xref: /netbsd/sys/dev/ic/cs89x0.c (revision 6550d01e)
1 /*	$NetBSD: cs89x0.c,v 1.32 2010/11/13 13:52:00 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.32 2010/11/13 13:52:00 uebayasi Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233 
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include <net/bpf.h>
243 #include <net/bpfdesc.h>
244 
245 #include <sys/bus.h>
246 #include <sys/intr.h>
247 
248 #include <dev/ic/cs89x0reg.h>
249 #include <dev/ic/cs89x0var.h>
250 
251 #ifdef SHARK
252 #include <shark/shark/sequoia.h>
253 #endif
254 
255 /*
256  * MACRO DEFINITIONS
257  */
258 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
259 
260 /*
261  * FUNCTION PROTOTYPES
262  */
263 static void	cs_get_default_media(struct cs_softc *);
264 static int	cs_get_params(struct cs_softc *);
265 static int	cs_get_enaddr(struct cs_softc *);
266 static int	cs_reset_chip(struct cs_softc *);
267 static void	cs_reset(struct cs_softc *);
268 static int	cs_ioctl(struct ifnet *, u_long, void *);
269 static void	cs_initChip(struct cs_softc *);
270 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
271 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
272 static void	cs_receive_event(struct cs_softc *, u_int16_t);
273 static void	cs_process_receive(struct cs_softc *);
274 static void	cs_process_rx_early(struct cs_softc *);
275 static void	cs_start_output(struct ifnet *);
276 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
277 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
278 static u_int16_t cs_hash_index(char *);
279 static void	cs_counter_event(struct cs_softc *, u_int16_t);
280 
281 static int	cs_mediachange(struct ifnet *);
282 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
283 
284 static bool cs_shutdown(device_t, int);
285 static int cs_enable(struct cs_softc *);
286 static void cs_disable(struct cs_softc *);
287 static void cs_stop(struct ifnet *, int);
288 static int cs_scan_eeprom(struct cs_softc *);
289 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
290 
291 
292 /*
293  * GLOBAL DECLARATIONS
294  */
295 
296 /*
297  * Xmit-early table.
298  *
299  * To get better performance, we tell the chip to start packet
300  * transmission before the whole packet is copied to the chip.
301  * However, this can fail under load.  When it fails, we back off
302  * to a safer setting for a little while.
303  *
304  * txcmd is the value of txcmd used to indicate when to start transmission.
305  * better is the next 'better' state in the table.
306  * better_count is the number of output packets before transition to the
307  *   better state.
308  * worse is the next 'worse' state in the table.
309  *
310  * Transition to the next worse state happens automatically when a
311  * transmittion underrun occurs.
312  */
313 struct cs_xmit_early {
314 	u_int16_t       txcmd;
315 	int             better;
316 	int             better_count;
317 	int             worse;
318 } cs_xmit_early_table[3] = {
319 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
320 	{ TX_CMD_START_1021,	0,	50000,		2, },
321 	{ TX_CMD_START_ALL,	1,	5000,		2, },
322 };
323 
324 int cs_default_media[] = {
325 	IFM_ETHER|IFM_10_2,
326 	IFM_ETHER|IFM_10_5,
327 	IFM_ETHER|IFM_10_T,
328 	IFM_ETHER|IFM_10_T|IFM_FDX,
329 };
330 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
331 
332 int
333 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
334 	  int nmedia, int defmedia)
335 {
336 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
337 	const char *chipname, *medname;
338 	u_int16_t reg;
339 	int i;
340 
341 	/* Start out in IO mode */
342 	sc->sc_memorymode = FALSE;
343 
344 	/* make sure we're right */
345 	for (i = 0; i < 10000; i++) {
346 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
347 		if (reg == EISA_NUM_CRYSTAL) {
348 			break;
349 		}
350 	}
351 	if (i == 10000) {
352 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
353 		return 1; /* XXX should panic? */
354 	}
355 
356 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
357 	sc->sc_prodid = reg & PROD_ID_MASK;
358 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
359 
360 	switch (sc->sc_prodid) {
361 	case PROD_ID_CS8900:
362 		chipname = "CS8900";
363 		break;
364 	case PROD_ID_CS8920:
365 		chipname = "CS8920";
366 		break;
367 	case PROD_ID_CS8920M:
368 		chipname = "CS8920M";
369 		break;
370 	default:
371 		panic("cs_attach: impossible");
372 	}
373 
374 	/*
375 	 * the first thing to do is check that the mbuf cluster size is
376 	 * greater than the MTU for an ethernet frame. The code depends on
377 	 * this and to port this to a OS where this was not the case would
378 	 * not be straightforward.
379 	 *
380 	 * we need 1 byte spare because our
381 	 * packet read loop can overrun.
382 	 * and we may need pad bytes to align ip header.
383 	 */
384 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
385 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
386 		printf("%s: MCLBYTES too small for Ethernet frame\n",
387 		    device_xname(sc->sc_dev));
388 		return 1;
389 	}
390 
391 	/* Start out not transmitting */
392 	sc->sc_txbusy = FALSE;
393 
394 	/* Set up early transmit threshhold */
395 	sc->sc_xe_ent = 0;
396 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
397 
398 	/* Initialize ifnet structure. */
399 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
400 	ifp->if_softc = sc;
401 	ifp->if_start = cs_start_output;
402 	ifp->if_init = cs_init;
403 	ifp->if_ioctl = cs_ioctl;
404 	ifp->if_stop = cs_stop;
405 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
406 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
407 	    IFF_BROADCAST | IFF_MULTICAST;
408 	IFQ_SET_READY(&ifp->if_snd);
409 
410 	/* Initialize ifmedia structures. */
411 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
412 
413 	if (media != NULL) {
414 		for (i = 0; i < nmedia; i++)
415 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
416 		ifmedia_set(&sc->sc_media, defmedia);
417 	} else {
418 		for (i = 0; i < cs_default_nmedia; i++)
419 			ifmedia_add(&sc->sc_media, cs_default_media[i],
420 			    0, NULL);
421 		cs_get_default_media(sc);
422 	}
423 
424 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
425 		if (cs_scan_eeprom(sc) == CS_ERROR) {
426 			/* failed to scan the eeprom, pretend there isn't an eeprom */
427 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
428 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
429 		}
430 	}
431 
432 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
433 		/* Get parameters from the EEPROM */
434 		if (cs_get_params(sc) == CS_ERROR) {
435 			aprint_error_dev(sc->sc_dev,
436 			    "unable to get settings from EEPROM\n");
437 			return 1;
438 		}
439 	}
440 
441 	if (enaddr != NULL)
442 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
443 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
444 		/* Get and store the Ethernet address */
445 		if (cs_get_enaddr(sc) == CS_ERROR) {
446 			aprint_error_dev(sc->sc_dev,
447 			    "unable to read Ethernet address\n");
448 			return 1;
449 		}
450 	} else {
451 #if 1
452 		int j;
453 		uint v;
454 
455 		for (j = 0; j < 6; j += 2) {
456 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
457 			sc->sc_enaddr[j + 0] = v;
458 			sc->sc_enaddr[j + 1] = v >> 8;
459 		}
460 #else
461 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
462 		return 1;
463 #endif
464 	}
465 
466 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
467 	case IFM_10_2:
468 		medname = "BNC";
469 		break;
470 	case IFM_10_5:
471 		medname = "AUI";
472 		break;
473 	case IFM_10_T:
474 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
475 			medname = "UTP <full-duplex>";
476 		else
477 			medname = "UTP";
478 		break;
479 	default:
480 		panic("cs_attach: impossible");
481 	}
482 	printf("%s: %s rev. %c, address %s, media %s\n",
483 	    device_xname(sc->sc_dev),
484 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
485 	    medname);
486 
487 	if (sc->sc_dma_attach)
488 		(*sc->sc_dma_attach)(sc);
489 
490 	/* Attach the interface. */
491 	if_attach(ifp);
492 	ether_ifattach(ifp, sc->sc_enaddr);
493 
494 #if NRND > 0
495 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
496 			  RND_TYPE_NET, 0);
497 #endif
498 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
499 
500 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
501 		pmf_class_network_register(sc->sc_dev, ifp);
502 	else
503 		aprint_error_dev(sc->sc_dev,
504 		    "couldn't establish power handler\n");
505 
506 	/* Reset the chip */
507 	if (cs_reset_chip(sc) == CS_ERROR) {
508 		aprint_error_dev(sc->sc_dev, "reset failed\n");
509 		cs_detach(sc);
510 		return 1;
511 	}
512 
513 	return 0;
514 }
515 
516 int
517 cs_detach(struct cs_softc *sc)
518 {
519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
520 
521 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
522 #if NRND > 0
523 		rnd_detach_source(&sc->rnd_source);
524 #endif
525 		ether_ifdetach(ifp);
526 		if_detach(ifp);
527 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
528 	}
529 
530 #if 0
531 	/*
532 	 * XXX not necessary
533 	 */
534 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
535 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
536 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
537 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
538 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
539 	}
540 #endif
541 
542 	pmf_device_deregister(sc->sc_dev);
543 
544 	return 0;
545 }
546 
547 bool
548 cs_shutdown(device_t self, int howto)
549 {
550 	struct cs_softc *sc;
551 
552 	sc = device_private(self);
553 	cs_reset(sc);
554 
555 	return true;
556 }
557 
558 void
559 cs_get_default_media(struct cs_softc *sc)
560 {
561 	u_int16_t adp_cfg, xmit_ctl;
562 
563 	if (cs_verify_eeprom(sc) == CS_ERROR) {
564 		aprint_error_dev(sc->sc_dev,
565 		    "cs_get_default_media: EEPROM missing or bad\n");
566 		goto fakeit;
567 	}
568 
569 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
570 		aprint_error_dev(sc->sc_dev,
571 		    "unable to read adapter config from EEPROM\n");
572 		goto fakeit;
573 	}
574 
575 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
576 		aprint_error_dev(sc->sc_dev,
577 		    "unable to read transmit control from EEPROM\n");
578 		goto fakeit;
579 	}
580 
581 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
582 	case ADPTR_CFG_AUI:
583 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
584 		break;
585 	case ADPTR_CFG_10BASE2:
586 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
587 		break;
588 	case ADPTR_CFG_10BASET:
589 	default:
590 		if (xmit_ctl & XMIT_CTL_FDX)
591 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
592 		else
593 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
594 		break;
595 	}
596 	return;
597 
598  fakeit:
599 	aprint_error_dev(sc->sc_dev,
600 	    "WARNING: default media setting may be inaccurate\n");
601 	/* XXX Arbitrary... */
602 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
603 }
604 
605 /*
606  * cs_scan_eeprom
607  *
608  * Attempt to take a complete copy of the eeprom into main memory.
609  * this will allow faster parsing of the eeprom data.
610  *
611  * Only tested against a 8920M's eeprom, but the data sheet for the
612  * 8920A indicates that is uses the same layout.
613  */
614 int
615 cs_scan_eeprom(struct cs_softc *sc)
616 {
617 	u_int16_t result;
618 	int	i;
619 	int	eeprom_size;
620 	u_int8_t checksum = 0;
621 
622 	if (cs_verify_eeprom(sc) == CS_ERROR) {
623 		aprint_error_dev(sc->sc_dev,
624 		    "cs_scan_params: EEPROM missing or bad\n");
625 		return (CS_ERROR);
626 	}
627 
628 	/*
629 	 * read the 0th word from the eeprom, it will tell us the length
630 	 * and if the eeprom is valid
631 	 */
632 	cs_read_eeprom(sc, 0, &result);
633 
634 	/* check the eeprom signature */
635 	if ((result & 0xE000) != 0xA000) {
636 		/* empty eeprom */
637 		return (CS_ERROR);
638 	}
639 
640 	/*
641 	 * take the eeprom size (note the read value doesn't include the header
642 	 * word)
643 	 */
644 	eeprom_size = (result & 0xff) + 2;
645 
646 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
647 	if (sc->eeprom_data == NULL) {
648 		/* no memory, treat this as if there's no eeprom */
649 		return (CS_ERROR);
650 	}
651 
652 	sc->eeprom_size = eeprom_size;
653 
654 	/* read the eeprom into the buffer, also calculate the checksum  */
655 	for (i = 0; i < (eeprom_size >> 1); i++) {
656 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
657 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
658 		checksum += (sc->eeprom_data[i] & 0x00ff);
659 	}
660 
661 	/*
662 	 * validate checksum calculation, the sum of all the bytes should be 0,
663 	 * as the high byte of the last word is the 2's complement of the
664 	 * sum to that point.
665 	 */
666 	if (checksum != 0) {
667 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
668 		return (CS_ERROR);
669 	}
670 
671 	return (CS_OK);
672 }
673 
674 static int
675 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
676 {
677 	int x, maxword;
678 
679 	/* Check that we have eeprom data */
680 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
681 		return (CS_ERROR);
682 
683 	/*
684 	 * We only want to read the data words, the last word contains the
685 	 * checksum
686 	 */
687 	maxword = (sc->eeprom_size - 2) >> 1;
688 
689 	/* start 1 word in, as the first word is the length and signature */
690 	x = 1;
691 
692 	while ( x < (maxword)) {
693 		u_int16_t header;
694 		int group_size;
695 		int offset;
696 		int offset_max;
697 
698 		/* read in the group header word */
699 		header = sc->eeprom_data[x];
700 		x++;	/* skip group header */
701 
702 		/*
703 		 * size of group in words is in the top 4 bits, note that it
704 		 * is one less than the number of words
705 		 */
706 		group_size = header & 0xF000;
707 
708 		/*
709 		 * CS8900 Data sheet says this should be 0x01ff,
710 		 * but my cs8920 eeprom has higher offsets,
711 		 * perhaps the 8920 allows higher offsets, otherwise
712 		 * it's writing to places that it shouldn't
713 		 */
714 		/* work out the offsets this group covers */
715 		offset = header & 0x0FFF;
716 		offset_max = offset + (group_size << 1);
717 
718 		/* check if the pkgpg we're after is in this group */
719 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
720 			/* the pkgpg value we want is in here */
721 			int eeprom_location;
722 
723 			eeprom_location = ((pktpg - offset) >> 1) ;
724 
725 			*pValue = sc->eeprom_data[x + eeprom_location];
726 			return (CS_OK);
727 		} else {
728 			/* skip this group (+ 1 for first entry) */
729 			x += group_size + 1;
730 		}
731 	}
732 
733 	/*
734 	 * if we've fallen out here then we don't have a value in the EEPROM
735 	 * for this pktpg so return an error
736 	 */
737 	return (CS_ERROR);
738 }
739 
740 int
741 cs_get_params(struct cs_softc *sc)
742 {
743 	u_int16_t isaConfig;
744 	u_int16_t adapterConfig;
745 
746 	if (cs_verify_eeprom(sc) == CS_ERROR) {
747 		aprint_error_dev(sc->sc_dev,
748 		    "cs_get_params: EEPROM missing or bad\n");
749 		return (CS_ERROR);
750 	}
751 
752 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
753 		/* Get ISA configuration from the EEPROM */
754 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
755 			       	== CS_ERROR) {
756 			/* eeprom doesn't have this value, use data sheet default */
757 			isaConfig = 0x0017;
758 		}
759 
760 		/* Get adapter configuration from the EEPROM */
761 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
762 				== CS_ERROR) {
763 			/* eeprom doesn't have this value, use data sheet default */
764 			adapterConfig = 0x0015;
765 		}
766 
767 		/* Copy the USE_SA flag */
768 		if (isaConfig & BUS_CTL_USE_SA)
769 			sc->sc_cfgflags |= CFGFLG_USE_SA;
770 
771 		/* Copy the IO Channel Ready flag */
772 		if (isaConfig & BUS_CTL_IOCHRDY)
773 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
774 
775 		/* Copy the DC/DC Polarity flag */
776 		if (adapterConfig & SELF_CTL_HCB1)
777 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
778 	} else {
779 		/* Get ISA configuration from the EEPROM */
780 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
781 			goto eeprom_bad;
782 
783 		/* Get adapter configuration from the EEPROM */
784 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
785 			goto eeprom_bad;
786 
787 		/* Copy the USE_SA flag */
788 		if (isaConfig & ISA_CFG_USE_SA)
789 			sc->sc_cfgflags |= CFGFLG_USE_SA;
790 
791 		/* Copy the IO Channel Ready flag */
792 		if (isaConfig & ISA_CFG_IOCHRDY)
793 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
794 
795 		/* Copy the DC/DC Polarity flag */
796 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
797 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
798 	}
799 
800 	return (CS_OK);
801 eeprom_bad:
802 	aprint_error_dev(sc->sc_dev,
803 	    "cs_get_params: unable to read from EEPROM\n");
804 	return (CS_ERROR);
805 }
806 
807 int
808 cs_get_enaddr(struct cs_softc *sc)
809 {
810 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
811 	int i;
812 
813 	if (cs_verify_eeprom(sc) == CS_ERROR) {
814 		aprint_error_dev(sc->sc_dev,
815 		    "cs_get_enaddr: EEPROM missing or bad\n");
816 		return (CS_ERROR);
817 	}
818 
819 	/* Get Ethernet address from the EEPROM */
820 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
821 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
822 				== CS_ERROR)
823 			goto eeprom_bad;
824 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
825 				== CS_ERROR)
826 			goto eeprom_bad;
827 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
828 				== CS_ERROR)
829 			goto eeprom_bad;
830 	} else {
831 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
832 			goto eeprom_bad;
833 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
834 			goto eeprom_bad;
835 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
836 			goto eeprom_bad;
837 	}
838 
839 	for (i = 0; i < __arraycount(myea); i++) {
840 		sc->sc_enaddr[i * 2 + 0] = myea[i];
841 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
842 	}
843 
844 	return (CS_OK);
845 
846  eeprom_bad:
847 	aprint_error_dev(sc->sc_dev,
848 	    "cs_get_enaddr: unable to read from EEPROM\n");
849 	return (CS_ERROR);
850 }
851 
852 int
853 cs_reset_chip(struct cs_softc *sc)
854 {
855 	int intState;
856 	int x;
857 
858 	/* Disable interrupts at the CPU so reset command is atomic */
859 	intState = splnet();
860 
861 	/*
862 	 * We are now resetting the chip
863 	 *
864 	 * A spurious interrupt is generated by the chip when it is reset. This
865 	 * variable informs the interrupt handler to ignore this interrupt.
866 	 */
867 	sc->sc_resetting = TRUE;
868 
869 	/* Issue a reset command to the chip */
870 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
871 
872 	/* Re-enable interrupts at the CPU */
873 	splx(intState);
874 
875 	/* The chip is always in IO mode after a reset */
876 	sc->sc_memorymode = FALSE;
877 
878 	/* If transmission was in progress, it is not now */
879 	sc->sc_txbusy = FALSE;
880 
881 	/*
882 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
883 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
884 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
885 	 * should be sufficient.
886 	 */
887 
888 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
889 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
890 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
891 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
892 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
893 
894 	/* Wait until the EEPROM is not busy */
895 	for (x = 0; x < MAXLOOP; x++) {
896 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
897 			break;
898 	}
899 
900 	if (x == MAXLOOP)
901 		return CS_ERROR;
902 
903 	/* Wait until initialization is done */
904 	for (x = 0; x < MAXLOOP; x++) {
905 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
906 			break;
907 	}
908 
909 	if (x == MAXLOOP)
910 		return CS_ERROR;
911 
912 	/* Reset is no longer in progress */
913 	sc->sc_resetting = FALSE;
914 
915 	return CS_OK;
916 }
917 
918 int
919 cs_verify_eeprom(struct cs_softc *sc)
920 {
921 	u_int16_t self_status;
922 
923 	/* Verify that the EEPROM is present and OK */
924 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
925 	if (((self_status & SELF_ST_EEP_PRES) &&
926 	     (self_status & SELF_ST_EEP_OK)) == 0)
927 		return (CS_ERROR);
928 
929 	return (CS_OK);
930 }
931 
932 int
933 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
934 {
935 	int x;
936 
937 	/* Ensure that the EEPROM is not busy */
938 	for (x = 0; x < MAXLOOP; x++) {
939 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
940 		      SELF_ST_SI_BUSY))
941 			break;
942 	}
943 
944 	if (x == MAXLOOP)
945 		return (CS_ERROR);
946 
947 	/* Issue the command to read the offset within the EEPROM */
948 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
949 	    offset | EEPROM_CMD_READ);
950 
951 	/* Wait until the command is completed */
952 	for (x = 0; x < MAXLOOP; x++) {
953 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
954 		      SELF_ST_SI_BUSY))
955 			break;
956 	}
957 
958 	if (x == MAXLOOP)
959 		return (CS_ERROR);
960 
961 	/* Get the EEPROM data from the EEPROM Data register */
962 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
963 
964 	return (CS_OK);
965 }
966 
967 void
968 cs_initChip(struct cs_softc *sc)
969 {
970 	u_int16_t busCtl;
971 	u_int16_t selfCtl;
972 	u_int16_t v;
973 	u_int16_t isaId;
974 	int i;
975 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
976 
977 	/* Disable reception and transmission of frames */
978 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
979 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
980 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
981 
982 	/* Disable interrupt at the chip */
983 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
985 
986 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
987 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
988 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
989 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
990 		    busCtl & ~BUS_CTL_IOCHRDY);
991 	} else {
992 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
993 		    busCtl | BUS_CTL_IOCHRDY);
994 	}
995 
996 	/* Set the Line Control register to match the media type */
997 	if (media == IFM_10_T)
998 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
999 	else
1000 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1001 
1002 	/*
1003 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
1004 	 * enable the DC/DC converter
1005 	 */
1006 	selfCtl = SELF_CTL_HC1E;
1007 
1008 	/* If the media type is 10Base2 */
1009 	if (media == IFM_10_2) {
1010 		/*
1011 		 * Enable the DC/DC converter if it has a low enable.
1012 		 */
1013 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1014 			/*
1015 			 * Set the HCB1 bit, which causes the HC1 pin to go
1016 			 * low.
1017 			 */
1018 			selfCtl |= SELF_CTL_HCB1;
1019 	} else { /* Media type is 10BaseT or AUI */
1020 		/*
1021 		 * Disable the DC/DC converter if it has a high enable.
1022 		 */
1023 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1024 			/*
1025 			 * Set the HCB1 bit, which causes the HC1 pin to go
1026 			 * low.
1027 			 */
1028 			selfCtl |= SELF_CTL_HCB1;
1029 		}
1030 	}
1031 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1032 
1033 	/* enable normal link pulse */
1034 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1035 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1036 
1037 	/* Enable full-duplex, if appropriate */
1038 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1039 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1040 
1041 	/* RX_CTL set in cs_set_ladr_filt(), below */
1042 
1043 	/* enable all transmission interrupts */
1044 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1045 
1046 	/* Accept all receive interrupts */
1047 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1048 
1049 	/*
1050 	 * Configure Operational Modes
1051 	 *
1052 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1053 	 * a better way to do it because the card has a counter which can be
1054 	 * read to update the RX_MISS counter. This saves many interrupts.
1055 	 *
1056 	 * I have turned on the tx and rx overflow interrupts to counter using
1057 	 * the receive miss interrupt. This is a better estimate of errors
1058 	 * and requires lower system overhead.
1059 	 */
1060 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1061 			  BUF_CFG_RX_DMA_IE);
1062 
1063 	if (sc->sc_dma_chipinit)
1064 		(*sc->sc_dma_chipinit)(sc);
1065 
1066 	/* If memory mode is enabled */
1067 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1068 		/* If external logic is present for address decoding */
1069 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1070 			/*
1071 			 * Program the external logic to decode address bits
1072 			 * SA20-SA23
1073 			 */
1074 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1075 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1076 			    EEPROM_CMD_ELSEL);
1077 		}
1078 
1079 		/*
1080 		 * Write the packet page base physical address to the memory
1081 		 * base register.
1082 		 */
1083 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1084 		    sc->sc_pktpgaddr & 0xFFFF);
1085 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1086 		    sc->sc_pktpgaddr >> 16);
1087 		busCtl = BUS_CTL_MEM_MODE;
1088 
1089 		/* tell the chip to read the addresses off the SA pins */
1090 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1091 			busCtl |= BUS_CTL_USE_SA;
1092 		}
1093 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1094 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1095 
1096 		/* We are in memory mode now! */
1097 		sc->sc_memorymode = TRUE;
1098 
1099 		/*
1100 		 * wait here (10ms) for the chip to swap over. this is the
1101 		 * maximum time that this could take.
1102 		 */
1103 		delay(10000);
1104 
1105 		/* Verify that we can read from the chip */
1106 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1107 
1108 		/*
1109 		 * As a last minute sanity check before actually using mapped
1110 		 * memory we verify that we can read the isa number from the
1111 		 * chip in memory mode.
1112 		 */
1113 		if (isaId != EISA_NUM_CRYSTAL) {
1114 			aprint_error_dev(sc->sc_dev,
1115 			    "failed to enable memory mode\n");
1116 			sc->sc_memorymode = FALSE;
1117 		} else {
1118 			/*
1119 			 * we are in memory mode so if we aren't using DMA,
1120 			 * then program the chip to interrupt early.
1121 			 */
1122 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1123 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1124 				    BUF_CFG_RX_DEST_IE |
1125 				    BUF_CFG_RX_MISS_OVER_IE |
1126 				    BUF_CFG_TX_COL_OVER_IE);
1127 			}
1128 		}
1129 
1130 	}
1131 
1132 	/* Put Ethernet address into the Individual Address register */
1133 	for (i = 0; i < 6; i += 2) {
1134 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1135 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1136 	}
1137 
1138 	if (sc->sc_irq != -1) {
1139 		/* Set the interrupt level in the chip */
1140 		if (sc->sc_prodid == PROD_ID_CS8900) {
1141 			if (sc->sc_irq == 5) {
1142 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1143 			} else {
1144 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1145 			}
1146 		}
1147 		else { /* CS8920 */
1148 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1149 		}
1150 	}
1151 
1152 	/* write the multicast mask to the address filter register */
1153 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1154 
1155 	/* Enable reception and transmission of frames */
1156 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1157 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1158 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1159 
1160 	/* Enable interrupt at the chip */
1161 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1162 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1163 }
1164 
1165 int
1166 cs_init(struct ifnet *ifp)
1167 {
1168 	int intState;
1169 	int error = CS_OK;
1170 	struct cs_softc *sc = ifp->if_softc;
1171 
1172 	if (cs_enable(sc))
1173 		goto out;
1174 
1175 	cs_stop(ifp, 0);
1176 
1177 	intState = splnet();
1178 
1179 #if 0
1180 	/* Mark the interface as down */
1181 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1182 #endif
1183 
1184 #ifdef CS_DEBUG
1185 	/* Enable debugging */
1186 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1187 #endif
1188 
1189 	/* Reset the chip */
1190 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1191 		/* Initialize the chip */
1192 		cs_initChip(sc);
1193 
1194 		/* Mark the interface as running */
1195 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1196 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1197 		sc->sc_ethercom.ec_if.if_timer = 0;
1198 
1199 		/* Assume we have carrier until we are told otherwise. */
1200 		sc->sc_carrier = 1;
1201 	} else {
1202 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1203 	}
1204 
1205 	splx(intState);
1206 out:
1207 	if (error == CS_OK)
1208 		return 0;
1209 	return EIO;
1210 }
1211 
1212 void
1213 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1214 {
1215 	struct ifnet *ifp = &ec->ec_if;
1216 	struct ether_multi *enm;
1217 	struct ether_multistep step;
1218 	u_int16_t af[4];
1219 	u_int16_t port, mask, index;
1220 
1221 	/*
1222          * Set up multicast address filter by passing all multicast addresses
1223          * through a crc generator, and then using the high order 6 bits as an
1224          * index into the 64 bit logical address filter.  The high order bit
1225          * selects the word, while the rest of the bits select the bit within
1226          * the word.
1227          */
1228 	if (ifp->if_flags & IFF_PROMISC) {
1229 		/* accept all valid frames. */
1230 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1231 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1232 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1233 		ifp->if_flags |= IFF_ALLMULTI;
1234 		return;
1235 	}
1236 
1237 	/*
1238 	 * accept frames if a. crc valid, b. individual address match c.
1239 	 * broadcast address,and d. multicast addresses matched in the hash
1240 	 * filter
1241 	 */
1242 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1243 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1244 
1245 
1246 	/*
1247 	 * start off with all multicast flag clear, set it if we need to
1248 	 * later, otherwise we will leave it.
1249 	 */
1250 	ifp->if_flags &= ~IFF_ALLMULTI;
1251 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1252 
1253 	/*
1254 	 * Loop through all the multicast addresses unless we get a range of
1255 	 * addresses, in which case we will just accept all packets.
1256 	 * Justification for this is given in the next comment.
1257 	 */
1258 	ETHER_FIRST_MULTI(step, ec, enm);
1259 	while (enm != NULL) {
1260 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1261 		    sizeof enm->enm_addrlo)) {
1262 			/*
1263 	                 * We must listen to a range of multicast addresses.
1264 	                 * For now, just accept all multicasts, rather than
1265 	                 * trying to set only those filter bits needed to match
1266 	                 * the range.  (At this time, the only use of address
1267 	                 * ranges is for IP multicast routing, for which the
1268 	                 * range is big enough to require all bits set.)
1269 	                 */
1270 			ifp->if_flags |= IFF_ALLMULTI;
1271 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1272 			break;
1273 		} else {
1274 			/*
1275 	                 * we have got an individual address so just set that
1276 	                 * bit.
1277 	                 */
1278 			index = cs_hash_index(enm->enm_addrlo);
1279 
1280 			/* Set the bit the Logical address filter. */
1281 			port = (u_int16_t) (index >> 4);
1282 			mask = (u_int16_t) (1 << (index & 0xf));
1283 			af[port] |= mask;
1284 
1285 			ETHER_NEXT_MULTI(step, enm);
1286 		}
1287 	}
1288 
1289 	/* now program the chip with the addresses */
1290 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1291 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1292 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1293 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1294 	return;
1295 }
1296 
1297 u_int16_t
1298 cs_hash_index(char *addr)
1299 {
1300 	uint32_t crc;
1301 	uint16_t hash_code;
1302 
1303 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1304 
1305 	hash_code = crc >> 26;
1306 	return (hash_code);
1307 }
1308 
1309 void
1310 cs_reset(struct cs_softc *sc)
1311 {
1312 
1313 	/* Mark the interface as down */
1314 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1315 
1316 	/* Reset the chip */
1317 	cs_reset_chip(sc);
1318 }
1319 
1320 int
1321 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1322 {
1323 	struct cs_softc *sc = ifp->if_softc;
1324 	struct ifreq *ifr = data;
1325 	int state;
1326 	int result;
1327 
1328 	state = splnet();
1329 
1330 	result = 0;		/* only set if something goes wrong */
1331 
1332 	switch (cmd) {
1333 	case SIOCGIFMEDIA:
1334 	case SIOCSIFMEDIA:
1335 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1336 		break;
1337 
1338 	default:
1339 		result = ether_ioctl(ifp, cmd, data);
1340 		if (result == ENETRESET) {
1341 			if (ifp->if_flags & IFF_RUNNING) {
1342 				/*
1343 				 * Multicast list has changed.  Set the
1344 				 * hardware filter accordingly.
1345 				 */
1346 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1347 			}
1348 			result = 0;
1349 		}
1350 		break;
1351 	}
1352 
1353 	splx(state);
1354 
1355 	return result;
1356 }
1357 
1358 int
1359 cs_mediachange(struct ifnet *ifp)
1360 {
1361 
1362 	/*
1363 	 * Current media is already set up.  Just reset the interface
1364 	 * to let the new value take hold.
1365 	 */
1366 	cs_init(ifp);
1367 	return (0);
1368 }
1369 
1370 void
1371 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1372 {
1373 	struct cs_softc *sc = ifp->if_softc;
1374 
1375 	/*
1376 	 * The currently selected media is always the active media.
1377 	 */
1378 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1379 
1380 	if (ifp->if_flags & IFF_UP) {
1381 		/* Interface up, status is valid. */
1382 		ifmr->ifm_status = IFM_AVALID |
1383 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1384 	}
1385 		else ifmr->ifm_status = 0;
1386 }
1387 
1388 int
1389 cs_intr(void *arg)
1390 {
1391 	struct cs_softc *sc = arg;
1392 	u_int16_t Event;
1393 #if NRND > 0
1394 	u_int16_t rndEvent;
1395 #endif
1396 
1397 /*printf("cs_intr %p\n", sc);*/
1398 	/* Ignore any interrupts that happen while the chip is being reset */
1399 	if (sc->sc_resetting) {
1400 		printf("%s: cs_intr: reset in progress\n",
1401 		    device_xname(sc->sc_dev));
1402 		return 1;
1403 	}
1404 
1405 	/* Read an event from the Interrupt Status Queue */
1406 	if (sc->sc_memorymode)
1407 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1408 	else
1409 		Event = CS_READ_PORT(sc, PORT_ISQ);
1410 
1411 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1412 		return 0;	/* not ours */
1413 
1414 #if NRND > 0
1415 	rndEvent = Event;
1416 #endif
1417 
1418 	/* Process all the events in the Interrupt Status Queue */
1419 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1420 		/* Dispatch to an event handler based on the register number */
1421 		switch (Event & REG_NUM_MASK) {
1422 		case REG_NUM_RX_EVENT:
1423 			cs_receive_event(sc, Event);
1424 			break;
1425 		case REG_NUM_TX_EVENT:
1426 			cs_transmit_event(sc, Event);
1427 			break;
1428 		case REG_NUM_BUF_EVENT:
1429 			cs_buffer_event(sc, Event);
1430 			break;
1431 		case REG_NUM_TX_COL:
1432 		case REG_NUM_RX_MISS:
1433 			cs_counter_event(sc, Event);
1434 			break;
1435 		default:
1436 			printf("%s: unknown interrupt event 0x%x\n",
1437 			    device_xname(sc->sc_dev), Event);
1438 			break;
1439 		}
1440 
1441 		/* Read another event from the Interrupt Status Queue */
1442 		if (sc->sc_memorymode)
1443 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1444 		else
1445 			Event = CS_READ_PORT(sc, PORT_ISQ);
1446 	}
1447 
1448 	/* have handled the interrupt */
1449 #if NRND > 0
1450 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1451 #endif
1452 	return 1;
1453 }
1454 
1455 void
1456 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1457 {
1458 	struct ifnet *ifp;
1459 	u_int16_t errorCount;
1460 
1461 	ifp = &sc->sc_ethercom.ec_if;
1462 
1463 	switch (cntEvent & REG_NUM_MASK) {
1464 	case REG_NUM_TX_COL:
1465 		/*
1466 		 * the count should be read before an overflow occurs.
1467 		 */
1468 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1469 		/*
1470 		 * the tramsit event routine always checks the number of
1471 		 * collisions for any packet so we don't increment any
1472 		 * counters here, as they should already have been
1473 		 * considered.
1474 		 */
1475 		break;
1476 	case REG_NUM_RX_MISS:
1477 		/*
1478 		 * the count should be read before an overflow occurs.
1479 		 */
1480 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1481 		/*
1482 		 * Increment the input error count, the first 6bits are the
1483 		 * register id.
1484 		 */
1485 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1486 		break;
1487 	default:
1488 		/* do nothing */
1489 		break;
1490 	}
1491 }
1492 
1493 void
1494 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1495 {
1496 
1497 	/*
1498 	 * multiple events can be in the buffer event register at one time so
1499 	 * a standard switch statement will not suffice, here every event
1500 	 * must be checked.
1501 	 */
1502 
1503 	/*
1504 	 * if 128 bits have been rxed by the time we get here, the dest event
1505 	 * will be cleared and 128 event will be set.
1506 	 */
1507 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1508 		cs_process_rx_early(sc);
1509 	}
1510 
1511 	if (bufEvent & BUF_EVENT_RX_DMA) {
1512 		/* process the receive data */
1513 		if (sc->sc_dma_process_rx)
1514 			(*sc->sc_dma_process_rx)(sc);
1515 		else
1516 			/* should panic? */
1517 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1518 	}
1519 
1520 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1521 #if 0
1522 		/*
1523 		 * This can happen occasionally, and it's not worth worrying
1524 		 * about.
1525 		 */
1526 		printf("%s: transmit underrun (%d -> %d)\n",
1527 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1528 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1529 #endif
1530 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1531 		sc->sc_xe_togo =
1532 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1533 
1534 		/* had an underrun, transmit is finished */
1535 		sc->sc_txbusy = FALSE;
1536 	}
1537 
1538 	if (bufEvent & BUF_EVENT_SW_INT) {
1539 		printf("%s: software initiated interrupt\n",
1540 		    device_xname(sc->sc_dev));
1541 	}
1542 }
1543 
1544 void
1545 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1546 {
1547 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1548 
1549 	/* If there were any errors transmitting this frame */
1550 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1551 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1552 		/* Increment the output error count */
1553 		ifp->if_oerrors++;
1554 
1555 		/* Note carrier loss. */
1556 		if (txEvent & TX_EVENT_LOSS_CRS)
1557 			sc->sc_carrier = 0;
1558 
1559 		/* If debugging is enabled then log error messages */
1560 		if (ifp->if_flags & IFF_DEBUG) {
1561 			if (txEvent & TX_EVENT_LOSS_CRS) {
1562 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1563 			}
1564 			if (txEvent & TX_EVENT_SQE_ERR) {
1565 				aprint_error_dev(sc->sc_dev, "SQE error\n");
1566 			}
1567 			if (txEvent & TX_EVENT_OUT_WIN) {
1568 				aprint_error_dev(sc->sc_dev,
1569 				    "out-of-window collision\n");
1570 			}
1571 			if (txEvent & TX_EVENT_JABBER) {
1572 				aprint_error_dev(sc->sc_dev, "jabber\n");
1573 			}
1574 			if (txEvent & TX_EVENT_16_COLL) {
1575 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
1576 			}
1577 		}
1578 	}
1579 	else {
1580 		/* Transmission successful, carrier is up. */
1581 		sc->sc_carrier = 1;
1582 #ifdef SHARK
1583 		ledNetActive();
1584 #endif
1585 	}
1586 
1587 	/* Add the number of collisions for this frame */
1588 	if (txEvent & TX_EVENT_16_COLL) {
1589 		ifp->if_collisions += 16;
1590 	} else {
1591 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1592 	}
1593 
1594 	ifp->if_opackets++;
1595 
1596 	/* Transmission is no longer in progress */
1597 	sc->sc_txbusy = FALSE;
1598 
1599 	/* If there is more to transmit */
1600 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1601 		/* Start the next transmission */
1602 		cs_start_output(ifp);
1603 	}
1604 }
1605 
1606 void
1607 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1608 {
1609 
1610 	if (rxEvent & RX_EVENT_RUNT)
1611 		aprint_error_dev(sc->sc_dev, "runt\n");
1612 
1613 	if (rxEvent & RX_EVENT_X_DATA)
1614 		aprint_error_dev(sc->sc_dev, "extra data\n");
1615 
1616 	if (rxEvent & RX_EVENT_CRC_ERR) {
1617 		if (rxEvent & RX_EVENT_DRIBBLE)
1618 			aprint_error_dev(sc->sc_dev, "alignment error\n");
1619 		else
1620 			aprint_error_dev(sc->sc_dev, "CRC error\n");
1621 	} else {
1622 		if (rxEvent & RX_EVENT_DRIBBLE)
1623 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1624 	}
1625 }
1626 
1627 void
1628 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1629 {
1630 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1631 
1632 	/* If the frame was not received OK */
1633 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1634 		/* Increment the input error count */
1635 		ifp->if_ierrors++;
1636 
1637 		/*
1638 		 * If debugging is enabled then log error messages.
1639 		 */
1640 		if (ifp->if_flags & IFF_DEBUG) {
1641 			if (rxEvent != REG_NUM_RX_EVENT) {
1642 				cs_print_rx_errors(sc, rxEvent);
1643 
1644 				/*
1645 				 * Must read the length of all received
1646 				 * frames
1647 				 */
1648 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1649 
1650 				/* Skip the received frame */
1651 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1652 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1653 						  RX_CFG_SKIP);
1654 			} else {
1655 				aprint_error_dev(sc->sc_dev, "implied skip\n");
1656 			}
1657 		}
1658 	} else {
1659 		/*
1660 		 * process the received frame and pass it up to the upper
1661 		 * layers.
1662 		 */
1663 		cs_process_receive(sc);
1664 	}
1665 }
1666 
1667 void
1668 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1669 {
1670 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1671 
1672 	ifp->if_ipackets++;
1673 
1674 	/*
1675 	 * Check if there's a BPF listener on this interface.
1676 	 * If so, hand off the raw packet to BPF.
1677 	 */
1678 	bpf_mtap(ifp, m);
1679 
1680 	/* Pass the packet up. */
1681 	(*ifp->if_input)(ifp, m);
1682 }
1683 
1684 void
1685 cs_process_receive(struct cs_softc *sc)
1686 {
1687 	struct ifnet *ifp;
1688 	struct mbuf *m;
1689 	int totlen;
1690 	u_int16_t *pBuff, *pBuffLimit;
1691 	int pad;
1692 	unsigned int frameOffset = 0;	/* XXX: gcc */
1693 
1694 #ifdef SHARK
1695 	ledNetActive();
1696 #endif
1697 
1698 	ifp = &sc->sc_ethercom.ec_if;
1699 
1700 	/* Received a packet; carrier is up. */
1701 	sc->sc_carrier = 1;
1702 
1703 	if (sc->sc_memorymode) {
1704 		/* Initialize the frame offset */
1705 		frameOffset = PKTPG_RX_LENGTH;
1706 
1707 		/* Get the length of the received frame */
1708 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1709 		frameOffset += 2;
1710 	}
1711 	else {
1712 		/* drop status */
1713 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1714 
1715 		/* Get the length of the received frame */
1716 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1717 	}
1718 
1719 	if (totlen > ETHER_MAX_LEN) {
1720 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1721 		    totlen);
1722 
1723 		/* skip the received frame */
1724 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1725 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1726 		return;
1727 	}
1728 
1729 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1730 	if (m == 0) {
1731 		aprint_error_dev(sc->sc_dev,
1732 		    "cs_process_receive: unable to allocate mbuf\n");
1733 		ifp->if_ierrors++;
1734 		/*
1735 		 * couldn't allocate an mbuf so things are not good, may as
1736 		 * well drop the packet I think.
1737 		 *
1738 		 * have already read the length so we should be right to skip
1739 		 * the packet.
1740 		 */
1741 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1742 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1743 		return;
1744 	}
1745 	m->m_pkthdr.rcvif = ifp;
1746 	m->m_pkthdr.len = totlen;
1747 
1748 	/* number of bytes to align ip header on word boundary for ipintr */
1749 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1750 
1751 	/*
1752 	 * alloc mbuf cluster if we need.
1753 	 * we need 1 byte spare because following
1754 	 * packet read loop can overrun.
1755 	 */
1756 	if (totlen + pad + 1 > MHLEN) {
1757 		MCLGET(m, M_DONTWAIT);
1758 		if ((m->m_flags & M_EXT) == 0) {
1759 			/* couldn't allocate an mbuf cluster */
1760 			aprint_error_dev(sc->sc_dev,
1761 			    "cs_process_receive: "
1762 			    "unable to allocate a cluster\n");
1763 			m_freem(m);
1764 
1765 			/* skip the received frame */
1766 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1767 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1768 			return;
1769 		}
1770 	}
1771 
1772 	/* align ip header on word boundary for ipintr */
1773 	m->m_data += pad;
1774 
1775 	m->m_len = totlen;
1776 	pBuff = mtod(m, u_int16_t *);
1777 
1778 	/* now read the data from the chip */
1779 	if (sc->sc_memorymode) {
1780 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1781 		while (pBuff < pBuffLimit) {
1782 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1783 			frameOffset += 2;
1784 		}
1785 	}
1786 	else {
1787 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1788 	}
1789 
1790 	cs_ether_input(sc, m);
1791 }
1792 
1793 void
1794 cs_process_rx_early(struct cs_softc *sc)
1795 {
1796 	struct ifnet *ifp;
1797 	struct mbuf *m;
1798 	u_int16_t frameCount, oldFrameCount;
1799 	u_int16_t rxEvent;
1800 	u_int16_t *pBuff;
1801 	int pad;
1802 	unsigned int frameOffset;
1803 
1804 
1805 	ifp = &sc->sc_ethercom.ec_if;
1806 
1807 	/* Initialize the frame offset */
1808 	frameOffset = PKTPG_RX_FRAME;
1809 	frameCount = 0;
1810 
1811 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1812 	if (m == 0) {
1813 		aprint_error_dev(sc->sc_dev,
1814 		    "cs_process_rx_early: unable to allocate mbuf\n");
1815 		ifp->if_ierrors++;
1816 		/*
1817 		 * couldn't allocate an mbuf so things are not good, may as
1818 		 * well drop the packet I think.
1819 		 *
1820 		 * have already read the length so we should be right to skip
1821 		 * the packet.
1822 		 */
1823 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1824 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1825 		return;
1826 	}
1827 	m->m_pkthdr.rcvif = ifp;
1828 	/*
1829 	 * save processing by always using a mbuf cluster, guaranteed to fit
1830 	 * packet
1831 	 */
1832 	MCLGET(m, M_DONTWAIT);
1833 	if ((m->m_flags & M_EXT) == 0) {
1834 		/* couldn't allocate an mbuf cluster */
1835 		aprint_error_dev(sc->sc_dev,
1836 		    "cs_process_rx_early: unable to allocate a cluster\n");
1837 		m_freem(m);
1838 		/* skip the frame */
1839 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1840 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1841 		return;
1842 	}
1843 
1844 	/* align ip header on word boundary for ipintr */
1845 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1846 	m->m_data += pad;
1847 
1848 	/* set up the buffer pointer to point to the data area */
1849 	pBuff = mtod(m, u_int16_t *);
1850 
1851 	/*
1852 	 * now read the frame byte counter until we have finished reading the
1853 	 * frame
1854 	 */
1855 	oldFrameCount = 0;
1856 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1857 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1858 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1859 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1860 			frameOffset += 2;
1861 		}
1862 
1863 		/* read the new count from the chip */
1864 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1865 	}
1866 
1867 	/* update the mbuf counts */
1868 	m->m_len = oldFrameCount;
1869 	m->m_pkthdr.len = oldFrameCount;
1870 
1871 	/* now check the Rx Event register */
1872 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1873 
1874 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1875 		/*
1876 		 * do an implied skip, it seems to be more reliable than a
1877 		 * forced skip.
1878 		 */
1879 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1880 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1881 
1882 		/*
1883 		 * now read the RX_EVENT register to perform an implied skip.
1884 		 */
1885 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1886 
1887 		cs_ether_input(sc, m);
1888 	} else {
1889 		m_freem(m);
1890 		ifp->if_ierrors++;
1891 	}
1892 }
1893 
1894 void
1895 cs_start_output(struct ifnet *ifp)
1896 {
1897 	struct cs_softc *sc;
1898 	struct mbuf *pMbuf;
1899 	struct mbuf *pMbufChain;
1900 	u_int16_t BusStatus;
1901 	u_int16_t Length;
1902 	int txLoop = 0;
1903 	int dropout = 0;
1904 
1905 	sc = ifp->if_softc;
1906 
1907 	/* check that the interface is up and running */
1908 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1909 		return;
1910 	}
1911 
1912 	/* Don't interrupt a transmission in progress */
1913 	if (sc->sc_txbusy) {
1914 		return;
1915 	}
1916 
1917 	/* this loop will only run through once if transmission is successful */
1918 	/*
1919 	 * While there are packets to transmit and a transmit is not in
1920 	 * progress
1921 	 */
1922 	while (sc->sc_txbusy == 0 && dropout == 0) {
1923 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1924 		if (pMbufChain == NULL)
1925 			break;
1926 
1927 		/*
1928 	         * If BPF is listening on this interface, let it see the packet
1929 	         * before we commit it to the wire.
1930 	         */
1931 		bpf_mtap(ifp, pMbufChain);
1932 
1933 		/* Find the total length of the data to transmit */
1934 		Length = 0;
1935 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1936 			Length += pMbuf->m_len;
1937 
1938 		do {
1939 			/*
1940 			 * Request that the transmit be started after all
1941 			 * data has been copied
1942 			 *
1943 			 * In IO mode must write to the IO port not the packet
1944 			 * page address
1945 			 *
1946 			 * If this is changed to start transmission after a
1947 			 * small amount of data has been copied you tend to
1948 			 * get packet missed errors i think because the ISA
1949 			 * bus is too slow. Or possibly the copy routine is
1950 			 * not streamlined enough.
1951 			 */
1952 			if (sc->sc_memorymode) {
1953 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1954 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1955 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1956 			}
1957 			else {
1958 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1959 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1960 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1961 			}
1962 
1963 			/*
1964 			 * Adjust early-transmit machinery.
1965 			 */
1966 			if (--sc->sc_xe_togo == 0) {
1967 				sc->sc_xe_ent =
1968 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1969 				sc->sc_xe_togo =
1970 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1971 			}
1972 			/*
1973 			 * Read the BusStatus register which indicates
1974 			 * success of the request
1975 			 */
1976 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1977 
1978 			/*
1979 			 * If there was an error in the transmit bid free the
1980 			 * mbuf and go on. This is presuming that mbuf is
1981 			 * corrupt.
1982 			 */
1983 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1984 				aprint_error_dev(sc->sc_dev,
1985 				    "transmit bid error (too big)");
1986 
1987 				/* Discard the bad mbuf chain */
1988 				m_freem(pMbufChain);
1989 				sc->sc_ethercom.ec_if.if_oerrors++;
1990 
1991 				/* Loop up to transmit the next chain */
1992 				txLoop = 0;
1993 			} else {
1994 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1995 					/*
1996 					 * The chip is ready for transmission
1997 					 * now
1998 					 */
1999 					/*
2000 					 * Copy the frame to the chip to
2001 					 * start transmission
2002 					 */
2003 					cs_copy_tx_frame(sc, pMbufChain);
2004 
2005 					/* Free the mbuf chain */
2006 					m_freem(pMbufChain);
2007 
2008 					/* Transmission is now in progress */
2009 					sc->sc_txbusy = TRUE;
2010 					txLoop = 0;
2011 				} else {
2012 					/*
2013 					 * if we get here we want to try
2014 					 * again with the same mbuf, until
2015 					 * the chip lets us transmit.
2016 					 */
2017 					txLoop++;
2018 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2019 						/* Free the mbuf chain */
2020 						m_freem(pMbufChain);
2021 						/*
2022 						 * Transmission is not in
2023 						 * progress
2024 						 */
2025 						sc->sc_txbusy = FALSE;
2026 						/*
2027 						 * Increment the output error
2028 						 * count
2029 						 */
2030 						ifp->if_oerrors++;
2031 						/*
2032 						 * exit the routine and drop
2033 						 * the packet.
2034 						 */
2035 						txLoop = 0;
2036 						dropout = 1;
2037 					}
2038 				}
2039 			}
2040 		} while (txLoop);
2041 	}
2042 }
2043 
2044 void
2045 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2046 {
2047 	struct mbuf *m;
2048 	int len, leftover, frameoff;
2049 	u_int16_t dbuf;
2050 	u_int8_t *p;
2051 #ifdef DIAGNOSTIC
2052 	u_int8_t *lim;
2053 #endif
2054 
2055 	/* Initialize frame pointer and data port address */
2056 	frameoff = PKTPG_TX_FRAME;
2057 
2058 	/* start out with no leftover data */
2059 	leftover = 0;
2060 	dbuf = 0;
2061 
2062 	/* Process the chain of mbufs */
2063 	for (m = m0; m != NULL; m = m->m_next) {
2064 		/*
2065 		 * Process all of the data in a single mbuf.
2066 		 */
2067 		p = mtod(m, u_int8_t *);
2068 		len = m->m_len;
2069 #ifdef DIAGNOSTIC
2070 		lim = p + len;
2071 #endif
2072 
2073 		while (len > 0) {
2074 			if (leftover) {
2075 				/*
2076 				 * Data left over (from mbuf or realignment).
2077 				 * Buffer the next byte, and write it and
2078 				 * the leftover data out.
2079 				 */
2080 				dbuf |= *p++ << 8;
2081 				len--;
2082 				if (sc->sc_memorymode) {
2083 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2084 					frameoff += 2;
2085 				}
2086 				else {
2087 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2088 				}
2089 				leftover = 0;
2090 			} else if ((long) p & 1) {
2091 				/*
2092 				 * Misaligned data.  Buffer the next byte.
2093 				 */
2094 				dbuf = *p++;
2095 				len--;
2096 				leftover = 1;
2097 			} else {
2098 				/*
2099 				 * Aligned data.  This is the case we like.
2100 				 *
2101 				 * Write-region out as much as we can, then
2102 				 * buffer the remaining byte (if any).
2103 				 */
2104 				leftover = len & 1;
2105 				len &= ~1;
2106 				if (sc->sc_memorymode) {
2107 					MEM_WRITE_REGION_2(sc, frameoff,
2108 						(u_int16_t *) p, len >> 1);
2109 					frameoff += len;
2110 				}
2111 				else {
2112 					IO_WRITE_MULTI_2(sc,
2113 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2114 				}
2115 				p += len;
2116 
2117 				if (leftover)
2118 					dbuf = *p++;
2119 				len = 0;
2120 			}
2121 		}
2122 		if (len < 0)
2123 			panic("cs_copy_tx_frame: negative len");
2124 #ifdef DIAGNOSTIC
2125 		if (p != lim)
2126 			panic("cs_copy_tx_frame: p != lim");
2127 #endif
2128 	}
2129 	if (leftover) {
2130 		if (sc->sc_memorymode) {
2131 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2132 		}
2133 		else {
2134 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2135 		}
2136 	}
2137 }
2138 
2139 static int
2140 cs_enable(struct cs_softc *sc)
2141 {
2142 
2143 	if (CS_IS_ENABLED(sc) == 0) {
2144 		if (sc->sc_enable != NULL) {
2145 			int error;
2146 
2147 			error = (*sc->sc_enable)(sc);
2148 			if (error)
2149 				return (error);
2150 		}
2151 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2152 	}
2153 
2154 	return (0);
2155 }
2156 
2157 static void
2158 cs_disable(struct cs_softc *sc)
2159 {
2160 
2161 	if (CS_IS_ENABLED(sc)) {
2162 		if (sc->sc_disable != NULL)
2163 			(*sc->sc_disable)(sc);
2164 
2165 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2166 	}
2167 }
2168 
2169 static void
2170 cs_stop(struct ifnet *ifp, int disable)
2171 {
2172 	struct cs_softc *sc = ifp->if_softc;
2173 
2174 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2175 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2176 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2177 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2178 
2179 	if (disable) {
2180 		cs_disable(sc);
2181 	}
2182 
2183 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2184 }
2185 
2186 int
2187 cs_activate(device_t self, enum devact act)
2188 {
2189 	struct cs_softc *sc = device_private(self);
2190 
2191 	switch (act) {
2192 	case DVACT_DEACTIVATE:
2193 		if_deactivate(&sc->sc_ethercom.ec_if);
2194 		return 0;
2195 	default:
2196 		return EOPNOTSUPP;
2197 	}
2198 }
2199