xref: /netbsd/sys/dev/ic/clmpcc.c (revision c4a72b64)
1 /*	$NetBSD: clmpcc.c,v 1.22 2002/10/23 09:13:14 jdolecek Exp $ */
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Steve C. Woodford.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.22 2002/10/23 09:13:14 jdolecek Exp $");
45 
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/ioctl.h>
51 #include <sys/select.h>
52 #include <sys/tty.h>
53 #include <sys/proc.h>
54 #include <sys/user.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/device.h>
61 #include <sys/malloc.h>
62 
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65 #include <machine/param.h>
66 
67 #include <dev/ic/clmpccreg.h>
68 #include <dev/ic/clmpccvar.h>
69 #include <dev/cons.h>
70 
71 
72 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
73 #error	"CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
74 #endif
75 
76 
77 static int	clmpcc_init	__P((struct clmpcc_softc *sc));
78 static void	clmpcc_shutdown	__P((struct clmpcc_chan *));
79 static int	clmpcc_speed	__P((struct clmpcc_softc *, speed_t,
80 					int *, int *));
81 static int	clmpcc_param	__P((struct tty *, struct termios *));
82 static void	clmpcc_set_params __P((struct clmpcc_chan *));
83 static void	clmpcc_start	__P((struct tty *));
84 static int 	clmpcc_modem_control	__P((struct clmpcc_chan *, int, int));
85 
86 #define	CLMPCCUNIT(x)		(minor(x) & 0x7fffc)
87 #define CLMPCCCHAN(x)		(minor(x) & 0x00003)
88 #define	CLMPCCDIALOUT(x)	(minor(x) & 0x80000)
89 
90 /*
91  * These should be in a header file somewhere...
92  */
93 #define	ISSET(v, f)	(((v) & (f)) != 0)
94 #define	ISCLR(v, f)	(((v) & (f)) == 0)
95 #define SET(v, f)	(v) |= (f)
96 #define CLR(v, f)	(v) &= ~(f)
97 
98 
99 extern struct cfdriver clmpcc_cd;
100 
101 dev_type_open(clmpccopen);
102 dev_type_close(clmpccclose);
103 dev_type_read(clmpccread);
104 dev_type_write(clmpccwrite);
105 dev_type_ioctl(clmpccioctl);
106 dev_type_stop(clmpccstop);
107 dev_type_tty(clmpcctty);
108 dev_type_poll(clmpccpoll);
109 
110 const struct cdevsw clmpcc_cdevsw = {
111 	clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
112 	clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
113 };
114 
115 /*
116  * Make this an option variable one can patch.
117  */
118 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
119 
120 
121 /*
122  * Things needed when the device is used as a console
123  */
124 static struct clmpcc_softc *cons_sc = NULL;
125 static int cons_chan;
126 static int cons_rate;
127 
128 static int	clmpcc_common_getc	__P((struct clmpcc_softc *, int));
129 static void	clmpcc_common_putc	__P((struct clmpcc_softc *, int, int));
130 int		clmpcccngetc	__P((dev_t));
131 void		clmpcccnputc	__P((dev_t, int));
132 
133 
134 /*
135  * Convenience functions, inlined for speed
136  */
137 #define	integrate   static inline
138 integrate u_int8_t  clmpcc_rdreg __P((struct clmpcc_softc *, u_int));
139 integrate void      clmpcc_wrreg __P((struct clmpcc_softc *, u_int, u_int));
140 integrate u_int8_t  clmpcc_rdreg_odd __P((struct clmpcc_softc *, u_int));
141 integrate void      clmpcc_wrreg_odd __P((struct clmpcc_softc *, u_int, u_int));
142 integrate void      clmpcc_wrtx_multi __P((struct clmpcc_softc *, u_int8_t *,
143 					u_int));
144 integrate u_int8_t  clmpcc_select_channel __P((struct clmpcc_softc *, u_int));
145 integrate void      clmpcc_channel_cmd __P((struct clmpcc_softc *,int,int));
146 integrate void      clmpcc_enable_transmitter __P((struct clmpcc_chan *));
147 
148 #define clmpcc_rd_msvr(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
149 #define clmpcc_wr_msvr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
150 #define clmpcc_wr_pilr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
151 #define clmpcc_rd_rxdata(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
152 #define clmpcc_wr_txdata(s,v)	clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
153 
154 
155 integrate u_int8_t
156 clmpcc_rdreg(sc, offset)
157 	struct clmpcc_softc *sc;
158 	u_int offset;
159 {
160 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
161 	offset ^= sc->sc_byteswap;
162 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
163 	offset ^= CLMPCC_BYTESWAP_HIGH;
164 #endif
165 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
166 }
167 
168 integrate void
169 clmpcc_wrreg(sc, offset, val)
170 	struct clmpcc_softc *sc;
171 	u_int offset;
172 	u_int val;
173 {
174 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
175 	offset ^= sc->sc_byteswap;
176 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
177 	offset ^= CLMPCC_BYTESWAP_HIGH;
178 #endif
179 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
180 }
181 
182 integrate u_int8_t
183 clmpcc_rdreg_odd(sc, offset)
184 	struct clmpcc_softc *sc;
185 	u_int offset;
186 {
187 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
188 	offset ^= (sc->sc_byteswap & 2);
189 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
190 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
191 #endif
192 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
193 }
194 
195 integrate void
196 clmpcc_wrreg_odd(sc, offset, val)
197 	struct clmpcc_softc *sc;
198 	u_int offset;
199 	u_int val;
200 {
201 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
202 	offset ^= (sc->sc_byteswap & 2);
203 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
204 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
205 #endif
206 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
207 }
208 
209 integrate void
210 clmpcc_wrtx_multi(sc, buff, count)
211 	struct clmpcc_softc *sc;
212 	u_int8_t *buff;
213 	u_int count;
214 {
215 	u_int offset = CLMPCC_REG_TDR;
216 
217 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
218 	offset ^= (sc->sc_byteswap & 2);
219 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
220 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
221 #endif
222 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
223 }
224 
225 integrate u_int8_t
226 clmpcc_select_channel(sc, new_chan)
227 	struct clmpcc_softc *sc;
228 	u_int new_chan;
229 {
230 	u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
231 
232 	clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
233 
234 	return old_chan;
235 }
236 
237 integrate void
238 clmpcc_channel_cmd(sc, chan, cmd)
239 	struct clmpcc_softc *sc;
240 	int chan;
241 	int cmd;
242 {
243 	int i;
244 
245 	for (i = 5000; i; i--) {
246 		if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
247 			break;
248 		delay(1);
249 	}
250 
251 	if ( i == 0 )
252 		printf("%s: channel %d command timeout (idle)\n",
253 			sc->sc_dev.dv_xname, chan);
254 
255 	clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
256 }
257 
258 integrate void
259 clmpcc_enable_transmitter(ch)
260 	struct clmpcc_chan *ch;
261 {
262 	u_int old;
263 	int s;
264 
265 	old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
266 
267 	s = splserial();
268 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
269 		clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
270 	SET(ch->ch_tty->t_state, TS_BUSY);
271 	splx(s);
272 
273 	clmpcc_select_channel(ch->ch_sc, old);
274 }
275 
276 static int
277 clmpcc_speed(sc, speed, cor, bpr)
278 	struct clmpcc_softc *sc;
279 	speed_t speed;
280 	int *cor, *bpr;
281 {
282 	int c, co, br;
283 
284 	for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
285 		br = ((sc->sc_clk / c) / speed) - 1;
286 		if ( br < 0x100 ) {
287 			*cor = co;
288 			*bpr = br;
289 			return 0;
290 		}
291 	}
292 
293 	return -1;
294 }
295 
296 void
297 clmpcc_attach(sc)
298 	struct clmpcc_softc *sc;
299 {
300 	struct clmpcc_chan *ch;
301 	struct tty *tp;
302 	int chan;
303 
304 	if ( cons_sc != NULL &&
305 	     sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
306 		cons_sc = sc;
307 
308 	/* Initialise the chip */
309 	clmpcc_init(sc);
310 
311 	printf(": Cirrus Logic CD240%c Serial Controller\n",
312 		(clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
313 
314 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
315 	sc->sc_soft_running = 0;
316 #else
317 	sc->sc_softintr_cookie =
318 	    softintr_establish(IPL_SOFTSERIAL, clmpcc_softintr, sc);
319 #ifdef DEBUG
320 	if (sc->sc_softintr_cookie == NULL)
321 		panic("clmpcc_attach: softintr_establish");
322 #endif
323 #endif
324 	memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
325 
326 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
327 		ch = &sc->sc_chans[chan];
328 
329 		ch->ch_sc = sc;
330 		ch->ch_car = chan;
331 
332 		tp = ttymalloc();
333 		tp->t_oproc = clmpcc_start;
334 		tp->t_param = clmpcc_param;
335 
336 		ch->ch_tty = tp;
337 
338 		ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
339 		if ( ch->ch_ibuf == NULL ) {
340 			printf("%s(%d): unable to allocate ring buffer\n",
341 		    		sc->sc_dev.dv_xname, chan);
342 			return;
343 		}
344 
345 		ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
346 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
347 
348 		tty_attach(tp);
349 	}
350 
351 	printf("%s: %d channels available", sc->sc_dev.dv_xname,
352 					    CLMPCC_NUM_CHANS);
353 	if ( cons_sc == sc ) {
354 		printf(", console on channel %d.\n", cons_chan);
355 		SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
356 		SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
357 	} else
358 		printf(".\n");
359 }
360 
361 static int
362 clmpcc_init(sc)
363 	struct clmpcc_softc *sc;
364 {
365 	u_int tcor, tbpr;
366 	u_int rcor, rbpr;
367 	u_int msvr_rts, msvr_dtr;
368 	u_int ccr;
369 	int is_console;
370 	int i;
371 
372 	/*
373 	 * All we're really concerned about here is putting the chip
374 	 * into a quiescent state so that it won't do anything until
375 	 * clmpccopen() is called. (Except the console channel.)
376 	 */
377 
378 	/*
379 	 * If the chip is acting as console, set all channels to the supplied
380 	 * console baud rate. Otherwise, plump for 9600.
381 	 */
382 	if ( cons_sc &&
383 	     sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
384 		clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
385 		clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
386 		is_console = 1;
387 	} else {
388 		clmpcc_speed(sc, 9600, &tcor, &tbpr);
389 		clmpcc_speed(sc, 9600, &rcor, &rbpr);
390 		is_console = 0;
391 	}
392 
393 	/* Allow any pending output to be sent */
394 	delay(10000);
395 
396 	/* Send the Reset All command  to channel 0 (resets all channels!) */
397 	clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
398 
399 	delay(1000);
400 
401 	/*
402 	 * The chip will set it's firmware revision register to a non-zero
403 	 * value to indicate completion of reset.
404 	 */
405 	for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
406 		delay(1);
407 
408 	if ( i == 0 ) {
409 		/*
410 		 * Watch out... If this chip is console, the message
411 		 * probably won't be sent since we just reset it!
412 		 */
413 		printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
414 		return -1;
415 	}
416 
417 	for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
418 		clmpcc_select_channel(sc, i);
419 
420 		/* All interrupts are disabled to begin with */
421 		clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
422 
423 		/* Make sure the channel interrupts on the correct vectors */
424 		clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
425 		clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
426 		clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
427 		clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
428 
429 		/* Receive timer prescaler set to 1ms */
430 		clmpcc_wrreg(sc, CLMPCC_REG_TPR,
431 				 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
432 
433 		/* We support Async mode only */
434 		clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
435 
436 		/* Set the required baud rate */
437 		clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
438 		clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
439 		clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
440 		clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
441 
442 		/* Always default to 8N1 (XXX what about console?) */
443 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
444 						  CLMPCC_COR1_NO_PARITY |
445 						  CLMPCC_COR1_IGNORE_PAR);
446 
447 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
448 
449 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
450 
451 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
452 						  CLMPCC_COR4_CDzd |
453 						  CLMPCC_COR4_CTSzd);
454 
455 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
456 						  CLMPCC_COR5_CDod |
457 						  CLMPCC_COR5_CTSod |
458 						  CLMPCC_COR5_FLOW_NORM);
459 
460 		clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
461 		clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
462 
463 		/* Set the receive FIFO timeout */
464 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
465 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
466 
467 		/* At this point, we set up the console differently */
468 		if ( is_console && i == cons_chan ) {
469 			msvr_rts = CLMPCC_MSVR_RTS;
470 			msvr_dtr = CLMPCC_MSVR_DTR;
471 			ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
472 		} else {
473 			msvr_rts = 0;
474 			msvr_dtr = 0;
475 			ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
476 		}
477 
478 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
479 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
480 		clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
481 		delay(100);
482 	}
483 
484 	return 0;
485 }
486 
487 static void
488 clmpcc_shutdown(ch)
489 	struct clmpcc_chan *ch;
490 {
491 	int oldch;
492 
493 	oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
494 
495 	/* Turn off interrupts. */
496 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
497 
498 	if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
499 		/* Disable the transmitter and receiver */
500 		clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
501 							  CLMPCC_CCR_T0_TX_DIS);
502 
503 		/* Drop RTS and DTR */
504 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
505 	}
506 
507 	clmpcc_select_channel(ch->ch_sc, oldch);
508 }
509 
510 int
511 clmpccopen(dev, flag, mode, p)
512 	dev_t dev;
513 	int flag, mode;
514 	struct proc *p;
515 {
516 	struct clmpcc_softc *sc;
517 	struct clmpcc_chan *ch;
518 	struct tty *tp;
519 	int oldch;
520 	int error;
521 
522 	sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
523 	if (sc == NULL)
524 		return (ENXIO);
525 
526 	ch = &sc->sc_chans[CLMPCCCHAN(dev)];
527 
528 	tp = ch->ch_tty;
529 
530 	if ( ISSET(tp->t_state, TS_ISOPEN) &&
531 	     ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
532 		return EBUSY;
533 
534 	/*
535 	 * Do the following iff this is a first open.
536 	 */
537 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
538 
539 		ttychars(tp);
540 
541 		tp->t_dev = dev;
542 		tp->t_iflag = TTYDEF_IFLAG;
543 		tp->t_oflag = TTYDEF_OFLAG;
544 		tp->t_lflag = TTYDEF_LFLAG;
545 		tp->t_cflag = TTYDEF_CFLAG;
546 		tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
547 
548 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
549 			SET(tp->t_cflag, CLOCAL);
550 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
551 			SET(tp->t_cflag, CRTSCTS);
552 		if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
553 			SET(tp->t_cflag, MDMBUF);
554 
555 		/*
556 		 * Override some settings if the channel is being
557 		 * used as the console.
558 		 */
559 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
560 			tp->t_ospeed = tp->t_ispeed = cons_rate;
561 			SET(tp->t_cflag, CLOCAL);
562 			CLR(tp->t_cflag, CRTSCTS);
563 			CLR(tp->t_cflag, HUPCL);
564 		}
565 
566 		ch->ch_control = 0;
567 
568 		clmpcc_param(tp, &tp->t_termios);
569 		ttsetwater(tp);
570 
571 		/* Clear the input ring */
572 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
573 
574 		/* Select the channel */
575 		oldch = clmpcc_select_channel(sc, ch->ch_car);
576 
577 		/* Reset it */
578 		clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
579 						   CLMPCC_CCR_T0_RX_EN |
580 						   CLMPCC_CCR_T0_TX_EN);
581 
582 		/* Enable receiver and modem change interrupts. */
583 		clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
584 						 CLMPCC_IER_RET |
585 						 CLMPCC_IER_RX_FIFO);
586 
587 		/* Raise RTS and DTR */
588 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
589 
590 		clmpcc_select_channel(sc, oldch);
591 	} else
592 	if ( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
593 		return EBUSY;
594 
595 	error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
596 	if (error)
597 		goto bad;
598 
599 	error = (*tp->t_linesw->l_open)(dev, tp);
600 	if (error)
601 		goto bad;
602 
603 	return 0;
604 
605 bad:
606 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
607 		/*
608 		 * We failed to open the device, and nobody else had it opened.
609 		 * Clean up the state as appropriate.
610 		 */
611 		clmpcc_shutdown(ch);
612 	}
613 
614 	return error;
615 }
616 
617 int
618 clmpccclose(dev, flag, mode, p)
619 	dev_t dev;
620 	int flag, mode;
621 	struct proc *p;
622 {
623 	struct clmpcc_softc	*sc =
624 		device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
625 	struct clmpcc_chan	*ch = &sc->sc_chans[CLMPCCCHAN(dev)];
626 	struct tty		*tp = ch->ch_tty;
627 	int s;
628 
629 	if ( ISCLR(tp->t_state, TS_ISOPEN) )
630 		return 0;
631 
632 	(*tp->t_linesw->l_close)(tp, flag);
633 
634 	s = spltty();
635 
636 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
637 		/*
638 		 * Although we got a last close, the device may still be in
639 		 * use; e.g. if this was the dialout node, and there are still
640 		 * processes waiting for carrier on the non-dialout node.
641 		 */
642 		clmpcc_shutdown(ch);
643 	}
644 
645 	ttyclose(tp);
646 
647 	splx(s);
648 
649 	return 0;
650 }
651 
652 int
653 clmpccread(dev, uio, flag)
654 	dev_t dev;
655 	struct uio *uio;
656 	int flag;
657 {
658 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
659 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
660 
661 	return ((*tp->t_linesw->l_read)(tp, uio, flag));
662 }
663 
664 int
665 clmpccwrite(dev, uio, flag)
666 	dev_t dev;
667 	struct uio *uio;
668 	int flag;
669 {
670 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
671 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
672 
673 	return ((*tp->t_linesw->l_write)(tp, uio, flag));
674 }
675 
676 int
677 clmpccpoll(dev, events, p)
678 	dev_t dev;
679 	int events;
680 	struct proc *p;
681 {
682 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
683 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
684 
685 	return ((*tp->t_linesw->l_poll)(tp, events, p));
686 }
687 
688 struct tty *
689 clmpcctty(dev)
690 	dev_t dev;
691 {
692 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
693 
694 	return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
695 }
696 
697 int
698 clmpccioctl(dev, cmd, data, flag, p)
699 	dev_t dev;
700 	u_long cmd;
701 	caddr_t data;
702 	int flag;
703 	struct proc *p;
704 {
705 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
706 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
707 	struct tty *tp = ch->ch_tty;
708 	int error;
709 
710 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
711 	if (error != EPASSTHROUGH)
712 		return error;
713 
714 	error = ttioctl(tp, cmd, data, flag, p);
715 	if (error != EPASSTHROUGH)
716 		return error;
717 
718 	error = 0;
719 
720 	switch (cmd) {
721 	case TIOCSBRK:
722 		SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
723 		clmpcc_enable_transmitter(ch);
724 		break;
725 
726 	case TIOCCBRK:
727 		SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
728 		clmpcc_enable_transmitter(ch);
729 		break;
730 
731 	case TIOCSDTR:
732 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
733 		break;
734 
735 	case TIOCCDTR:
736 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
737 		break;
738 
739 	case TIOCMSET:
740 		clmpcc_modem_control(ch, *((int *)data), DMSET);
741 		break;
742 
743 	case TIOCMBIS:
744 		clmpcc_modem_control(ch, *((int *)data), DMBIS);
745 		break;
746 
747 	case TIOCMBIC:
748 		clmpcc_modem_control(ch, *((int *)data), DMBIC);
749 		break;
750 
751 	case TIOCMGET:
752 		*((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
753 		break;
754 
755 	case TIOCGFLAGS:
756 		*((int *)data) = ch->ch_openflags;
757 		break;
758 
759 	case TIOCSFLAGS:
760 		error = suser(p->p_ucred, &p->p_acflag);
761 		if ( error )
762 			break;
763 		ch->ch_openflags = *((int *)data) &
764 			(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
765 			 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
766 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
767 			SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
768 		break;
769 
770 	default:
771 		error = EPASSTHROUGH;
772 		break;
773 	}
774 
775 	return error;
776 }
777 
778 int
779 clmpcc_modem_control(ch, bits, howto)
780 	struct clmpcc_chan *ch;
781 	int bits;
782 	int howto;
783 {
784 	struct clmpcc_softc *sc = ch->ch_sc;
785 	struct tty *tp = ch->ch_tty;
786 	int oldch;
787 	int msvr;
788 	int rbits = 0;
789 
790 	oldch = clmpcc_select_channel(sc, ch->ch_car);
791 
792 	switch ( howto ) {
793 	case DMGET:
794 		msvr = clmpcc_rd_msvr(sc);
795 
796 		if ( sc->sc_swaprtsdtr ) {
797 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
798 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
799 		} else {
800 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
801 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
802 		}
803 
804 		rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
805 		rbits |= (msvr & CLMPCC_MSVR_CD)  ? TIOCM_CD  : 0;
806 		rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
807 		break;
808 
809 	case DMSET:
810 		if ( sc->sc_swaprtsdtr ) {
811 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
812 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
813 					bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
814 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
815 				bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
816 		} else {
817 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
818 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
819 					bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
820 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
821 				bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
822 		}
823 		break;
824 
825 	case DMBIS:
826 		if ( sc->sc_swaprtsdtr ) {
827 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
828 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
829 		    if ( ISSET(bits, TIOCM_DTR) )
830 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
831 		} else {
832 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
833 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
834 		    if ( ISSET(bits, TIOCM_DTR) )
835 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
836 		}
837 		break;
838 
839 	case DMBIC:
840 		if ( sc->sc_swaprtsdtr ) {
841 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
842 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
843 		    if ( ISCLR(bits, TIOCM_DTR) )
844 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
845 		} else {
846 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
847 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
848 		    if ( ISCLR(bits, TIOCM_DTR) )
849 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
850 		}
851 		break;
852 	}
853 
854 	clmpcc_select_channel(sc, oldch);
855 
856 	return rbits;
857 }
858 
859 static int
860 clmpcc_param(tp, t)
861 	struct tty *tp;
862 	struct termios *t;
863 {
864 	struct clmpcc_softc *sc =
865 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
866 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
867 	u_char cor;
868 	u_char oldch;
869 	int oclk, obpr;
870 	int iclk, ibpr;
871 	int s;
872 
873 	/* Check requested parameters. */
874 	if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
875 		return EINVAL;
876 
877 	if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
878 		return EINVAL;
879 
880 	/*
881 	 * For the console, always force CLOCAL and !HUPCL, so that the port
882 	 * is always active.
883 	 */
884 	if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
885 	     ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
886 		SET(t->c_cflag, CLOCAL);
887 		CLR(t->c_cflag, HUPCL);
888 	}
889 
890 	CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
891 
892 	/* If ospeed it zero, hangup the line */
893 	clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
894 
895 	if ( t->c_ospeed ) {
896 		ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
897 		ch->ch_tbpr = obpr;
898 	} else {
899 		ch->ch_tcor = 0;
900 		ch->ch_tbpr = 0;
901 	}
902 
903 	if ( t->c_ispeed ) {
904 		ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
905 		ch->ch_rbpr = ibpr;
906 	} else {
907 		ch->ch_rcor = 0;
908 		ch->ch_rbpr = 0;
909 	}
910 
911 	/* Work out value to use for COR1 */
912 	cor = 0;
913 	if ( ISSET(t->c_cflag, PARENB) ) {
914 		cor |= CLMPCC_COR1_NORM_PARITY;
915 		if ( ISSET(t->c_cflag, PARODD) )
916 			cor |= CLMPCC_COR1_ODD_PARITY;
917 	}
918 
919 	if ( ISCLR(t->c_cflag, INPCK) )
920 		cor |= CLMPCC_COR1_IGNORE_PAR;
921 
922 	switch ( t->c_cflag & CSIZE ) {
923 	  case CS5:
924 		cor |= CLMPCC_COR1_CHAR_5BITS;
925 		break;
926 
927 	  case CS6:
928 		cor |= CLMPCC_COR1_CHAR_6BITS;
929 		break;
930 
931 	  case CS7:
932 		cor |= CLMPCC_COR1_CHAR_7BITS;
933 		break;
934 
935 	  case CS8:
936 		cor |= CLMPCC_COR1_CHAR_8BITS;
937 		break;
938 	}
939 
940 	ch->ch_cor1 = cor;
941 
942 	/*
943 	 * The only interesting bit in COR2 is 'CTS Automatic Enable'
944 	 * when hardware flow control is in effect.
945 	 */
946 	ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
947 
948 	/* COR3 needs to be set to the number of stop bits... */
949 	ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
950 						  CLMPCC_COR3_STOP_1;
951 
952 	/*
953 	 * COR4 contains the FIFO threshold setting.
954 	 * We adjust the threshold depending on the input speed...
955 	 */
956 	if ( t->c_ispeed <= 1200 )
957 		ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
958 	else if ( t->c_ispeed <= 19200 )
959 		ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
960 	else
961 		ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
962 
963 	/*
964 	 * If chip is used with CTS and DTR swapped, we can enable
965 	 * automatic hardware flow control.
966 	 */
967 	if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
968 		ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
969 	else
970 		ch->ch_cor5 = 0;
971 
972 	s = splserial();
973 	oldch = clmpcc_select_channel(sc, ch->ch_car);
974 
975 	/*
976 	 * COR2 needs to be set immediately otherwise we might never get
977 	 * a Tx EMPTY interrupt to change the other parameters.
978 	 */
979 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
980 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
981 
982 	if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
983 		clmpcc_set_params(ch);
984 	else
985 		SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
986 
987 	clmpcc_select_channel(sc, oldch);
988 
989 	splx(s);
990 
991 	return 0;
992 }
993 
994 static void
995 clmpcc_set_params(ch)
996 	struct clmpcc_chan *ch;
997 {
998 	struct clmpcc_softc *sc = ch->ch_sc;
999 	u_char r1;
1000 	u_char r2;
1001 
1002 	if ( ch->ch_tcor || ch->ch_tbpr ) {
1003 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
1004 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
1005 		/* Only write Tx rate if it really has changed */
1006 		if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
1007 			clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
1008 			clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
1009 		}
1010 	}
1011 
1012 	if ( ch->ch_rcor || ch->ch_rbpr ) {
1013 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1014 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1015 		/* Only write Rx rate if it really has changed */
1016 		if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1017 			clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1018 			clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1019 		}
1020 	}
1021 
1022 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1023 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1024 		/* Any change to COR1 requires an INIT command */
1025 		SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1026 	}
1027 
1028 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1029 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1030 
1031 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1032 	if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1033 		/*
1034 		 * Note: If the FIFO has changed, we always set it to
1035 		 * zero here and disable the Receive Timeout interrupt.
1036 		 * It's up to the Rx Interrupt handler to pick the
1037 		 * appropriate moment to write the new FIFO length.
1038 		 */
1039 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1040 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1041 		clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1042 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1043 	}
1044 
1045 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1046 	if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1047 		r1 &= ~CLMPCC_COR5_FLOW_MASK;
1048 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1049 	}
1050 }
1051 
1052 static void
1053 clmpcc_start(tp)
1054 	struct tty *tp;
1055 {
1056 	struct clmpcc_softc *sc =
1057 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1058 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1059 	u_int oldch;
1060 	int s;
1061 
1062 	s = spltty();
1063 
1064 	if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1065 		if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1066 			if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1067 				CLR(tp->t_state, TS_ASLEEP);
1068 				wakeup(&tp->t_outq);
1069 			}
1070 			selwakeup(&tp->t_wsel);
1071 		}
1072 
1073 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1074 					 CLMPCC_FLG_END_BREAK) ||
1075 		     tp->t_outq.c_cc > 0 ) {
1076 
1077 			if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1078 						 CLMPCC_FLG_END_BREAK) ) {
1079 				ch->ch_obuf_addr = tp->t_outq.c_cf;
1080 				ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1081 			}
1082 
1083 			/* Enable TX empty interrupts */
1084 			oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1085 			clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1086 				clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1087 					     CLMPCC_IER_TX_EMPTY);
1088 			clmpcc_select_channel(ch->ch_sc, oldch);
1089 			SET(tp->t_state, TS_BUSY);
1090 		}
1091 	}
1092 
1093 	splx(s);
1094 }
1095 
1096 /*
1097  * Stop output on a line.
1098  */
1099 void
1100 clmpccstop(tp, flag)
1101 	struct tty *tp;
1102 	int flag;
1103 {
1104 	struct clmpcc_softc *sc =
1105 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1106 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1107 	int s;
1108 
1109 	s = splserial();
1110 
1111 	if ( ISSET(tp->t_state, TS_BUSY) ) {
1112 		if ( ISCLR(tp->t_state, TS_TTSTOP) )
1113 			SET(tp->t_state, TS_FLUSH);
1114 		ch->ch_obuf_size = 0;
1115 	}
1116 	splx(s);
1117 }
1118 
1119 /*
1120  * RX interrupt routine
1121  */
1122 int
1123 clmpcc_rxintr(arg)
1124 	void *arg;
1125 {
1126 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1127 	struct clmpcc_chan *ch;
1128 	u_int8_t *put, *end, rxd;
1129 	u_char errstat;
1130 	u_char fc, tc;
1131 	u_char risr;
1132 	u_char rir;
1133 #ifdef DDB
1134 	int saw_break = 0;
1135 #endif
1136 
1137 	/* Receive interrupt active? */
1138 	rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1139 
1140 	/*
1141 	 * If we're using auto-vectored interrupts, we have to
1142 	 * verify if the chip is generating the interrupt.
1143 	 */
1144 	if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1145 		return 0;
1146 
1147 	/* Get pointer to interrupting channel's data structure */
1148 	ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1149 
1150 	/* Get the interrupt status register */
1151 	risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1152 	if ( risr & CLMPCC_RISR_TIMEOUT ) {
1153 		u_char reg;
1154 		/*
1155 		 * Set the FIFO threshold to zero, and disable
1156 		 * further receive timeout interrupts.
1157 		 */
1158 		reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1159 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1160 		reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1161 		clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1162 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1163 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1164 		return 1;
1165 	}
1166 
1167 	/* How many bytes are waiting in the FIFO?  */
1168 	fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1169 
1170 #ifdef DDB
1171 	/*
1172 	 * Allow BREAK on the console to drop to the debugger.
1173 	 */
1174 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1175 	     risr & CLMPCC_RISR_BREAK ) {
1176 		saw_break = 1;
1177 	}
1178 #endif
1179 
1180 	if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1181 		/* Just get rid of the data */
1182 		while ( fc-- )
1183 			(void) clmpcc_rd_rxdata(sc);
1184 		goto rx_done;
1185 	}
1186 
1187 	put = ch->ch_ibuf_wr;
1188 	end = ch->ch_ibuf_end;
1189 
1190 	/*
1191 	 * Note: The chip is completely hosed WRT these error
1192 	 *       conditions; there seems to be no way to associate
1193 	 *       the error with the correct character in the FIFO.
1194 	 *       We compromise by tagging the first character we read
1195 	 *       with the error. Not perfect, but there's no other way.
1196 	 */
1197 	errstat = 0;
1198 	if ( risr & CLMPCC_RISR_PARITY )
1199 		errstat |= TTY_PE;
1200 	if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1201 		errstat |= TTY_FE;
1202 
1203 	/*
1204 	 * As long as there are characters in the FIFO, and we
1205 	 * have space for them...
1206 	 */
1207 	while ( fc > 0 ) {
1208 
1209 		*put++ = rxd = clmpcc_rd_rxdata(sc);
1210 		*put++ = errstat;
1211 
1212 		if ( put >= end )
1213 			put = ch->ch_ibuf;
1214 
1215 		if ( put == ch->ch_ibuf_rd ) {
1216 			put -= 2;
1217 			if ( put < ch->ch_ibuf )
1218 				put = end - 2;
1219 		}
1220 
1221 		errstat = 0;
1222 		fc--;
1223 	}
1224 
1225 	ch->ch_ibuf_wr = put;
1226 
1227 #if 0
1228 	if ( sc->sc_swaprtsdtr == 0 &&
1229 	     ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1230 		/*
1231 		 * If RTS/DTR are not physically swapped, we have to
1232 		 * do hardware flow control manually
1233 		 */
1234 		clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1235 	}
1236 #endif
1237 
1238 rx_done:
1239 	if ( fc != tc ) {
1240 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1241 			u_char reg;
1242 			/*
1243 			 * Set the FIFO threshold to the preset value,
1244 			 * and enable receive timeout interrupts.
1245 			 */
1246 			reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1247 			reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1248 			clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1249 			reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1250 			clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1251 			CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1252 		}
1253 
1254 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1255 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1256 		if ( sc->sc_soft_running == 0 ) {
1257 			sc->sc_soft_running = 1;
1258 			(sc->sc_softhook)(sc);
1259 		}
1260 #else
1261 		softintr_schedule(sc->sc_softintr_cookie);
1262 #endif
1263 	} else
1264 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1265 
1266 #ifdef DDB
1267 	/*
1268 	 * Only =after= we write REOIR is it safe to drop to the debugger.
1269 	 */
1270 	if ( saw_break )
1271 		Debugger();
1272 #endif
1273 
1274 	return 1;
1275 }
1276 
1277 /*
1278  * Tx interrupt routine
1279  */
1280 int
1281 clmpcc_txintr(arg)
1282 	void *arg;
1283 {
1284 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1285 	struct clmpcc_chan *ch;
1286 	struct tty *tp;
1287 	u_char ftc, oftc;
1288 	u_char tir, teoir;
1289 	int etcmode = 0;
1290 
1291 	/* Tx interrupt active? */
1292 	tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1293 
1294 	/*
1295 	 * If we're using auto-vectored interrupts, we have to
1296 	 * verify if the chip is generating the interrupt.
1297 	 */
1298 	if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1299 		return 0;
1300 
1301 	/* Get pointer to interrupting channel's data structure */
1302 	ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1303 	tp = ch->ch_tty;
1304 
1305 	/* Dummy read of the interrupt status register */
1306 	(void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1307 
1308 	/* Make sure embedded transmit commands are disabled */
1309 	clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1310 
1311 	ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1312 
1313 	/* Handle a delayed parameter change */
1314 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1315 		CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1316 		clmpcc_set_params(ch);
1317 	}
1318 
1319 	if ( ch->ch_obuf_size > 0 ) {
1320 		u_int n = min(ch->ch_obuf_size, ftc);
1321 
1322 		clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1323 
1324 		ftc -= n;
1325 		ch->ch_obuf_size -= n;
1326 		ch->ch_obuf_addr += n;
1327 
1328 	} else {
1329 		/*
1330 		 * Check if we should start/stop a break
1331 		 */
1332 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1333 			CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1334 			/* Enable embedded transmit commands */
1335 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1336 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1337 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1338 			clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1339 			ftc -= 2;
1340 			etcmode = 1;
1341 		}
1342 
1343 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1344 			CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1345 			/* Enable embedded transmit commands */
1346 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1347 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1348 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1349 			clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1350 			ftc -= 2;
1351 			etcmode = 1;
1352 		}
1353 	}
1354 
1355 	tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1356 
1357 	if ( ftc != oftc ) {
1358 		/*
1359 		 * Enable/disable the Tx FIFO threshold interrupt
1360 		 * according to how much data is in the FIFO.
1361 		 * However, always disable the FIFO threshold if
1362 		 * we've left the channel in 'Embedded Transmit
1363 		 * Command' mode.
1364 		 */
1365 		if ( etcmode || ftc >= ch->ch_cor4 )
1366 			tir &= ~CLMPCC_IER_TX_FIFO;
1367 		else
1368 			tir |= CLMPCC_IER_TX_FIFO;
1369 		teoir = 0;
1370 	} else {
1371 		/*
1372 		 * No data was sent.
1373 		 * Disable transmit interrupt.
1374 		 */
1375 		tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1376 		teoir = CLMPCC_TEOIR_NO_TRANS;
1377 
1378 		/*
1379 		 * Request Tx processing in the soft interrupt handler
1380 		 */
1381 		ch->ch_tx_done = 1;
1382 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1383 		if ( sc->sc_soft_running == 0 ) {
1384 			sc->sc_soft_running = 1;
1385 			(sc->sc_softhook)(sc);
1386 		}
1387 #else
1388 		softintr_schedule(sc->sc_softintr_cookie);
1389 #endif
1390 	}
1391 
1392 	clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1393 	clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1394 
1395 	return 1;
1396 }
1397 
1398 /*
1399  * Modem change interrupt routine
1400  */
1401 int
1402 clmpcc_mdintr(arg)
1403 	void *arg;
1404 {
1405 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1406 	u_char mir;
1407 
1408 	/* Modem status interrupt active? */
1409 	mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1410 
1411 	/*
1412 	 * If we're using auto-vectored interrupts, we have to
1413 	 * verify if the chip is generating the interrupt.
1414 	 */
1415 	if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1416 		return 0;
1417 
1418 	/* Dummy read of the interrupt status register */
1419 	(void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1420 
1421 	/* Retrieve current status of modem lines. */
1422 	sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1423 		clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1424 
1425 	clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1426 
1427 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1428 	if ( sc->sc_soft_running == 0 ) {
1429 		sc->sc_soft_running = 1;
1430 		(sc->sc_softhook)(sc);
1431 	}
1432 #else
1433 	softintr_schedule(sc->sc_softintr_cookie);
1434 #endif
1435 
1436 	return 1;
1437 }
1438 
1439 void
1440 clmpcc_softintr(arg)
1441 	void *arg;
1442 {
1443 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1444 	struct clmpcc_chan *ch;
1445 	struct tty *tp;
1446 	int (*rint) __P((int, struct tty *));
1447 	u_char *get;
1448 	u_char reg;
1449 	u_int c;
1450 	int chan;
1451 
1452 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1453 	sc->sc_soft_running = 0;
1454 #endif
1455 
1456 	/* Handle Modem state changes too... */
1457 
1458 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1459 		ch = &sc->sc_chans[chan];
1460 		tp = ch->ch_tty;
1461 
1462 		get = ch->ch_ibuf_rd;
1463 		rint = tp->t_linesw->l_rint;
1464 
1465 		/* Squirt buffered incoming data into the tty layer */
1466 		while ( get != ch->ch_ibuf_wr ) {
1467 			c = get[0];
1468 			c |= ((u_int)get[1]) << 8;
1469 			if ( (rint)(c, tp) == -1 ) {
1470 				ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1471 				break;
1472 			}
1473 
1474 			get += 2;
1475 			if ( get == ch->ch_ibuf_end )
1476 				get = ch->ch_ibuf;
1477 
1478 			ch->ch_ibuf_rd = get;
1479 		}
1480 
1481 		/*
1482 		 * Is the transmitter idle and in need of attention?
1483 		 */
1484 		if ( ch->ch_tx_done ) {
1485 			ch->ch_tx_done = 0;
1486 
1487 			if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1488 				clmpcc_channel_cmd(sc, ch->ch_car,
1489 						       CLMPCC_CCR_T0_INIT  |
1490 						       CLMPCC_CCR_T0_RX_EN |
1491 					   	       CLMPCC_CCR_T0_TX_EN);
1492 				CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1493 
1494 				/*
1495 				 * Allow time for the channel to initialise.
1496 				 * (Empirically derived duration; there must
1497 				 * be another way to determine the command
1498 				 * has completed without busy-waiting...)
1499 				 */
1500 				delay(800);
1501 
1502 				/*
1503 				 * Update the tty layer's idea of the carrier
1504 				 * bit, in case we changed CLOCAL or MDMBUF.
1505 				 * We don't hang up here; we only do that by
1506 				 * explicit request.
1507 				 */
1508 				reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1509 				(*tp->t_linesw->l_modem)(tp, reg != 0);
1510 			}
1511 
1512 			CLR(tp->t_state, TS_BUSY);
1513 			if ( ISSET(tp->t_state, TS_FLUSH) )
1514 				CLR(tp->t_state, TS_FLUSH);
1515 			else
1516 				ndflush(&tp->t_outq,
1517 				     (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1518 
1519 			(*tp->t_linesw->l_start)(tp);
1520 		}
1521 	}
1522 }
1523 
1524 
1525 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1526 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1527 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1528 /*
1529  * Following are all routines needed for a cd240x channel to act as console
1530  */
1531 int
1532 clmpcc_cnattach(sc, chan, rate)
1533 	struct clmpcc_softc *sc;
1534 	int chan;
1535 	int rate;
1536 {
1537 	cons_sc = sc;
1538 	cons_chan = chan;
1539 	cons_rate = rate;
1540 
1541 	return (clmpcc_init(sc));
1542 }
1543 
1544 /*
1545  * The following functions are polled getc and putc routines, for console use.
1546  */
1547 static int
1548 clmpcc_common_getc(sc, chan)
1549 	struct clmpcc_softc *sc;
1550 	int chan;
1551 {
1552 	u_char old_chan;
1553 	u_char old_ier;
1554 	u_char ch, rir, risr;
1555 	int s;
1556 
1557 	s = splhigh();
1558 
1559 	/* Save the currently active channel */
1560 	old_chan = clmpcc_select_channel(sc, chan);
1561 
1562 	/*
1563 	 * We have to put the channel into RX interrupt mode before
1564 	 * trying to read the Rx data register. So save the previous
1565 	 * interrupt mode.
1566 	 */
1567 	old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1568 	clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1569 
1570 	/* Loop until we get a character */
1571 	for (;;) {
1572 		/*
1573 		 * The REN bit will be set in the Receive Interrupt Register
1574 		 * when the CD240x has a character to process. Remember,
1575 		 * the RACT bit won't be set until we generate an interrupt
1576 		 * acknowledge cycle via the MD front-end.
1577 		 */
1578 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1579 		if ( (rir & CLMPCC_RIR_REN) == 0 )
1580 			continue;
1581 
1582 		/* Acknowledge the request */
1583 		if ( sc->sc_iackhook )
1584 			(sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1585 
1586 		/*
1587 		 * Determine if the interrupt is for the required channel
1588 		 * and if valid data is available.
1589 		 */
1590 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1591 		risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1592 		if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1593 		     risr != 0 ) {
1594 			/* Rx error, or BREAK */
1595 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1596 					 CLMPCC_REOIR_NO_TRANS);
1597 		} else {
1598 			/* Dummy read of the FIFO count register */
1599 			(void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1600 
1601 			/* Fetch the received character */
1602 			ch = clmpcc_rd_rxdata(sc);
1603 
1604 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1605 			break;
1606 		}
1607 	}
1608 
1609 	/* Restore the original IER and CAR register contents */
1610 	clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1611 	clmpcc_select_channel(sc, old_chan);
1612 
1613 	splx(s);
1614 	return ch;
1615 }
1616 
1617 
1618 static void
1619 clmpcc_common_putc(sc, chan, c)
1620 	struct clmpcc_softc *sc;
1621 	int chan;
1622 	int c;
1623 {
1624 	u_char old_chan;
1625 	int s = splhigh();
1626 
1627 	/* Save the currently active channel */
1628 	old_chan = clmpcc_select_channel(sc, chan);
1629 
1630 	/*
1631 	 * Since we can only access the Tx Data register from within
1632 	 * the interrupt handler, the easiest way to get console data
1633 	 * onto the wire is using one of the Special Transmit Character
1634 	 * registers.
1635 	 */
1636 	clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1637 	clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1638 					  CLMPCC_STCR_SND_SPC);
1639 
1640 	/* Wait until the "Send Special Character" command is accepted */
1641 	while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1642 		;
1643 
1644 	/* Restore the previous channel selected */
1645 	clmpcc_select_channel(sc, old_chan);
1646 
1647 	splx(s);
1648 }
1649 
1650 int
1651 clmpcccngetc(dev)
1652 	dev_t dev;
1653 {
1654 	return clmpcc_common_getc(cons_sc, cons_chan);
1655 }
1656 
1657 /*
1658  * Console kernel output character routine.
1659  */
1660 void
1661 clmpcccnputc(dev, c)
1662 	dev_t dev;
1663 	int c;
1664 {
1665 	if ( c == '\n' )
1666 		clmpcc_common_putc(cons_sc, cons_chan, '\r');
1667 
1668 	clmpcc_common_putc(cons_sc, cons_chan, c);
1669 }
1670