg |= ATW_BBPCTL_TWI;
660 		break;
661 	case ATW_BBPTYPE_RFMD:
662 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
663 		    ATW_BBPCTL_CCA_ACTLO;
664 		break;
665 	case ATW_BBPTYPE_MARVEL:
666 		break;
667 	case ATW_C_BBPTYPE_RFMD:
668 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
669 		    device_xname(sc->sc_dev));
670 		break;
671 	}
672 
673 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
674 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
675 
676 	/*
677 	 * From this point forward, the attachment cannot fail.  A failure
678 	 * before this point releases all resources that may have been
679 	 * allocated.
680 	 */
681 	sc->sc_flags |= ATWF_ATTACHED;
682 
683 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
684 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
685 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
686 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
687 
688 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
689 	    ATW_SR_MAJOR_MASK);
690 
691 	if (srom_major < 2)
692 		sc->sc_rf3000_options1 = 0;
693 	else if (sc->sc_rev == ATW_REVISION_BA) {
694 		sc->sc_rf3000_options1 =
695 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
696 		    ATW_SR_CR28_MASK);
697 	} else
698 		sc->sc_rf3000_options1 = 0;
699 
700 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
701 	    ATW_SR_CR29_MASK);
702 
703 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
704 	    ATW_SR_CTRY_MASK);
705 
706 #define ADD_CHANNEL(_ic, _chan) do {					\
707 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
708 	_ic->ic_channels[_chan].ic_freq =				\
709 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
710 } while (0)
711 
712 	/* Find available channels */
713 	switch (country_code) {
714 	case COUNTRY_MMK2:	/* 1-14 */
715 		ADD_CHANNEL(ic, 14);
716 		/*FALLTHROUGH*/
717 	case COUNTRY_ETSI:	/* 1-13 */
718 		for (i = 1; i <= 13; i++)
719 			ADD_CHANNEL(ic, i);
720 		break;
721 	case COUNTRY_FCC:	/* 1-11 */
722 	case COUNTRY_IC:	/* 1-11 */
723 		for (i = 1; i <= 11; i++)
724 			ADD_CHANNEL(ic, i);
725 		break;
726 	case COUNTRY_MMK:	/* 14 */
727 		ADD_CHANNEL(ic, 14);
728 		break;
729 	case COUNTRY_FRANCE:	/* 10-13 */
730 		for (i = 10; i <= 13; i++)
731 			ADD_CHANNEL(ic, i);
732 		break;
733 	default:	/* assume channels 10-11 */
734 	case COUNTRY_SPAIN:	/* 10-11 */
735 		for (i = 10; i <= 11; i++)
736 			ADD_CHANNEL(ic, i);
737 		break;
738 	}
739 
740 	/* Read the MAC address. */
741 	reg = ATW_READ(sc, ATW_PAR0);
742 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
743 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
744 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
745 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
746 	reg = ATW_READ(sc, ATW_PAR1);
747 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
748 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
749 
750 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
751 		printf(" could not get mac address, attach failed\n");
752 		return;
753 	}
754 
755 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
756 
757 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
758 	ifp->if_softc = sc;
759 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
760 	    IFF_NOTRAILERS;
761 	ifp->if_ioctl = atw_ioctl;
762 	ifp->if_start = atw_start;
763 	ifp->if_watchdog = atw_watchdog;
764 	ifp->if_init = atw_init;
765 	ifp->if_stop = atw_stop;
766 	IFQ_SET_READY(&ifp->if_snd);
767 
768 	ic->ic_ifp = ifp;
769 	ic->ic_phytype = IEEE80211_T_DS;
770 	ic->ic_opmode = IEEE80211_M_STA;
771 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
772 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
773 
774 	nrate = 0;
775 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
776 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
777 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
778 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
779 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
780 
781 	/*
782 	 * Call MI attach routines.
783 	 */
784 
785 	if_attach(ifp);
786 	ieee80211_ifattach(ic);
787 
788 	atw_evcnt_attach(sc);
789 
790 	sc->sc_newstate = ic->ic_newstate;
791 	ic->ic_newstate = atw_newstate;
792 
793 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
794 	ic->ic_recv_mgmt = atw_recv_mgmt;
795 
796 	sc->sc_node_free = ic->ic_node_free;
797 	ic->ic_node_free = atw_node_free;
798 
799 	sc->sc_node_alloc = ic->ic_node_alloc;
800 	ic->ic_node_alloc = atw_node_alloc;
801 
802 	ic->ic_crypto.cs_key_delete = atw_key_delete;
803 	ic->ic_crypto.cs_key_set = atw_key_set;
804 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
805 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
806 
807 	/* possibly we should fill in our own sc_send_prresp, since
808 	 * the ADM8211 is probably sending probe responses in ad hoc
809 	 * mode.
810 	 */
811 
812 	/* complete initialization */
813 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
814 	callout_init(&sc->sc_scan_ch, 0);
815 
816 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
817 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
818 
819 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
820 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
821 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
822 
823 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
824 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
825 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
826 
827 	ieee80211_announce(ic);
828 	return;
829 
830 	/*
831 	 * Free any resources we've allocated during the failed attach
832 	 * attempt.  Do this in reverse order and fall through.
833 	 */
834  fail_5:
835 	for (i = 0; i < ATW_NRXDESC; i++) {
836 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
837 			continue;
838 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
839 	}
840  fail_4:
841 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
842 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
843 			continue;
844 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
845 	}
846 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
847  fail_3:
848 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
849  fail_2:
850 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
851 	    sizeof(struct atw_control_data));
852  fail_1:
853 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
854  fail_0:
855 	return;
856 }
857 
858 static struct ieee80211_node *
859 atw_node_alloc(struct ieee80211_node_table *nt)
860 {
861 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
862 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
863 
864 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
865 	return ni;
866 }
867 
868 static void
869 atw_node_free(struct ieee80211_node *ni)
870 {
871 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
872 
873 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
874 	    ether_sprintf(ni->ni_bssid)));
875 	(*sc->sc_node_free)(ni);
876 }
877 
878 
879 static void
880 atw_test1_reset(struct atw_softc *sc)
881 {
882 	switch (sc->sc_rev) {
883 	case ATW_REVISION_BA:
884 		if (1 /* XXX condition on transceiver type */) {
885 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
886 		}
887 		break;
888 	case ATW_REVISION_CA:
889 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
890 		break;
891 	default:
892 		break;
893 	}
894 }
895 
896 /*
897  * atw_reset:
898  *
899  *	Perform a soft reset on the ADM8211.
900  */
901 void
902 atw_reset(struct atw_softc *sc)
903 {
904 	int i;
905 	uint32_t lpc;
906 
907 	ATW_WRITE(sc, ATW_NAR, 0x0);
908 	DELAY(atw_nar_delay);
909 
910 	/* Reference driver has a cryptic remark indicating that this might
911 	 * power-on the chip.  I know that it turns off power-saving....
912 	 */
913 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
914 
915 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
916 
917 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
918 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
919 			break;
920 		DELAY(atw_pseudo_milli);
921 	}
922 
923 	/* ... and then pause 100ms longer for good measure. */
924 	DELAY(atw_magic_delay1);
925 
926 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
927 
928 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
929 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
930 
931 	/*
932 	 * Initialize the PCI Access Register.
933 	 */
934 	sc->sc_busmode = ATW_PAR_PBL_8DW;
935 
936 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
937 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
938 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
939 
940 	atw_test1_reset(sc);
941 
942 	/* Turn off maximum power saving, etc. */
943 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
944 
945 	DELAY(atw_magic_delay2);
946 
947 	/* Recall EEPROM. */
948 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
949 
950 	DELAY(atw_magic_delay4);
951 
952 	lpc = ATW_READ(sc, ATW_LPC);
953 
954 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
955 
956 	/* A reset seems to affect the SRAM contents, so put them into
957 	 * a known state.
958 	 */
959 	atw_clear_sram(sc);
960 
961 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
962 }
963 
964 static void
965 atw_clear_sram(struct atw_softc *sc)
966 {
967 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
968 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
969 	/* XXX not for revision 0x20. */
970 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
971 }
972 
973 /* TBD atw_init
974  *
975  * set MAC based on ic->ic_bss->myaddr
976  * write WEP keys
977  * set TX rate
978  */
979 
980 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
981  * without receiving a beacon with the preferred BSSID & SSID.
982  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
983  */
984 static void
985 atw_wcsr_init(struct atw_softc *sc)
986 {
987 	uint32_t wcsr;
988 
989 	wcsr = ATW_READ(sc, ATW_WCSR);
990 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
991 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
992 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
993 
994 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
995 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
996 }
997 
998 /* Turn off power management.  Set Rx store-and-forward mode. */
999 static void
1000 atw_cmdr_init(struct atw_softc *sc)
1001 {
1002 	uint32_t cmdr;
1003 	cmdr = ATW_READ(sc, ATW_CMDR);
1004 	cmdr &= ~ATW_CMDR_APM;
1005 	cmdr |= ATW_CMDR_RTE;
1006 	cmdr &= ~ATW_CMDR_DRT_MASK;
1007 	cmdr |= ATW_CMDR_DRT_SF;
1008 
1009 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1010 }
1011 
1012 static void
1013 atw_tofs2_init(struct atw_softc *sc)
1014 {
1015 	uint32_t tofs2;
1016 	/* XXX this magic can probably be figured out from the RFMD docs */
1017 #ifndef ATW_REFSLAVE
1018 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1019 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1020 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1021 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1022 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1023 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1024 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1025 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1026 #else
1027 	/* XXX new magic from reference driver source */
1028 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1029 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1030 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1031 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1032 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1033 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1034 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1035 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1036 #endif
1037 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1038 }
1039 
1040 static void
1041 atw_nar_init(struct atw_softc *sc)
1042 {
1043 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1044 }
1045 
1046 static void
1047 atw_txlmt_init(struct atw_softc *sc)
1048 {
1049 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1050 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1051 }
1052 
1053 static void
1054 atw_test1_init(struct atw_softc *sc)
1055 {
1056 	uint32_t test1;
1057 
1058 	test1 = ATW_READ(sc, ATW_TEST1);
1059 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1060 	/* XXX magic 0x1 */
1061 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1062 	ATW_WRITE(sc, ATW_TEST1, test1);
1063 }
1064 
1065 static void
1066 atw_rf_reset(struct atw_softc *sc)
1067 {
1068 	/* XXX this resets an Intersil RF front-end? */
1069 	/* TBD condition on Intersil RFType? */
1070 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1071 	DELAY(atw_rf_delay1);
1072 	ATW_WRITE(sc, ATW_SYNRF, 0);
1073 	DELAY(atw_rf_delay2);
1074 }
1075 
1076 /* Set 16 TU max duration for the contention-free period (CFP). */
1077 static void
1078 atw_cfp_init(struct atw_softc *sc)
1079 {
1080 	uint32_t cfpp;
1081 
1082 	cfpp = ATW_READ(sc, ATW_CFPP);
1083 	cfpp &= ~ATW_CFPP_CFPMD;
1084 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1085 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1086 }
1087 
1088 static void
1089 atw_tofs0_init(struct atw_softc *sc)
1090 {
1091 	/* XXX I guess that the Cardbus clock is 22 MHz?
1092 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1093 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1094 	 * very clear on this point. It says in the datasheet that it is
1095 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1096 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1097 	 * these values. These values are also the power-on default.
1098 	 */
1099 	ATW_WRITE(sc, ATW_TOFS0,
1100 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1101 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1102 }
1103 
1104 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1105 static void
1106 atw_ifs_init(struct atw_softc *sc)
1107 {
1108 	uint32_t ifst;
1109 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1110 	 * Go figure.
1111 	 */
1112 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1113 	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1114 	             ATW_IFST_SIFS_MASK) |
1115 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1116 	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1117 
1118 	ATW_WRITE(sc, ATW_IFST, ifst);
1119 }
1120 
1121 static void
1122 atw_response_times_init(struct atw_softc *sc)
1123 {
1124 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1125 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1126 	 * to pass after it transmits a frame that requires a response;
1127 	 * it waits at most SIFS + MART microseconds for the response.
1128 	 * Surely this is not the ACK timeout?
1129 	 */
1130 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1131 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1132 }
1133 
1134 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1135  * engines read and write baseband registers after Rx and before
1136  * Tx, respectively.
1137  */
1138 static void
1139 atw_bbp_io_init(struct atw_softc *sc)
1140 {
1141 	uint32_t mmiraddr2;
1142 
1143 	/* XXX The reference driver does this, but is it *really*
1144 	 * necessary?
1145 	 */
1146 	switch (sc->sc_rev) {
1147 	case ATW_REVISION_AB:
1148 	case ATW_REVISION_AF:
1149 		mmiraddr2 = 0x0;
1150 		break;
1151 	default:
1152 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1153 		mmiraddr2 &=
1154 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1155 		break;
1156 	}
1157 
1158 	switch (sc->sc_bbptype) {
1159 	case ATW_BBPTYPE_INTERSIL:
1160 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1161 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1162 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1163 		break;
1164 	case ATW_BBPTYPE_MARVEL:
1165 		/* TBD find out the Marvel settings. */
1166 		break;
1167 	case ATW_BBPTYPE_RFMD:
1168 	default:
1169 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1170 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1171 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1172 		break;
1173 	}
1174 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1175 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1176 }
1177 
1178 /*
1179  * atw_init:		[ ifnet interface function ]
1180  *
1181  *	Initialize the interface.  Must be called at splnet().
1182  */
1183 int
1184 atw_init(struct ifnet *ifp)
1185 {
1186 	struct atw_softc *sc = ifp->if_softc;
1187 	struct ieee80211com *ic = &sc->sc_ic;
1188 	struct atw_txsoft *txs;
1189 	struct atw_rxsoft *rxs;
1190 	int i, error = 0;
1191 
1192 	if (device_is_active(sc->sc_dev)) {
1193 		/*
1194 		 * Cancel any pending I/O.
1195 		 */
1196 		atw_stop(ifp, 0);
1197 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1198 	           !device_is_active(sc->sc_dev))
1199 		return 0;
1200 
1201 	/*
1202 	 * Reset the chip to a known state.
1203 	 */
1204 	atw_reset(sc);
1205 
1206 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1207 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1208 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1209 
1210 	atw_wcsr_init(sc);
1211 
1212 	atw_cmdr_init(sc);
1213 
1214 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1215 	 *
1216 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1217 	 */
1218 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1219 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1220 
1221 	atw_tofs2_init(sc);
1222 
1223 	atw_nar_init(sc);
1224 
1225 	atw_txlmt_init(sc);
1226 
1227 	atw_test1_init(sc);
1228 
1229 	atw_rf_reset(sc);
1230 
1231 	atw_cfp_init(sc);
1232 
1233 	atw_tofs0_init(sc);
1234 
1235 	atw_ifs_init(sc);
1236 
1237 	/* XXX Fall asleep after one second of inactivity.
1238 	 * XXX A frame may only dribble in for 65536us.
1239 	 */
1240 	ATW_WRITE(sc, ATW_RMD,
1241 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1242 
1243 	atw_response_times_init(sc);
1244 
1245 	atw_bbp_io_init(sc);
1246 
1247 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1248 
1249 	if ((error = atw_rf3000_init(sc)) != 0)
1250 		goto out;
1251 
1252 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1253 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1254 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1255 
1256 	/*
1257 	 * Initialize the transmit descriptor ring.
1258 	 */
1259 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1260 	for (i = 0; i < ATW_NTXDESC; i++) {
1261 		sc->sc_txdescs[i].at_ctl = 0;
1262 		/* no transmit chaining */
1263 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1264 		sc->sc_txdescs[i].at_buf2 =
1265 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1266 	}
1267 	/* use ring mode */
1268 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1269 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1270 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1271 	sc->sc_txfree = ATW_NTXDESC;
1272 	sc->sc_txnext = 0;
1273 
1274 	/*
1275 	 * Initialize the transmit job descriptors.
1276 	 */
1277 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1278 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1279 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1280 		txs = &sc->sc_txsoft[i];
1281 		txs->txs_mbuf = NULL;
1282 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1283 	}
1284 
1285 	/*
1286 	 * Initialize the receive descriptor and receive job
1287 	 * descriptor rings.
1288 	 */
1289 	for (i = 0; i < ATW_NRXDESC; i++) {
1290 		rxs = &sc->sc_rxsoft[i];
1291 		if (rxs->rxs_mbuf == NULL) {
1292 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1293 				aprint_error_dev(sc->sc_dev,
1294 				    "unable to allocate or map rx buffer %d, "
1295 				    "error = %d\n", i, error);
1296 				/*
1297 				 * XXX Should attempt to run with fewer receive
1298 				 * XXX buffers instead of just failing.
1299 				 */
1300 				atw_rxdrain(sc);
1301 				goto out;
1302 			}
1303 		} else
1304 			atw_init_rxdesc(sc, i);
1305 	}
1306 	sc->sc_rxptr = 0;
1307 
1308 	/*
1309 	 * Initialize the interrupt mask and enable interrupts.
1310 	 */
1311 	/* normal interrupts */
1312 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1313 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1314 
1315 	/* abnormal interrupts */
1316 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1317 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1318 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1319 
1320 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1321 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1322 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1323 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1324 	    ATW_INTR_TRT;
1325 
1326 	sc->sc_linkint_mask &= sc->sc_inten;
1327 	sc->sc_rxint_mask &= sc->sc_inten;
1328 	sc->sc_txint_mask &= sc->sc_inten;
1329 
1330 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1331 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1332 
1333 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1334 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1335 
1336 	/*
1337 	 * Give the transmit and receive rings to the ADM8211.
1338 	 */
1339 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1340 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1341 
1342 	sc->sc_txthresh = 0;
1343 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1344 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1345 
1346 	/* common 802.11 configuration */
1347 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1348 	switch (ic->ic_opmode) {
1349 	case IEEE80211_M_STA:
1350 		break;
1351 	case IEEE80211_M_AHDEMO: /* XXX */
1352 	case IEEE80211_M_IBSS:
1353 		ic->ic_flags |= IEEE80211_F_IBSSON;
1354 		/*FALLTHROUGH*/
1355 	case IEEE80211_M_HOSTAP: /* XXX */
1356 		break;
1357 	case IEEE80211_M_MONITOR: /* XXX */
1358 		break;
1359 	}
1360 
1361 	switch (ic->ic_opmode) {
1362 	case IEEE80211_M_AHDEMO:
1363 	case IEEE80211_M_HOSTAP:
1364 #ifndef IEEE80211_NO_HOSTAP
1365 		ic->ic_bss->ni_intval = ic->ic_lintval;
1366 		ic->ic_bss->ni_rssi = 0;
1367 		ic->ic_bss->ni_rstamp = 0;
1368 #endif /* !IEEE80211_NO_HOSTAP */
1369 		break;
1370 	default:					/* XXX */
1371 		break;
1372 	}
1373 
1374 	sc->sc_wepctl = 0;
1375 
1376 	atw_write_ssid(sc);
1377 	atw_write_sup_rates(sc);
1378 	atw_write_wep(sc);
1379 
1380 	ic->ic_state = IEEE80211_S_INIT;
1381 
1382 	/*
1383 	 * Set the receive filter.  This will start the transmit and
1384 	 * receive processes.
1385 	 */
1386 	atw_filter_setup(sc);
1387 
1388 	/*
1389 	 * Start the receive process.
1390 	 */
1391 	ATW_WRITE(sc, ATW_RDR, 0x1);
1392 
1393 	/*
1394 	 * Note that the interface is now running.
1395 	 */
1396 	ifp->if_flags |= IFF_RUNNING;
1397 
1398 	/* send no beacons, yet. */
1399 	atw_start_beacon(sc, 0);
1400 
1401 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1402 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1403 	else
1404 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1405  out:
1406 	if (error) {
1407 		ifp->if_flags &= ~IFF_RUNNING;
1408 		sc->sc_tx_timer = 0;
1409 		ifp->if_timer = 0;
1410 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1411 	}
1412 #ifdef ATW_DEBUG
1413 	atw_print_regs(sc, "end of init");
1414 #endif /* ATW_DEBUG */
1415 
1416 	return (error);
1417 }
1418 
1419 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1420  *           0: MAC control of RF3000/Si4126.
1421  *
1422  * Applies power, or selects RF front-end? Sets reset condition.
1423  *
1424  * TBD support non-RFMD BBP, non-SiLabs synth.
1425  */
1426 static void
1427 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1428 {
1429 	if (enable) {
1430 		ATW_WRITE(sc, ATW_SYNRF,
1431 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1432 		DELAY(atw_bbp_io_enable_delay);
1433 	} else {
1434 		ATW_WRITE(sc, ATW_SYNRF, 0);
1435 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1436 	}
1437 }
1438 
1439 static int
1440 atw_tune(struct atw_softc *sc)
1441 {
1442 	int rc;
1443 	u_int chan;
1444 	struct ieee80211com *ic = &sc->sc_ic;
1445 
1446 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1447 	if (chan == IEEE80211_CHAN_ANY)
1448 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1449 
1450 	if (chan == sc->sc_cur_chan)
1451 		return 0;
1452 
1453 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1454 	    sc->sc_cur_chan, chan));
1455 
1456 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1457 
1458 	atw_si4126_tune(sc, chan);
1459 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1460 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1461 		    chan);
1462 
1463 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1464 	DELAY(atw_nar_delay);
1465 	ATW_WRITE(sc, ATW_RDR, 0x1);
1466 
1467 	if (rc == 0) {
1468 		sc->sc_cur_chan = chan;
1469 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1470 		    htole16(ic->ic_curchan->ic_freq);
1471 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1472 		    htole16(ic->ic_curchan->ic_flags);
1473 	}
1474 
1475 	return rc;
1476 }
1477 
1478 #ifdef ATW_SYNDEBUG
1479 static void
1480 atw_si4126_print(struct atw_softc *sc)
1481 {
1482 	struct ifnet *ifp = &sc->sc_if;
1483 	u_int addr, val;
1484 
1485 	val = 0;
1486 
1487 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1488 		return;
1489 
1490 	for (addr = 0; addr <= 8; addr++) {
1491 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1492 		if (atw_si4126_read(sc, addr, &val) == 0) {
1493 			printf("<unknown> (quitting print-out)\n");
1494 			break;
1495 		}
1496 		printf("%05x\n", val);
1497 	}
1498 }
1499 #endif /* ATW_SYNDEBUG */
1500 
1501 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1502  *
1503  * The RF/IF synthesizer produces two reference frequencies for
1504  * the RF2948B transceiver.  The first frequency the RF2948B requires
1505  * is two times the so-called "intermediate frequency" (IF). Since
1506  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1507  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1508  * frequency required by the transceiver is the radio frequency
1509  * (RF). This is a superheterodyne transceiver; for f(chan) the
1510  * center frequency of the channel we are tuning, RF = f(chan) -
1511  * IF.
1512  *
1513  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1514  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1515  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1516  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1517  */
1518 static void
1519 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1520 {
1521 	u_int mhz;
1522 	u_int R;
1523 	u_int32_t gpio;
1524 	u_int16_t gain;
1525 
1526 #ifdef ATW_SYNDEBUG
1527 	atw_si4126_print(sc);
1528 #endif /* ATW_SYNDEBUG */
1529 
1530 	if (chan == 14)
1531 		mhz = 2484;
1532 	else
1533 		mhz = 2412 + 5 * (chan - 1);
1534 
1535 	/* Tune IF to 748 MHz to suit the IF LO input of the
1536 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1537          * because an IF in 526 MHz - 952 MHz is allowed.
1538 	 *
1539 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1540 	 * range of 2-25 MHz. SiLabs tells me that this is not
1541 	 * strictly necessary.
1542 	 */
1543 
1544 	if (atw_xindiv2)
1545 		R = 44;
1546 	else
1547 		R = 88;
1548 
1549 	/* Power-up RF, IF synthesizers. */
1550 	atw_si4126_write(sc, SI4126_POWER,
1551 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1552 
1553 	/* set LPWR, too? */
1554 	atw_si4126_write(sc, SI4126_MAIN,
1555 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1556 
1557 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1558 	 * set KP2 to 1.
1559 	 *
1560 	 * REFDIF This is different from the reference driver, which
1561 	 * always sets SI4126_GAIN to 0.
1562 	 */
1563 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1564 
1565 	atw_si4126_write(sc, SI4126_GAIN, gain);
1566 
1567 	/* XIN = 44 MHz.
1568 	 *
1569 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1570 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1571 	 *
1572 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1573 	 * so that 1496/88 * 44 MHz = 748 MHz.
1574 	 */
1575 	atw_si4126_write(sc, SI4126_IFN, 1496);
1576 
1577 	atw_si4126_write(sc, SI4126_IFR, R);
1578 
1579 #ifndef ATW_REFSLAVE
1580 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1581 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1582 	 * which has no RF1!
1583 	 */
1584 	atw_si4126_write(sc, SI4126_RF1R, R);
1585 
1586 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1587 #endif
1588 
1589 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1590 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1591 	 * Now let's multiply it to mhz. So mhz - IF = N.
1592 	 */
1593 	atw_si4126_write(sc, SI4126_RF2R, R);
1594 
1595 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1596 
1597 	/* wait 100us from power-up for RF, IF to settle */
1598 	DELAY(100);
1599 
1600 	gpio = ATW_READ(sc, ATW_GPIO);
1601 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1602 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1603 
1604 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1605 		/* Set a Prism RF front-end to a special mode for channel 14?
1606 		 *
1607 		 * Apparently the SMC2635W needs this, although I don't think
1608 		 * it has a Prism RF.
1609 		 */
1610 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1611 	}
1612 	ATW_WRITE(sc, ATW_GPIO, gpio);
1613 
1614 #ifdef ATW_SYNDEBUG
1615 	atw_si4126_print(sc);
1616 #endif /* ATW_SYNDEBUG */
1617 }
1618 
1619 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1620  * diversity.
1621  *
1622  * !!!
1623  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1624  * !!!
1625  */
1626 static int
1627 atw_rf3000_init(struct atw_softc *sc)
1628 {
1629 	int rc = 0;
1630 
1631 	atw_bbp_io_enable(sc, 1);
1632 
1633 	/* CCA is acquisition sensitive */
1634 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1635 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1636 
1637 	if (rc != 0)
1638 		goto out;
1639 
1640 	/* enable diversity */
1641 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1642 
1643 	if (rc != 0)
1644 		goto out;
1645 
1646 	/* sensible setting from a binary-only driver */
1647 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1648 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1649 
1650 	if (rc != 0)
1651 		goto out;
1652 
1653 	/* magic from a binary-only driver */
1654 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1655 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1656 
1657 	if (rc != 0)
1658 		goto out;
1659 
1660 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1661 
1662 	if (rc != 0)
1663 		goto out;
1664 
1665 	/* XXX Reference driver remarks that Abocom sets this to 50.
1666 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1667 	 * in the "reserved" area of register RF3000_OPTIONS1.
1668 	 */
1669 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1670 
1671 	if (rc != 0)
1672 		goto out;
1673 
1674 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1675 
1676 	if (rc != 0)
1677 		goto out;
1678 
1679 out:
1680 	atw_bbp_io_enable(sc, 0);
1681 	return rc;
1682 }
1683 
1684 #ifdef ATW_BBPDEBUG
1685 static void
1686 atw_rf3000_print(struct atw_softc *sc)
1687 {
1688 	struct ifnet *ifp = &sc->sc_if;
1689 	u_int addr, val;
1690 
1691 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1692 		return;
1693 
1694 	for (addr = 0x01; addr <= 0x15; addr++) {
1695 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1696 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1697 			printf("<unknown> (quitting print-out)\n");
1698 			break;
1699 		}
1700 		printf("%08x\n", val);
1701 	}
1702 }
1703 #endif /* ATW_BBPDEBUG */
1704 
1705 /* Set the power settings on the BBP for channel `chan'. */
1706 static int
1707 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1708 {
1709 	int rc = 0;
1710 	u_int32_t reg;
1711 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1712 
1713 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1714 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1715 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1716 
1717 	/* odd channels: LSB, even channels: MSB */
1718 	if (chan % 2 == 1) {
1719 		txpower &= 0xFF;
1720 		lpf_cutoff &= 0xFF;
1721 		lna_gs_thresh &= 0xFF;
1722 	} else {
1723 		txpower >>= 8;
1724 		lpf_cutoff >>= 8;
1725 		lna_gs_thresh >>= 8;
1726 	}
1727 
1728 #ifdef ATW_BBPDEBUG
1729 	atw_rf3000_print(sc);
1730 #endif /* ATW_BBPDEBUG */
1731 
1732 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1733 	    "lna_gs_thresh %02x\n",
1734 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1735 
1736 	atw_bbp_io_enable(sc, 1);
1737 
1738 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1739 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1740 		goto out;
1741 
1742 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1743 		goto out;
1744 
1745 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1746 		goto out;
1747 
1748 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1749 
1750 	if (rc != 0)
1751 		goto out;
1752 
1753 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1754 
1755 	if (rc != 0)
1756 		goto out;
1757 
1758 #ifdef ATW_BBPDEBUG
1759 	atw_rf3000_print(sc);
1760 #endif /* ATW_BBPDEBUG */
1761 
1762 out:
1763 	atw_bbp_io_enable(sc, 0);
1764 
1765 	/* set beacon, rts, atim transmit power */
1766 	reg = ATW_READ(sc, ATW_PLCPHD);
1767 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1768 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1769 	    ATW_PLCPHD_SERVICE_MASK);
1770 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1771 	DELAY(atw_plcphd_delay);
1772 
1773 	return rc;
1774 }
1775 
1776 /* Write a register on the RF3000 baseband processor using the
1777  * registers provided by the ADM8211 for this purpose.
1778  *
1779  * Return 0 on success.
1780  */
1781 static int
1782 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1783 {
1784 	u_int32_t reg;
1785 	int i;
1786 
1787 	reg = sc->sc_bbpctl_wr |
1788 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1789 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1790 
1791 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1792 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1793 		DELAY(2 * atw_pseudo_milli);
1794 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1795 			break;
1796 	}
1797 
1798 	if (i < 0) {
1799 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1800 		return ETIMEDOUT;
1801 	}
1802 	return 0;
1803 }
1804 
1805 /* Read a register on the RF3000 baseband processor using the registers
1806  * the ADM8211 provides for this purpose.
1807  *
1808  * The 7-bit register address is addr.  Record the 8-bit data in the register
1809  * in *val.
1810  *
1811  * Return 0 on success.
1812  *
1813  * XXX This does not seem to work. The ADM8211 must require more or
1814  * different magic to read the chip than to write it. Possibly some
1815  * of the magic I have derived from a binary-only driver concerns
1816  * the "chip address" (see the RF3000 manual).
1817  */
1818 #ifdef ATW_BBPDEBUG
1819 static int
1820 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1821 {
1822 	u_int32_t reg;
1823 	int i;
1824 
1825 	for (i = 1000; --i >= 0; ) {
1826 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1827 			break;
1828 		DELAY(100);
1829 	}
1830 
1831 	if (i < 0) {
1832 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1833 		    device_xname(sc->sc_dev));
1834 		return ETIMEDOUT;
1835 	}
1836 
1837 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1838 
1839 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1840 
1841 	for (i = 1000; --i >= 0; ) {
1842 		DELAY(100);
1843 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1844 			break;
1845 	}
1846 
1847 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1848 
1849 	if (i < 0) {
1850 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1851 		    device_xname(sc->sc_dev), reg);
1852 		return ETIMEDOUT;
1853 	}
1854 	if (val != NULL)
1855 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1856 	return 0;
1857 }
1858 #endif /* ATW_BBPDEBUG */
1859 
1860 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1861  * provided by the ADM8211 for that purpose.
1862  *
1863  * val is 18 bits of data, and val is the 4-bit address of the register.
1864  *
1865  * Return 0 on success.
1866  */
1867 static void
1868 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1869 {
1870 	uint32_t bits, mask, reg;
1871 	const int nbits = 22;
1872 
1873 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1874 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1875 
1876 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1877 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1878 
1879 	reg = ATW_SYNRF_SELSYN;
1880 	/* reference driver: reset Si4126 serial bus to initial
1881 	 * conditions?
1882 	 */
1883 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1884 	ATW_WRITE(sc, ATW_SYNRF, reg);
1885 
1886 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1887 		if ((bits & mask) != 0)
1888 			reg |= ATW_SYNRF_SYNDATA;
1889 		else
1890 			reg &= ~ATW_SYNRF_SYNDATA;
1891 		ATW_WRITE(sc, ATW_SYNRF, reg);
1892 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1893 		ATW_WRITE(sc, ATW_SYNRF, reg);
1894 	}
1895 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1896 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1897 }
1898 
1899 /* Read 18-bit data from the 4-bit address addr in Si4126
1900  * RF synthesizer and write the data to *val. Return 0 on success.
1901  *
1902  * XXX This does not seem to work. The ADM8211 must require more or
1903  * different magic to read the chip than to write it.
1904  */
1905 #ifdef ATW_SYNDEBUG
1906 static int
1907 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1908 {
1909 	u_int32_t reg;
1910 	int i;
1911 
1912 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1913 
1914 	for (i = 1000; --i >= 0; ) {
1915 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1916 			break;
1917 		DELAY(100);
1918 	}
1919 
1920 	if (i < 0) {
1921 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1922 		    device_xname(sc->sc_dev));
1923 		return ETIMEDOUT;
1924 	}
1925 
1926 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1927 
1928 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1929 
1930 	for (i = 1000; --i >= 0; ) {
1931 		DELAY(100);
1932 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1933 			break;
1934 	}
1935 
1936 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1937 
1938 	if (i < 0) {
1939 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1940 		    device_xname(sc->sc_dev), reg);
1941 		return ETIMEDOUT;
1942 	}
1943 	if (val != NULL)
1944 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1945 		                       ATW_SYNCTL_DATA_MASK);
1946 	return 0;
1947 }
1948 #endif /* ATW_SYNDEBUG */
1949 
1950 /* XXX is the endianness correct? test. */
1951 #define	atw_calchash(addr) \
1952 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1953 
1954 /*
1955  * atw_filter_setup:
1956  *
1957  *	Set the ADM8211's receive filter.
1958  */
1959 static void
1960 atw_filter_setup(struct atw_softc *sc)
1961 {
1962 	struct ieee80211com *ic = &sc->sc_ic;
1963 	struct ethercom *ec = &sc->sc_ec;
1964 	struct ifnet *ifp = &sc->sc_if;
1965 	int hash;
1966 	u_int32_t hashes[2];
1967 	struct ether_multi *enm;
1968 	struct ether_multistep step;
1969 
1970 	/* According to comments in tlp_al981_filter_setup
1971 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1972 	 * multicast filter to be set while it is running.  Hopefully
1973 	 * the ADM8211 is not the same!
1974 	 */
1975 	if ((ifp->if_flags & IFF_RUNNING) != 0)
1976 		atw_idle(sc, ATW_NAR_SR);
1977 
1978 	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1979 	ifp->if_flags &= ~IFF_ALLMULTI;
1980 
1981 	/* XXX in scan mode, do not filter packets.  Maybe this is
1982 	 * unnecessary.
1983 	 */
1984 	if (ic->ic_state == IEEE80211_S_SCAN ||
1985 	    (ifp->if_flags & IFF_PROMISC) != 0) {
1986 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1987 		goto allmulti;
1988 	}
1989 
1990 	hashes[0] = hashes[1] = 0x0;
1991 
1992 	/*
1993 	 * Program the 64-bit multicast hash filter.
1994 	 */
1995 	ETHER_FIRST_MULTI(step, ec, enm);
1996 	while (enm != NULL) {
1997 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1998 		    ETHER_ADDR_LEN) != 0)
1999 			goto allmulti;
2000 
2001 		hash = atw_calchash(enm->enm_addrlo);
2002 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2003 		ETHER_NEXT_MULTI(step, enm);
2004 		sc->sc_opmode |= ATW_NAR_MM;
2005 	}
2006 	ifp->if_flags &= ~IFF_ALLMULTI;
2007 	goto setit;
2008 
2009 allmulti:
2010 	sc->sc_opmode |= ATW_NAR_MM;
2011 	ifp->if_flags |= IFF_ALLMULTI;
2012 	hashes[0] = hashes[1] = 0xffffffff;
2013 
2014 setit:
2015 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2016 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2017 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2018 	DELAY(atw_nar_delay);
2019 	ATW_WRITE(sc, ATW_RDR, 0x1);
2020 
2021 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2022 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2023 }
2024 
2025 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2026  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2027  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2028  * no beacon with the preferred BSSID and SSID in the number of
2029  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2030  */
2031 static void
2032 atw_write_bssid(struct atw_softc *sc)
2033 {
2034 	struct ieee80211com *ic = &sc->sc_ic;
2035 	u_int8_t *bssid;
2036 
2037 	bssid = ic->ic_bss->ni_bssid;
2038 
2039 	ATW_WRITE(sc, ATW_BSSID0,
2040 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2041 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2042 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2043 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2044 
2045 	ATW_WRITE(sc, ATW_ABDA1,
2046 	    (ATW_READ(sc, ATW_ABDA1) &
2047 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2048 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2049 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2050 
2051 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2052 	    ether_sprintf(sc->sc_bssid)));
2053 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2054 
2055 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2056 }
2057 
2058 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2059  * 16-bit word.
2060  */
2061 static void
2062 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2063 {
2064 	u_int i;
2065 	u_int8_t *ptr;
2066 
2067 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2068 
2069 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2070 
2071 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2072 
2073 	ptr = &sc->sc_sram[ofs];
2074 
2075 	for (i = 0; i < buflen; i += 2) {
2076 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2077 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2078 		DELAY(atw_writewep_delay);
2079 
2080 		ATW_WRITE(sc, ATW_WESK,
2081 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2082 		DELAY(atw_writewep_delay);
2083 	}
2084 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2085 
2086 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2087 		int n_octets = 0;
2088 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2089 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2090 		for (i = 0; i < buflen; i++) {
2091 			printf(" %02x", ptr[i]);
2092 			if (++n_octets % 24 == 0)
2093 				printf("\n");
2094 		}
2095 		if (n_octets % 24 != 0)
2096 			printf("\n");
2097 	}
2098 }
2099 
2100 static int
2101 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2102 {
2103 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2104 	u_int keyix = k->wk_keyix;
2105 
2106 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2107 
2108 	if (keyix >= IEEE80211_WEP_NKID)
2109 		return 0;
2110 	if (k->wk_keylen != 0)
2111 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2112 
2113 	return 1;
2114 }
2115 
2116 static int
2117 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2118 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2119 {
2120 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2121 
2122 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2123 
2124 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2125 		return 0;
2126 
2127 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2128 
2129 	return 1;
2130 }
2131 
2132 static void
2133 atw_key_update_begin(struct ieee80211com *ic)
2134 {
2135 #ifdef ATW_DEBUG
2136 	struct ifnet *ifp = ic->ic_ifp;
2137 	struct atw_softc *sc = ifp->if_softc;
2138 #endif
2139 
2140 	DPRINTF(sc, ("%s:\n", __func__));
2141 }
2142 
2143 static void
2144 atw_key_update_end(struct ieee80211com *ic)
2145 {
2146 	struct ifnet *ifp = ic->ic_ifp;
2147 	struct atw_softc *sc = ifp->if_softc;
2148 
2149 	DPRINTF(sc, ("%s:\n", __func__));
2150 
2151 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2152 		return;
2153 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2154 		return;
2155 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2156 	atw_write_wep(sc);
2157 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2158 	DELAY(atw_nar_delay);
2159 	ATW_WRITE(sc, ATW_RDR, 0x1);
2160 }
2161 
2162 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2163 static void
2164 atw_write_wep(struct atw_softc *sc)
2165 {
2166 #if 0
2167 	struct ieee80211com *ic = &sc->sc_ic;
2168 	u_int32_t reg;
2169 	int i;
2170 #endif
2171 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2172 	u_int8_t buf[IEEE80211_WEP_NKID]
2173 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2174 
2175 	sc->sc_wepctl = 0;
2176 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2177 
2178 	memset(&buf[0][0], 0, sizeof(buf));
2179 
2180 #if 0
2181 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2182 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2183 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2184 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2185 			buf[i][1] = ATW_WEP_ENABLED;
2186 		} else {
2187 			buf[i][1] = 0;
2188 			continue;
2189 		}
2190 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2191 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2192 		    ic->ic_nw_keys[i].wk_keylen - 1);
2193 	}
2194 
2195 	reg = ATW_READ(sc, ATW_MACTEST);
2196 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2197 	reg &= ~ATW_MACTEST_KEYID_MASK;
2198 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2199 	ATW_WRITE(sc, ATW_MACTEST, reg);
2200 
2201 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2202 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2203 
2204 	switch (sc->sc_rev) {
2205 	case ATW_REVISION_AB:
2206 	case ATW_REVISION_AF:
2207 		/* Bypass WEP on Rx. */
2208 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2209 		break;
2210 	default:
2211 		break;
2212 	}
2213 #endif
2214 
2215 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2216 	    sizeof(buf));
2217 
2218 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2219 }
2220 
2221 static void
2222 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2223     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2224 {
2225 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2226 
2227 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2228 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2229 		return;
2230 
2231 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2232 
2233 	switch (subtype) {
2234 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2235 	case IEEE80211_FC0_SUBTYPE_BEACON:
2236 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2237 		    ic->ic_state == IEEE80211_S_RUN) {
2238 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2239 				(void)ieee80211_ibss_merge(ni);
2240 		}
2241 		break;
2242 	default:
2243 		break;
2244 	}
2245 	return;
2246 }
2247 
2248 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2249  * In ad hoc mode, the SSID is written to the beacons sent by the
2250  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2251  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2252  * indications.
2253  */
2254 static void
2255 atw_write_ssid(struct atw_softc *sc)
2256 {
2257 	struct ieee80211com *ic = &sc->sc_ic;
2258 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2259 	 * it only expects the element length, not its ID.
2260 	 */
2261 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2262 
2263 	memset(buf, 0, sizeof(buf));
2264 	buf[0] = ic->ic_bss->ni_esslen;
2265 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2266 
2267 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2268 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2269 }
2270 
2271 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2272  * In ad hoc mode, the supported rates are written to beacons sent by the
2273  * ADM8211.
2274  */
2275 static void
2276 atw_write_sup_rates(struct atw_softc *sc)
2277 {
2278 	struct ieee80211com *ic = &sc->sc_ic;
2279 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2280 	 * supported rates
2281 	 */
2282 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2283 
2284 	memset(buf, 0, sizeof(buf));
2285 
2286 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2287 
2288 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2289 	    ic->ic_bss->ni_rates.rs_nrates);
2290 
2291 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2292 }
2293 
2294 /* Start/stop sending beacons. */
2295 void
2296 atw_start_beacon(struct atw_softc *sc, int start)
2297 {
2298 	struct ieee80211com *ic = &sc->sc_ic;
2299 	uint16_t chan;
2300 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2301 	size_t len;
2302 
2303 	if (!device_is_active(sc->sc_dev))
2304 		return;
2305 
2306 	/* start beacons */
2307 	len = sizeof(struct ieee80211_frame) +
2308 	    8 /* timestamp */ + 2 /* beacon interval */ +
2309 	    2 /* capability info */ +
2310 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2311 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2312 	    3 /* DS parameters */ +
2313 	    IEEE80211_CRC_LEN;
2314 
2315 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2316 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2317 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2318 
2319 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2320 	ATW_WRITE(sc, ATW_CAP1, cap1);
2321 
2322 	if (!start)
2323 		return;
2324 
2325 	/* TBD use ni_capinfo */
2326 
2327 	capinfo = 0;
2328 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2329 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2330 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2331 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2332 
2333 	switch (ic->ic_opmode) {
2334 	case IEEE80211_M_IBSS:
2335 		len += 4; /* IBSS parameters */
2336 		capinfo |= IEEE80211_CAPINFO_IBSS;
2337 		break;
2338 	case IEEE80211_M_HOSTAP:
2339 		/* XXX 6-byte minimum TIM */
2340 		len += atw_beacon_len_adjust;
2341 		capinfo |= IEEE80211_CAPINFO_ESS;
2342 		break;
2343 	default:
2344 		return;
2345 	}
2346 
2347 	/* set listen interval
2348 	 * XXX do software units agree w/ hardware?
2349 	 */
2350 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2351 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2352 
2353 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2354 
2355 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2356 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2357 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2358 
2359 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2360 	ATW_WRITE(sc, ATW_BPLI, bpli);
2361 	ATW_WRITE(sc, ATW_CAP0, cap0);
2362 	ATW_WRITE(sc, ATW_CAP1, cap1);
2363 
2364 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2365 	    device_xname(sc->sc_dev), bcnt));
2366 
2367 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2368 	    device_xname(sc->sc_dev), cap1));
2369 }
2370 
2371 /* Return the 32 lsb of the last TSFT divisible by ival. */
2372 static inline uint32_t
2373 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2374 {
2375 	/* Following the reference driver's lead, I compute
2376 	 *
2377 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2378 	 *
2379 	 * without using 64-bit arithmetic, using the following
2380 	 * relationship:
2381 	 *
2382 	 *     (0x100000000 * H + L) % m
2383 	 *   = ((0x100000000 % m) * H + L) % m
2384 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2385 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2386 	 *   = ((0xffffffff % m + 1) * H + L) % m
2387 	 */
2388 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2389 }
2390 
2391 static uint64_t
2392 atw_get_tsft(struct atw_softc *sc)
2393 {
2394 	int i;
2395 	uint32_t tsfth, tsftl;
2396 	for (i = 0; i < 2; i++) {
2397 		tsfth = ATW_READ(sc, ATW_TSFTH);
2398 		tsftl = ATW_READ(sc, ATW_TSFTL);
2399 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2400 			break;
2401 	}
2402 	return ((uint64_t)tsfth << 32) | tsftl;
2403 }
2404 
2405 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2406  * the ieee80211com.
2407  *
2408  * Predict the next target beacon transmission time (TBTT) and
2409  * write it to the ADM8211.
2410  */
2411 static void
2412 atw_predict_beacon(struct atw_softc *sc)
2413 {
2414 #define TBTTOFS 20 /* TU */
2415 
2416 	struct ieee80211com *ic = &sc->sc_ic;
2417 	uint64_t tsft;
2418 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2419 	union {
2420 		uint64_t	word;
2421 		uint8_t		tstamp[8];
2422 	} u;
2423 
2424 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2425 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2426 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2427 		tsft = atw_get_tsft(sc);
2428 		u.word = htole64(tsft);
2429 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2430 		    sizeof(ic->ic_bss->ni_tstamp));
2431 	} else
2432 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2433 
2434 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2435 
2436 	tsftl = tsft & 0xFFFFFFFF;
2437 	tsfth = tsft >> 32;
2438 
2439 	/* We sent/received the last beacon `past' microseconds
2440 	 * after the interval divided the TSF timer.
2441 	 */
2442 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2443 
2444 	/* Skip ten beacons so that the TBTT cannot pass before
2445 	 * we've programmed it.  Ten is an arbitrary number.
2446 	 */
2447 	tbtt = past_even + ival * 10;
2448 
2449 	ATW_WRITE(sc, ATW_TOFS1,
2450 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2451 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2452 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2453 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2454 #undef TBTTOFS
2455 }
2456 
2457 static void
2458 atw_next_scan(void *arg)
2459 {
2460 	struct atw_softc *sc = arg;
2461 	struct ieee80211com *ic = &sc->sc_ic;
2462 	int s;
2463 
2464 	/* don't call atw_start w/o network interrupts blocked */
2465 	s = splnet();
2466 	if (ic->ic_state == IEEE80211_S_SCAN)
2467 		ieee80211_next_scan(ic);
2468 	splx(s);
2469 }
2470 
2471 /* Synchronize the hardware state with the software state. */
2472 static int
2473 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2474 {
2475 	struct ifnet *ifp = ic->ic_ifp;
2476 	struct atw_softc *sc = ifp->if_softc;
2477 	enum ieee80211_state ostate;
2478 	int error = 0;
2479 
2480 	ostate = ic->ic_state;
2481 	callout_stop(&sc->sc_scan_ch);
2482 
2483 	switch (nstate) {
2484 	case IEEE80211_S_AUTH:
2485 	case IEEE80211_S_ASSOC:
2486 		atw_write_bssid(sc);
2487 		error = atw_tune(sc);
2488 		break;
2489 	case IEEE80211_S_INIT:
2490 		callout_stop(&sc->sc_scan_ch);
2491 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2492 		atw_start_beacon(sc, 0);
2493 		break;
2494 	case IEEE80211_S_SCAN:
2495 		error = atw_tune(sc);
2496 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2497 		    atw_next_scan, sc);
2498 		break;
2499 	case IEEE80211_S_RUN:
2500 		error = atw_tune(sc);
2501 		atw_write_bssid(sc);
2502 		atw_write_ssid(sc);
2503 		atw_write_sup_rates(sc);
2504 
2505 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2506 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2507 			break;
2508 
2509 		/* set listen interval
2510 		 * XXX do software units agree w/ hardware?
2511 		 */
2512 		ATW_WRITE(sc, ATW_BPLI,
2513 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2514 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2515 			   ATW_BPLI_LI_MASK));
2516 
2517 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2518 		    ATW_READ(sc, ATW_BPLI)));
2519 
2520 		atw_predict_beacon(sc);
2521 
2522 		switch (ic->ic_opmode) {
2523 		case IEEE80211_M_AHDEMO:
2524 		case IEEE80211_M_HOSTAP:
2525 		case IEEE80211_M_IBSS:
2526 			atw_start_beacon(sc, 1);
2527 			break;
2528 		case IEEE80211_M_MONITOR:
2529 		case IEEE80211_M_STA:
2530 			break;
2531 		}
2532 
2533 		break;
2534 	}
2535 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2536 }
2537 
2538 /*
2539  * atw_add_rxbuf:
2540  *
2541  *	Add a receive buffer to the indicated descriptor.
2542  */
2543 int
2544 atw_add_rxbuf(struct atw_softc *sc, int idx)
2545 {
2546 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2547 	struct mbuf *m;
2548 	int error;
2549 
2550 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2551 	if (m == NULL)
2552 		return (ENOBUFS);
2553 
2554 	MCLGET(m, M_DONTWAIT);
2555 	if ((m->m_flags & M_EXT) == 0) {
2556 		m_freem(m);
2557 		return (ENOBUFS);
2558 	}
2559 
2560 	if (rxs->rxs_mbuf != NULL)
2561 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2562 
2563 	rxs->rxs_mbuf = m;
2564 
2565 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2566 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2567 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2568 	if (error) {
2569 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2570 		    idx, error);
2571 		panic("atw_add_rxbuf");	/* XXX */
2572 	}
2573 
2574 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2575 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2576 
2577 	atw_init_rxdesc(sc, idx);
2578 
2579 	return (0);
2580 }
2581 
2582 /*
2583  * Release any queued transmit buffers.
2584  */
2585 void
2586 atw_txdrain(struct atw_softc *sc)
2587 {
2588 	struct atw_txsoft *txs;
2589 
2590 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2591 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2592 		if (txs->txs_mbuf != NULL) {
2593 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2594 			m_freem(txs->txs_mbuf);
2595 			txs->txs_mbuf = NULL;
2596 		}
2597 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2598 		sc->sc_txfree += txs->txs_ndescs;
2599 	}
2600 
2601 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2602 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2603 		  sc->sc_txfree != ATW_NTXDESC));
2604 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2605 	sc->sc_tx_timer = 0;
2606 }
2607 
2608 /*
2609  * atw_stop:		[ ifnet interface function ]
2610  *
2611  *	Stop transmission on the interface.
2612  */
2613 void
2614 atw_stop(struct ifnet *ifp, int disable)
2615 {
2616 	struct atw_softc *sc = ifp->if_softc;
2617 	struct ieee80211com *ic = &sc->sc_ic;
2618 
2619 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2620 
2621 	if (device_is_active(sc->sc_dev)) {
2622 		/* Disable interrupts. */
2623 		ATW_WRITE(sc, ATW_IER, 0);
2624 
2625 		/* Stop the transmit and receive processes. */
2626 		ATW_WRITE(sc, ATW_NAR, 0);
2627 		DELAY(atw_nar_delay);
2628 		ATW_WRITE(sc, ATW_TDBD, 0);
2629 		ATW_WRITE(sc, ATW_TDBP, 0);
2630 		ATW_WRITE(sc, ATW_RDB, 0);
2631 	}
2632 
2633 	sc->sc_opmode = 0;
2634 
2635 	atw_txdrain(sc);
2636 
2637 	/*
2638 	 * Mark the interface down and cancel the watchdog timer.
2639 	 */
2640 	ifp->if_flags &= ~IFF_RUNNING;
2641 	ifp->if_timer = 0;
2642 
2643 	if (disable)
2644 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2645 }
2646 
2647 /*
2648  * atw_rxdrain:
2649  *
2650  *	Drain the receive queue.
2651  */
2652 void
2653 atw_rxdrain(struct atw_softc *sc)
2654 {
2655 	struct atw_rxsoft *rxs;
2656 	int i;
2657 
2658 	for (i = 0; i < ATW_NRXDESC; i++) {
2659 		rxs = &sc->sc_rxsoft[i];
2660 		if (rxs->rxs_mbuf == NULL)
2661 			continue;
2662 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2663 		m_freem(rxs->rxs_mbuf);
2664 		rxs->rxs_mbuf = NULL;
2665 	}
2666 }
2667 
2668 /*
2669  * atw_detach:
2670  *
2671  *	Detach an ADM8211 interface.
2672  */
2673 int
2674 atw_detach(struct atw_softc *sc)
2675 {
2676 	struct ifnet *ifp = &sc->sc_if;
2677 	struct atw_rxsoft *rxs;
2678 	struct atw_txsoft *txs;
2679 	int i;
2680 
2681 	/*
2682 	 * Succeed now if there isn't any work to do.
2683 	 */
2684 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2685 		return (0);
2686 
2687 	pmf_device_deregister(sc->sc_dev);
2688 
2689 	callout_stop(&sc->sc_scan_ch);
2690 
2691 	ieee80211_ifdetach(&sc->sc_ic);
2692 	if_detach(ifp);
2693 
2694 	for (i = 0; i < ATW_NRXDESC; i++) {
2695 		rxs = &sc->sc_rxsoft[i];
2696 		if (rxs->rxs_mbuf != NULL) {
2697 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2698 			m_freem(rxs->rxs_mbuf);
2699 			rxs->rxs_mbuf = NULL;
2700 		}
2701 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2702 	}
2703 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2704 		txs = &sc->sc_txsoft[i];
2705 		if (txs->txs_mbuf != NULL) {
2706 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2707 			m_freem(txs->txs_mbuf);
2708 			txs->txs_mbuf = NULL;
2709 		}
2710 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2711 	}
2712 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2713 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2714 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2715 	    sizeof(struct atw_control_data));
2716 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2717 
2718 	if (sc->sc_srom)
2719 		free(sc->sc_srom, M_DEVBUF);
2720 
2721 	atw_evcnt_detach(sc);
2722 
2723 	return (0);
2724 }
2725 
2726 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2727 bool
2728 atw_shutdown(device_t self, int flags)
2729 {
2730 	struct atw_softc *sc = device_private(self);
2731 
2732 	atw_stop(&sc->sc_if, 1);
2733 	return true;
2734 }
2735 
2736 #if 0
2737 static void
2738 atw_workaround1(struct atw_softc *sc)
2739 {
2740 	uint32_t test1;
2741 
2742 	test1 = ATW_READ(sc, ATW_TEST1);
2743 
2744 	sc->sc_misc_ev.ev_count++;
2745 
2746 	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2747 		sc->sc_rxpkt1in_ev.ev_count++;
2748 		return;
2749 	}
2750 	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2751 	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2752 		sc->sc_rxamatch_ev.ev_count++;
2753 		return;
2754 	}
2755 	sc->sc_workaround1_ev.ev_count++;
2756 	(void)atw_init(&sc->sc_if);
2757 }
2758 #endif
2759 
2760 int
2761 atw_intr(void *arg)
2762 {
2763 	struct atw_softc *sc = arg;
2764 	struct ifnet *ifp = &sc->sc_if;
2765 	u_int32_t status, rxstatus, txstatus, linkstatus;
2766 	int handled = 0, txthresh;
2767 
2768 #ifdef DEBUG
2769 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2770 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2771 #endif
2772 
2773 	/*
2774 	 * If the interface isn't running, the interrupt couldn't
2775 	 * possibly have come from us.
2776 	 */
2777 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2778 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2779 		return (0);
2780 
2781 	for (;;) {
2782 		status = ATW_READ(sc, ATW_STSR);
2783 
2784 		if (status)
2785 			ATW_WRITE(sc, ATW_STSR, status);
2786 
2787 #ifdef ATW_DEBUG
2788 #define PRINTINTR(flag) do { \
2789 	if ((status & flag) != 0) { \
2790 		printf("%s" #flag, delim); \
2791 		delim = ","; \
2792 	} \
2793 } while (0)
2794 
2795 		if (atw_debug > 1 && status) {
2796 			const char *delim = "<";
2797 
2798 			printf("%s: reg[STSR] = %x",
2799 			    device_xname(sc->sc_dev), status);
2800 
2801 			PRINTINTR(ATW_INTR_FBE);
2802 			PRINTINTR(ATW_INTR_LINKOFF);
2803 			PRINTINTR(ATW_INTR_LINKON);
2804 			PRINTINTR(ATW_INTR_RCI);
2805 			PRINTINTR(ATW_INTR_RDU);
2806 			PRINTINTR(ATW_INTR_REIS);
2807 			PRINTINTR(ATW_INTR_RPS);
2808 			PRINTINTR(ATW_INTR_TCI);
2809 			PRINTINTR(ATW_INTR_TDU);
2810 			PRINTINTR(ATW_INTR_TLT);
2811 			PRINTINTR(ATW_INTR_TPS);
2812 			PRINTINTR(ATW_INTR_TRT);
2813 			PRINTINTR(ATW_INTR_TUF);
2814 			PRINTINTR(ATW_INTR_BCNTC);
2815 			PRINTINTR(ATW_INTR_ATIME);
2816 			PRINTINTR(ATW_INTR_TBTT);
2817 			PRINTINTR(ATW_INTR_TSCZ);
2818 			PRINTINTR(ATW_INTR_TSFTF);
2819 			printf(">\n");
2820 		}
2821 #undef PRINTINTR
2822 #endif /* ATW_DEBUG */
2823 
2824 		if ((status & sc->sc_inten) == 0)
2825 			break;
2826 
2827 		handled = 1;
2828 
2829 		rxstatus = status & sc->sc_rxint_mask;
2830 		txstatus = status & sc->sc_txint_mask;
2831 		linkstatus = status & sc->sc_linkint_mask;
2832 
2833 		if (linkstatus) {
2834 			atw_linkintr(sc, linkstatus);
2835 		}
2836 
2837 		if (rxstatus) {
2838 			/* Grab any new packets. */
2839 			atw_rxintr(sc);
2840 
2841 			if (rxstatus & ATW_INTR_RDU) {
2842 				printf("%s: receive ring overrun\n",
2843 				    device_xname(sc->sc_dev));
2844 				/* Get the receive process going again. */
2845 				ATW_WRITE(sc, ATW_RDR, 0x1);
2846 			}
2847 		}
2848 
2849 		if (txstatus) {
2850 			/* Sweep up transmit descriptors. */
2851 			atw_txintr(sc, txstatus);
2852 
2853 			if (txstatus & ATW_INTR_TLT) {
2854 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2855 				    device_xname(sc->sc_dev)));
2856 				(void)atw_init(&sc->sc_if);
2857 			}
2858 
2859 			if (txstatus & ATW_INTR_TRT) {
2860 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2861 				    device_xname(sc->sc_dev)));
2862 			}
2863 
2864 			/* If Tx under-run, increase our transmit threshold
2865 			 * if another is available.
2866 			 */
2867 			txthresh = sc->sc_txthresh + 1;
2868 			if ((txstatus & ATW_INTR_TUF) &&
2869 			    sc->sc_txth[txthresh].txth_name != NULL) {
2870 				/* Idle the transmit process. */
2871 				atw_idle(sc, ATW_NAR_ST);
2872 
2873 				sc->sc_txthresh = txthresh;
2874 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2875 				sc->sc_opmode |=
2876 				    sc->sc_txth[txthresh].txth_opmode;
2877 				printf("%s: transmit underrun; new "
2878 				    "threshold: %s\n", device_xname(sc->sc_dev),
2879 				    sc->sc_txth[txthresh].txth_name);
2880 
2881 				/* Set the new threshold and restart
2882 				 * the transmit process.
2883 				 */
2884 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2885 				DELAY(atw_nar_delay);
2886 				ATW_WRITE(sc, ATW_TDR, 0x1);
2887 				/* XXX Log every Nth underrun from
2888 				 * XXX now on?
2889 				 */
2890 			}
2891 		}
2892 
2893 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2894 			if (status & ATW_INTR_TPS)
2895 				printf("%s: transmit process stopped\n",
2896 				    device_xname(sc->sc_dev));
2897 			if (status & ATW_INTR_RPS)
2898 				printf("%s: receive process stopped\n",
2899 				    device_xname(sc->sc_dev));
2900 			(void)atw_init(ifp);
2901 			break;
2902 		}
2903 
2904 		if (status & ATW_INTR_FBE) {
2905 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2906 			(void)atw_init(ifp);
2907 			break;
2908 		}
2909 
2910 		/*
2911 		 * Not handled:
2912 		 *
2913 		 *	Transmit buffer unavailable -- normal
2914 		 *	condition, nothing to do, really.
2915 		 *
2916 		 *	Early receive interrupt -- not available on
2917 		 *	all chips, we just use RI.  We also only
2918 		 *	use single-segment receive DMA, so this
2919 		 *	is mostly useless.
2920 		 *
2921 		 *      TBD others
2922 		 */
2923 	}
2924 
2925 	/* Try to get more packets going. */
2926 	atw_start(ifp);
2927 
2928 	return (handled);
2929 }
2930 
2931 /*
2932  * atw_idle:
2933  *
2934  *	Cause the transmit and/or receive processes to go idle.
2935  *
2936  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2937  *	process in STSR if I clear SR or ST after the process has already
2938  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2939  *      do not seem to be too reliable. Perhaps I have the sense of the
2940  *	Rx bits switched with the Tx bits?
2941  */
2942 void
2943 atw_idle(struct atw_softc *sc, u_int32_t bits)
2944 {
2945 	u_int32_t ackmask = 0, opmode, stsr, test0;
2946 	int i, s;
2947 
2948 	s = splnet();
2949 
2950 	opmode = sc->sc_opmode & ~bits;
2951 
2952 	if (bits & ATW_NAR_SR)
2953 		ackmask |= ATW_INTR_RPS;
2954 
2955 	if (bits & ATW_NAR_ST) {
2956 		ackmask |= ATW_INTR_TPS;
2957 		/* set ATW_NAR_HF to flush TX FIFO. */
2958 		opmode |= ATW_NAR_HF;
2959 	}
2960 
2961 	ATW_WRITE(sc, ATW_NAR, opmode);
2962 	DELAY(atw_nar_delay);
2963 
2964 	for (i = 0; i < 1000; i++) {
2965 		stsr = ATW_READ(sc, ATW_STSR);
2966 		if ((stsr & ackmask) == ackmask)
2967 			break;
2968 		DELAY(10);
2969 	}
2970 
2971 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2972 
2973 	if ((stsr & ackmask) == ackmask)
2974 		goto out;
2975 
2976 	test0 = ATW_READ(sc, ATW_TEST0);
2977 
2978 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2979 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2980 		printf("%s: transmit process not idle [%s]\n",
2981 		    device_xname(sc->sc_dev),
2982 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2983 		printf("%s: bits %08x test0 %08x stsr %08x\n",
2984 		    device_xname(sc->sc_dev), bits, test0, stsr);
2985 	}
2986 
2987 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2988 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2989 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2990 		    device_xname(sc->sc_dev),
2991 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
2992 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2993 		    device_xname(sc->sc_dev), bits, test0, stsr));
2994 	}
2995 out:
2996 	if ((bits & ATW_NAR_ST) != 0)
2997 		atw_txdrain(sc);
2998 	splx(s);
2999 	return;
3000 }
3001 
3002 /*
3003  * atw_linkintr:
3004  *
3005  *	Helper; handle link-status interrupts.
3006  */
3007 void
3008 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3009 {
3010 	struct ieee80211com *ic = &sc->sc_ic;
3011 
3012 	if (ic->ic_state != IEEE80211_S_RUN)
3013 		return;
3014 
3015 	if (linkstatus & ATW_INTR_LINKON) {
3016 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3017 		sc->sc_rescan_timer = 0;
3018 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3019 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3020 		if (ic->ic_opmode != IEEE80211_M_STA)
3021 			return;
3022 		sc->sc_rescan_timer = 3;
3023 		sc->sc_if.if_timer = 1;
3024 	}
3025 }
3026 
3027 static inline int
3028 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3029 {
3030 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3031 		return 0;
3032 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3033 		return 0;
3034 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3035 }
3036 
3037 /*
3038  * atw_rxintr:
3039  *
3040  *	Helper; handle receive interrupts.
3041  */
3042 void
3043 atw_rxintr(struct atw_softc *sc)
3044 {
3045 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3046 	struct ieee80211com *ic = &sc->sc_ic;
3047 	struct ieee80211_node *ni;
3048 	struct ieee80211_frame_min *wh;
3049 	struct ifnet *ifp = &sc->sc_if;
3050 	struct atw_rxsoft *rxs;
3051 	struct mbuf *m;
3052 	u_int32_t rxstat;
3053 	int i, len, rate, rate0;
3054 	u_int32_t rssi, ctlrssi;
3055 
3056 	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3057 		rxs = &sc->sc_rxsoft[i];
3058 
3059 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3060 
3061 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3062 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3063 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3064 
3065 		if (rxstat & ATW_RXSTAT_OWN) {
3066 			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3067 			break;
3068 		}
3069 
3070 		sc->sc_rxptr = ATW_NEXTRX(i);
3071 
3072 		DPRINTF3(sc,
3073 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3074 		    device_xname(sc->sc_dev),
3075 		    rxstat, ctlrssi,
3076 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3077 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3078 
3079 		/*
3080 		 * Make sure the packet fits in one buffer.  This should
3081 		 * always be the case.
3082 		 */
3083 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3084 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3085 			printf("%s: incoming packet spilled, resetting\n",
3086 			    device_xname(sc->sc_dev));
3087 			(void)atw_init(ifp);
3088 			return;
3089 		}
3090 
3091 		/*
3092 		 * If an error occurred, update stats, clear the status
3093 		 * word, and leave the packet buffer in place.  It will
3094 		 * simply be reused the next time the ring comes around.
3095 		 */
3096 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3097 #define	PRINTERR(bit, str)						\
3098 			if (rxstat & (bit))				\
3099 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3100 				    str)
3101 			ifp->if_ierrors++;
3102 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3103 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3104 #if 0
3105 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3106 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3107 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3108 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3109 #endif
3110 #undef PRINTERR
3111 			atw_init_rxdesc(sc, i);
3112 			continue;
3113 		}
3114 
3115 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3116 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3117 
3118 		/*
3119 		 * No errors; receive the packet.  Note the ADM8211
3120 		 * includes the CRC in promiscuous mode.
3121 		 */
3122 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3123 
3124 		/*
3125 		 * Allocate a new mbuf cluster.  If that fails, we are
3126 		 * out of memory, and must drop the packet and recycle
3127 		 * the buffer that's already attached to this descriptor.
3128 		 */
3129 		m = rxs->rxs_mbuf;
3130 		if (atw_add_rxbuf(sc, i) != 0) {
3131 			ifp->if_ierrors++;
3132 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3133 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3134 			atw_init_rxdesc(sc, i);
3135 			continue;
3136 		}
3137 
3138 		ifp->if_ipackets++;
3139 		m->m_pkthdr.rcvif = ifp;
3140 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3141 
3142 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3143 
3144 		/* The RSSI comes straight from a register in the
3145 		 * baseband processor.  I know that for the RF3000,
3146 		 * the RSSI register also contains the antenna-selection
3147 		 * bits.  Mask those off.
3148 		 *
3149 		 * TBD Treat other basebands.
3150 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3151 		 */
3152 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3153 			rssi = ctlrssi & RF3000_RSSI_MASK;
3154 		else
3155 			rssi = ctlrssi;
3156 
3157 		/* Pass this up to any BPF listeners. */
3158 		if (sc->sc_radiobpf != NULL) {
3159 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3160 
3161 			tap->ar_rate = rate;
3162 
3163 			/* TBD verify units are dB */
3164 			tap->ar_antsignal = (int)rssi;
3165 			if (sc->sc_opmode & ATW_NAR_PR)
3166 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3167 			else
3168 				tap->ar_flags = 0;
3169 
3170 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3171 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3172 
3173 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3174 			    m);
3175  		}
3176 
3177 		sc->sc_recv_ev.ev_count++;
3178 
3179 		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3180 			if (rxstat & ATW_RXSTAT_CRC16E)
3181 				sc->sc_crc16e_ev.ev_count++;
3182 			if (rxstat & ATW_RXSTAT_CRC32E)
3183 				sc->sc_crc32e_ev.ev_count++;
3184 			if (rxstat & ATW_RXSTAT_ICVE)
3185 				sc->sc_icve_ev.ev_count++;
3186 			if (rxstat & ATW_RXSTAT_SFDE)
3187 				sc->sc_sfde_ev.ev_count++;
3188 			if (rxstat & ATW_RXSTAT_SIGE)
3189 				sc->sc_sige_ev.ev_count++;
3190 			ifp->if_ierrors++;
3191 			m_freem(m);
3192 			continue;
3193 		}
3194 
3195 		if (sc->sc_opmode & ATW_NAR_PR)
3196 			m_adj(m, -IEEE80211_CRC_LEN);
3197 
3198 		wh = mtod(m, struct ieee80211_frame_min *);
3199 		ni = ieee80211_find_rxnode(ic, wh);
3200 #if 0
3201 		if (atw_hw_decrypted(sc, wh)) {
3202 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3203 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3204 		}
3205 #endif
3206 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3207 		ieee80211_free_node(ni);
3208 	}
3209 }
3210 
3211 /*
3212  * atw_txintr:
3213  *
3214  *	Helper; handle transmit interrupts.
3215  */
3216 void
3217 atw_txintr(struct atw_softc *sc, uint32_t status)
3218 {
3219 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3220 	struct ifnet *ifp = &sc->sc_if;
3221 	struct atw_txsoft *txs;
3222 	u_int32_t txstat;
3223 
3224 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3225 	    device_xname(sc->sc_dev), sc->sc_flags));
3226 
3227 	/*
3228 	 * Go through our Tx list and free mbufs for those
3229 	 * frames that have been transmitted.
3230 	 */
3231 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3232 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3233 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3234 
3235 #ifdef ATW_DEBUG
3236 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3237 			int i;
3238 			printf("    txsoft %p transmit chain:\n", txs);
3239 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3240 			    txs->txs_ndescs - 1,
3241 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3243 				printf("     descriptor %d:\n", i);
3244 				printf("       at_status:   0x%08x\n",
3245 				    le32toh(sc->sc_txdescs[i].at_stat));
3246 				printf("       at_flags:      0x%08x\n",
3247 				    le32toh(sc->sc_txdescs[i].at_flags));
3248 				printf("       at_buf1: 0x%08x\n",
3249 				    le32toh(sc->sc_txdescs[i].at_buf1));
3250 				printf("       at_buf2: 0x%08x\n",
3251 				    le32toh(sc->sc_txdescs[i].at_buf2));
3252 				if (i == txs->txs_lastdesc)
3253 					break;
3254 			}
3255 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3256 			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3257 		}
3258 #endif
3259 
3260 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3261 		if (txstat & ATW_TXSTAT_OWN) {
3262 			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3263 			    BUS_DMASYNC_PREREAD);
3264 			break;
3265 		}
3266 
3267 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3268 
3269 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3270 		    0, txs->txs_dmamap->dm_mapsize,
3271 		    BUS_DMASYNC_POSTWRITE);
3272 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3273 		m_freem(txs->txs_mbuf);
3274 		txs->txs_mbuf = NULL;
3275 
3276 		sc->sc_txfree += txs->txs_ndescs;
3277 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3278 
3279 		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3280 		sc->sc_tx_timer = 0;
3281 		ifp->if_flags &= ~IFF_OACTIVE;
3282 
3283 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3284 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3285 			snprintb(txstat_buf, sizeof(txstat_buf),
3286 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3287 			printf("%s: txstat %s %" __PRIuBITS "\n",
3288 			    device_xname(sc->sc_dev), txstat_buf,
3289 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3290 		}
3291 
3292 		sc->sc_xmit_ev.ev_count++;
3293 
3294 		/*
3295 		 * Check for errors and collisions.
3296 		 */
3297 		if (txstat & ATW_TXSTAT_TUF)
3298 			sc->sc_tuf_ev.ev_count++;
3299 		if (txstat & ATW_TXSTAT_TLT)
3300 			sc->sc_tlt_ev.ev_count++;
3301 		if (txstat & ATW_TXSTAT_TRT)
3302 			sc->sc_trt_ev.ev_count++;
3303 		if (txstat & ATW_TXSTAT_TRO)
3304 			sc->sc_tro_ev.ev_count++;
3305 		if (txstat & ATW_TXSTAT_SOFBR)
3306 			sc->sc_sofbr_ev.ev_count++;
3307 
3308 		if ((txstat & ATW_TXSTAT_ES) == 0)
3309 			ifp->if_collisions +=
3310 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3311 		else
3312 			ifp->if_oerrors++;
3313 
3314 		ifp->if_opackets++;
3315 	}
3316 
3317 	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3318 }
3319 
3320 /*
3321  * atw_watchdog:	[ifnet interface function]
3322  *
3323  *	Watchdog timer handler.
3324  */
3325 void
3326 atw_watchdog(struct ifnet *ifp)
3327 {
3328 	struct atw_softc *sc = ifp->if_softc;
3329 	struct ieee80211com *ic = &sc->sc_ic;
3330 
3331 	ifp->if_timer = 0;
3332 	if (!device_is_active(sc->sc_dev))
3333 		return;
3334 
3335 	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3336 		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3337 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3338 	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3339 		printf("%s: transmit timeout\n", ifp->if_xname);
3340 		ifp->if_oerrors++;
3341 		(void)atw_init(ifp);
3342 		atw_start(ifp);
3343 	}
3344 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3345 		ifp->if_timer = 1;
3346 	ieee80211_watchdog(ic);
3347 }
3348 
3349 static void
3350 atw_evcnt_detach(struct atw_softc *sc)
3351 {
3352 	evcnt_detach(&sc->sc_sige_ev);
3353 	evcnt_detach(&sc->sc_sfde_ev);
3354 	evcnt_detach(&sc->sc_icve_ev);
3355 	evcnt_detach(&sc->sc_crc32e_ev);
3356 	evcnt_detach(&sc->sc_crc16e_ev);
3357 	evcnt_detach(&sc->sc_recv_ev);
3358 
3359 	evcnt_detach(&sc->sc_tuf_ev);
3360 	evcnt_detach(&sc->sc_tro_ev);
3361 	evcnt_detach(&sc->sc_trt_ev);
3362 	evcnt_detach(&sc->sc_tlt_ev);
3363 	evcnt_detach(&sc->sc_sofbr_ev);
3364 	evcnt_detach(&sc->sc_xmit_ev);
3365 
3366 	evcnt_detach(&sc->sc_rxpkt1in_ev);
3367 	evcnt_detach(&sc->sc_rxamatch_ev);
3368 	evcnt_detach(&sc->sc_workaround1_ev);
3369 	evcnt_detach(&sc->sc_misc_ev);
3370 }
3371 
3372 static void
3373 atw_evcnt_attach(struct atw_softc *sc)
3374 {
3375 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3376 	    NULL, sc->sc_if.if_xname, "recv");
3377 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3378 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3379 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3380 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3381 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3382 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3383 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3384 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3385 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3386 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3387 
3388 	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3389 	    NULL, sc->sc_if.if_xname, "xmit");
3390 	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3391 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3392 	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3393 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3394 	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3395 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3396 	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3397 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3398 	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3399 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3400 
3401 	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3402 	    NULL, sc->sc_if.if_xname, "misc");
3403 	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3404 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3405 	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3406 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3407 	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3408 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3409 }
3410 
3411 #ifdef ATW_DEBUG
3412 static void
3413 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3414 {
3415 	struct atw_softc *sc = ifp->if_softc;
3416 	struct mbuf *m;
3417 	int i, noctets = 0;
3418 
3419 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3420 	    m0->m_pkthdr.len);
3421 
3422 	for (m = m0; m; m = m->m_next) {
3423 		if (m->m_len == 0)
3424 			continue;
3425 		for (i = 0; i < m->m_len; i++) {
3426 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3427 			if (++noctets % 24 == 0)
3428 				printf("\n");
3429 		}
3430 	}
3431 	printf("%s%s: %d bytes emitted\n",
3432 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3433 }
3434 #endif /* ATW_DEBUG */
3435 
3436 /*
3437  * atw_start:		[ifnet interface function]
3438  *
3439  *	Start packet transmission on the interface.
3440  */
3441 void
3442 atw_start(struct ifnet *ifp)
3443 {
3444 	struct atw_softc *sc = ifp->if_softc;
3445 	struct ieee80211_key *k;
3446 	struct ieee80211com *ic = &sc->sc_ic;
3447 	struct ieee80211_node *ni;
3448 	struct ieee80211_frame_min *whm;
3449 	struct ieee80211_frame *wh;
3450 	struct atw_frame *hh;
3451 	uint16_t hdrctl;
3452 	struct mbuf *m0, *m;
3453 	struct atw_txsoft *txs, *last_txs;
3454 	struct atw_txdesc *txd;
3455 	int npkt, rate;
3456 	bus_dmamap_t dmamap;
3457 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3458 
3459 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3460 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3461 
3462 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3463 		return;
3464 
3465 	/*
3466 	 * Remember the previous number of free descriptors and
3467 	 * the first descriptor we'll use.
3468 	 */
3469 	ofree = sc->sc_txfree;
3470 	firsttx = lasttx = sc->sc_txnext;
3471 
3472 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3473 	    device_xname(sc->sc_dev), ofree, firsttx));
3474 
3475 	/*
3476 	 * Loop through the send queue, setting up transmit descriptors
3477 	 * until we drain the queue, or use up all available transmit
3478 	 * descriptors.
3479 	 */
3480 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3481 	       sc->sc_txfree != 0) {
3482 
3483 		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3484 
3485 		/*
3486 		 * Grab a packet off the management queue, if it
3487 		 * is not empty. Otherwise, from the data queue.
3488 		 */
3489 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3490 		if (m0 != NULL) {
3491 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3492 			m0->m_pkthdr.rcvif = NULL;
3493 		} else if (ic->ic_state != IEEE80211_S_RUN)
3494 			break; /* send no data until associated */
3495 		else {
3496 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3497 			if (m0 == NULL)
3498 				break;
3499 			bpf_mtap(ifp, m0);
3500 			ni = ieee80211_find_txnode(ic,
3501 			    mtod(m0, struct ether_header *)->ether_dhost);
3502 			if (ni == NULL) {
3503 				ifp->if_oerrors++;
3504 				break;
3505 			}
3506 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3507 				ieee80211_free_node(ni);
3508 				ifp->if_oerrors++;
3509 				break;
3510 			}
3511 		}
3512 
3513 		rate = MAX(ieee80211_get_rate(ni), 2);
3514 
3515 		whm = mtod(m0, struct ieee80211_frame_min *);
3516 
3517 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3518 			k = NULL;
3519 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3520 			m_freem(m0);
3521 			ieee80211_free_node(ni);
3522 			ifp->if_oerrors++;
3523 			break;
3524 		}
3525 #if 0
3526 		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3527 		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3528 			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3529 #endif
3530 
3531 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3532 			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3533 
3534 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3535 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3536 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3537 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3538 			m_freem(m0);
3539 			break;
3540 		}
3541 
3542 		/* XXX Misleading if fragmentation is enabled.  Better
3543 		 * to fragment in software?
3544 		 */
3545 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3546 
3547 		/*
3548 		 * Pass the packet to any BPF listeners.
3549 		 */
3550 		bpf_mtap3(ic->ic_rawbpf, m0);
3551 
3552 		if (sc->sc_radiobpf != NULL) {
3553 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3554 
3555 			tap->at_rate = rate;
3556 
3557 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3558 			    m0);
3559 		}
3560 
3561 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3562 
3563 		if (ni != NULL)
3564 			ieee80211_free_node(ni);
3565 
3566 		if (m0 == NULL) {
3567 			ifp->if_oerrors++;
3568 			break;
3569 		}
3570 
3571 		/* just to make sure. */
3572 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3573 
3574 		if (m0 == NULL) {
3575 			ifp->if_oerrors++;
3576 			break;
3577 		}
3578 
3579 		hh = mtod(m0, struct atw_frame *);
3580 		wh = &hh->atw_ihdr;
3581 
3582 		/* Copy everything we need from the 802.11 header:
3583 		 * Frame Control; address 1, address 3, or addresses
3584 		 * 3 and 4. NIC fills in BSSID, SA.
3585 		 */
3586 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3587 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3588 				panic("%s: illegal WDS frame",
3589 				    device_xname(sc->sc_dev));
3590 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3591 		} else
3592 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3593 
3594 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3595 
3596 		/* initialize remaining Tx parameters */
3597 		memset(&hh->u, 0, sizeof(hh->u));
3598 
3599 		hh->atw_rate = rate * 5;
3600 		/* XXX this could be incorrect if M_FCS. _encap should
3601 		 * probably strip FCS just in case it sticks around in
3602 		 * bridged packets.
3603 		 */
3604 		hh->atw_service = 0x00; /* XXX guess */
3605 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3606 		    sizeof(struct atw_frame));
3607 
3608 		/* never fragment multicast frames */
3609 		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3610 			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3611 		else {
3612 			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3613 			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3614 				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3615 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3616 		}
3617 
3618 		hh->atw_rtylmt = 3;
3619 #if 0
3620 		if (do_encrypt) {
3621 			hdrctl |= htole16(ATW_HDRCTL_WEP);
3622 			hh->atw_keyid = ic->ic_def_txkey;
3623 		}
3624 #endif
3625 
3626 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3627 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3628 		if (txs->txs_d0.d_residue)
3629 			hh->atw_head_plcplen |= htole16(0x8000);
3630 		if (txs->txs_dn.d_residue)
3631 			hh->atw_tail_plcplen |= htole16(0x8000);
3632 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3633 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3634 
3635 		hh->atw_hdrctl = hdrctl;
3636 		hh->atw_fragnum = npkt << 4;
3637 #ifdef ATW_DEBUG
3638 
3639 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3640 			printf("%s: dst = %s, rate = 0x%02x, "
3641 			    "service = 0x%02x, paylen = 0x%04x\n",
3642 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3643 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3644 
3645 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3646 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3647 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3648 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3649 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3650 			    hh->atw_tail_dur, hh->atw_head_dur);
3651 
3652 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3653 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3654 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3655 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3656 
3657 			printf("%s: keyid = %d\n",
3658 			    device_xname(sc->sc_dev), hh->atw_keyid);
3659 
3660 			atw_dump_pkt(ifp, m0);
3661 		}
3662 #endif /* ATW_DEBUG */
3663 
3664 		dmamap = txs->txs_dmamap;
3665 
3666 		/*
3667 		 * Load the DMA map.  Copy and try (once) again if the packet
3668 		 * didn't fit in the alloted number of segments.
3669 		 */
3670 		for (first = 1;
3671 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3672 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3673 		     first = 0) {
3674 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3675 			if (m == NULL) {
3676 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3677 				break;
3678 			}
3679 			if (m0->m_pkthdr.len > MHLEN) {
3680 				MCLGET(m, M_DONTWAIT);
3681 				if ((m->m_flags & M_EXT) == 0) {
3682 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3683 					    "cluster\n");
3684 					m_freem(m);
3685 					break;
3686 				}
3687 			}
3688 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3689 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3690 			m_freem(m0);
3691 			m0 = m;
3692 			m = NULL;
3693 		}
3694 		if (error != 0) {
3695 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3696 			    "error = %d\n", error);
3697 			m_freem(m0);
3698 			break;
3699 		}
3700 
3701 		/*
3702 		 * Ensure we have enough descriptors free to describe
3703 		 * the packet.
3704 		 */
3705 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3706 			/*
3707 			 * Not enough free descriptors to transmit
3708 			 * this packet.  Unload the DMA map and
3709 			 * drop the packet.  Notify the upper layer
3710 			 * that there are no more slots left.
3711 			 *
3712 			 * XXX We could allocate an mbuf and copy, but
3713 			 * XXX it is worth it?
3714 			 */
3715 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3716 			m_freem(m0);
3717 			break;
3718 		}
3719 
3720 		/*
3721 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3722 		 */
3723 
3724 		/* Sync the DMA map. */
3725 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3726 		    BUS_DMASYNC_PREWRITE);
3727 
3728 		/* XXX arbitrary retry limit; 8 because I have seen it in
3729 		 * use already and maybe 0 means "no tries" !
3730 		 */
3731 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3732 
3733 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3734 		    device_xname(sc->sc_dev), rate * 5));
3735 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3736 
3737 		/*
3738 		 * Initialize the transmit descriptors.
3739 		 */
3740 		for (nexttx = sc->sc_txnext, seg = 0;
3741 		     seg < dmamap->dm_nsegs;
3742 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3743 			/*
3744 			 * If this is the first descriptor we're
3745 			 * enqueueing, don't set the OWN bit just
3746 			 * yet.  That could cause a race condition.
3747 			 * We'll do it below.
3748 			 */
3749 			txd = &sc->sc_txdescs[nexttx];
3750 			txd->at_ctl = ctl |
3751 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3752 
3753 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3754 			txd->at_flags =
3755 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3756 			                   ATW_TXFLAG_TBS1_MASK)) |
3757 			    ((nexttx == (ATW_NTXDESC - 1))
3758 			        ? htole32(ATW_TXFLAG_TER) : 0);
3759 			lasttx = nexttx;
3760 		}
3761 
3762 		/* Set `first segment' and `last segment' appropriately. */
3763 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3764 		    htole32(ATW_TXFLAG_FS);
3765 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3766 
3767 #ifdef ATW_DEBUG
3768 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3769 			printf("     txsoft %p transmit chain:\n", txs);
3770 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3771 				printf("     descriptor %d:\n", seg);
3772 				printf("       at_ctl:   0x%08x\n",
3773 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3774 				printf("       at_flags:      0x%08x\n",
3775 				    le32toh(sc->sc_txdescs[seg].at_flags));
3776 				printf("       at_buf1: 0x%08x\n",
3777 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3778 				printf("       at_buf2: 0x%08x\n",
3779 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3780 				if (seg == lasttx)
3781 					break;
3782 			}
3783 		}
3784 #endif
3785 
3786 		/* Sync the descriptors we're using. */
3787 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3788 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3789 
3790 		/*
3791 		 * Store a pointer to the packet so we can free it later,
3792 		 * and remember what txdirty will be once the packet is
3793 		 * done.
3794 		 */
3795 		txs->txs_mbuf = m0;
3796 		txs->txs_firstdesc = sc->sc_txnext;
3797 		txs->txs_lastdesc = lasttx;
3798 		txs->txs_ndescs = dmamap->dm_nsegs;
3799 
3800 		/* Advance the tx pointer. */
3801 		sc->sc_txfree -= dmamap->dm_nsegs;
3802 		sc->sc_txnext = nexttx;
3803 
3804 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3805 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3806 
3807 		last_txs = txs;
3808 	}
3809 
3810 	if (sc->sc_txfree != ofree) {
3811 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3812 		    device_xname(sc->sc_dev), lasttx, firsttx));
3813 		/*
3814 		 * Cause a transmit interrupt to happen on the
3815 		 * last packet we enqueued.
3816 		 */
3817 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3818 		ATW_CDTXSYNC(sc, lasttx, 1,
3819 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3820 
3821 		/*
3822 		 * The entire packet chain is set up.  Give the
3823 		 * first descriptor to the chip now.
3824 		 */
3825 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3826 		ATW_CDTXSYNC(sc, firsttx, 1,
3827 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3828 
3829 		/* Wake up the transmitter. */
3830 		ATW_WRITE(sc, ATW_TDR, 0x1);
3831 
3832 		if (txs == NULL || sc->sc_txfree == 0)
3833 			ifp->if_flags |= IFF_OACTIVE;
3834 
3835 		/* Set a watchdog timer in case the chip flakes out. */
3836 		sc->sc_tx_timer = 5;
3837 		ifp->if_timer = 1;
3838 	}
3839 }
3840 
3841 /*
3842  * atw_ioctl:		[ifnet interface function]
3843  *
3844  *	Handle control requests from the operator.
3845  */
3846 int
3847 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3848 {
3849 	struct atw_softc *sc = ifp->if_softc;
3850 	struct ieee80211req *ireq;
3851 	int s, error = 0;
3852 
3853 	s = splnet();
3854 
3855 	switch (cmd) {
3856 	case SIOCSIFFLAGS:
3857 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3858 			break;
3859 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3860 		case IFF_UP|IFF_RUNNING:
3861 			/*
3862 			 * To avoid rescanning another access point,
3863 			 * do not call atw_init() here.  Instead,
3864 			 * only reflect media settings.
3865 			 */
3866 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3867 				atw_filter_setup(sc);
3868 			break;
3869 		case IFF_UP:
3870 			error = atw_init(ifp);
3871 			break;
3872 		case IFF_RUNNING:
3873 			atw_stop(ifp, 1);
3874 			break;
3875 		case 0:
3876 			break;
3877 		}
3878 		break;
3879 	case SIOCADDMULTI:
3880 	case SIOCDELMULTI:
3881 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3882 			if (ifp->if_flags & IFF_RUNNING)
3883 				atw_filter_setup(sc); /* do not rescan */
3884 			error = 0;
3885 		}
3886 		break;
3887 	case SIOCS80211:
3888 		ireq = data;
3889 		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3890 			if ((error = kauth_authorize_network(curlwp->l_cred,
3891 			    KAUTH_NETWORK_INTERFACE,
3892 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3893 			    (void *)cmd, NULL) != 0))
3894 				break;
3895 			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3896 			      ireq->i_val <= IEEE80211_FRAG_MAX))
3897 				error = EINVAL;
3898 			else
3899 				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3900 			break;
3901 		}
3902 		/*FALLTHROUGH*/
3903 	default:
3904 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3905 		if (error == ENETRESET || error == ERESTART) {
3906 			if (is_running(ifp))
3907 				error = atw_init(ifp);
3908 			else
3909 				error = 0;
3910 		}
3911 		break;
3912 	}
3913 
3914 	/* Try to get more packets going. */
3915 	if (device_is_active(sc->sc_dev))
3916 		atw_start(ifp);
3917 
3918 	splx(s);
3919 	return (error);
3920 }
3921 
3922 static int
3923 atw_media_change(struct ifnet *ifp)
3924 {
3925 	int error;
3926 
3927 	error = ieee80211_media_change(ifp);
3928 	if (error == ENETRESET) {
3929 		if (is_running(ifp))
3930 			error = atw_init(ifp);
3931 		else
3932 			error = 0;
3933 	}
3934 	return error;
3935 }
3936